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Abstract: Currently, the escalating integration of renewable energy sources is causing a steady
weakening of grid strength. When grid strength is weak, interactions between inverters or those
between inverters and grid line impedance can provoke widespread oscillations in the power system.
Additionally, the diverse DC voltage application characteristics of power converter systems (PCS)
may lead to over-modulation, generating narrow pulse issues that further impact control of the
midpoint potential balance. Existing dead-time elimination methods are highly susceptible to current
polarity judgments, rendering them ineffective in practical use. PCS, due to inherent dead-time
effects, midpoint potential imbalances in three-level topologies, and narrow pulses, can elevate low-
order harmonic content in the output voltage, ultimately distorting grid-connected currents. This is
particularly susceptible to causing resonance in weak grids. To enhance the output voltage waveform
of PCS, this article introduces a comprehensive compensation control strategy that combines dead-
time elimination, midpoint potential balance, and narrow pulse suppression, all based on an active
neutral point clamped (ANPC) three-level topology. This strategy gives precedence to dead-time
elimination and calculates the upper and lower limits of the zero-sequence available for midpoint
potential balance while fully compensating for narrow pulses. By prioritizing dead-time elimination,
followed by narrow pulse suppression and finally midpoint potential balance, this method decouples
the coupling between these three factors. The effectiveness of the proposed method is validated
through semi-physical simulations.

Keywords: active neutral point clamped topology; power converter system; waveform optimization;
deadtime elimination; narrow pulse; neutral point potential balance

1. Introduction

With the rapid development of the global economy, the continuous increase in human
consumption of energy, the gradual depletion of fossil energy, and increasingly serious
environmental pollution have prompted continuous innovation in the energy structure, and
the proportion of renewable energy in total energy is increasing. In 2018, the International
Renewable Energy Agency (IRENA) released the “Global Energy Transition: Roadmap to
2050”, which pointed out that in order to achieve the global carbon emissions target by 2050,
the proportion of global renewable energy generation needs to increase from 26% to 55% by
2050 [1]. With the continuous development of renewable energy generation technologies,
represented by photovoltaics and wind power, the power system is exhibiting a new trend
characterized by high permeability of renewable energy integration and a high proportion
of power electronic converters. In order to adapt to renewable energy’s characteristics
of randomness, intermittency, and volatility, multiple distributed energy sources, energy
storage systems, and controllable loads are integrated and receive joint regulation to form
a microgrid operation, which can shorten the power transmission distance and improve
system efficiency. In microgrids, inverter-based resources (IBR) account for a relatively high
proportion, and the grid strength decreases significantly. Due to the high line impedance,
the coupling effects between individual IBRs and between IBRs and transmission lines have
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a more serious impact on the stability of the microgrid, even leading to microgrid instability.
Due to the dynamic response of different IBRs over multiple time scales, the disturbance
frequency band between devices in the microgrid is broader; in addition, nonlinear links
such as dead zones and amplitude limitations that are commonly present in IBRs will also
have a certain impact on system stability, further exacerbating the dynamic complexity of
the microgrid [2].

Battery Energy Storage Systems (BESS) can smooth out the output of renewable energy
sources, support grid voltage and frequency, and become an effective means to address
the issues arising from the high permeability of renewable energy. As the core component
of BESS, PCS serve as the interface between the energy storage medium and the grid as
well as the load. In energy storage systems with DC voltages ranging from 750 to 1500 V
and power ratings from 50 kW to 3.5 MW, PCS mostly adopt a three-level topology, which
offers better harmonic characteristics, lower dv/dt, lower device voltage tolerance, and
higher conversion efficiency compared to two-level converters. Depending on different
power and voltage ratings, topologies such as NPC, T-NPC, and ANPC can be selected.

Pulse-Width Modulation (PWM) is widely applied in the drive controls of PCS for
renewable energy generation, due to its advantages such as high efficiency and low output
harmonics. However, switching devices like insulated gate bipolar transistors (IGBT) have
inherent turn-on and turn-off times. To prevent improper switching of IGBT in practical
applications, a dead time must be inserted into the drive signal. However, the dead-time
effect can cause deviations in the fundamental frequency components of the output current,
as well as positive-sequence currents of the 6k + 1 order and negative-sequence currents of
the 6k − 1 order. These harmonic currents can lead to distortion in the output current.

To address the dead-time issue, existing research focuses on two directions: dead-time
compensation [3] and dead-time elimination [4]. Dead-time compensation involves ob-
taining a compensation voltage through device parameter tables or experimental methods
and applying it based on the polarity of the current. However, this method faces several
challenges: 1⃝ insufficient accuracy in judging the polarity of the current can lead to failed
compensation [5]; 2⃝ the actual drive pulse lags behind the ideal drive pulse by half the
dead time, resulting in errors in the instantaneous voltage [6]; 3⃝ dead-time compensation
can increase the amplitude of the modulation wave, potentially causing issues such as
narrow pulses and other nonlinear factors [7]. In contrast, dead-time elimination works by
only modifying the drive signal of the active power switch while keeping the corresponding
complementary power switch inactive. Since the active drive signal does not contain a
dead time, it fundamentally avoids the dead-time effect. However, the main challenge with
dead-time elimination is the high accuracy required in judging the polarity of the current.
Incorrect polarity judgments can lead to more severe output voltage distortion compared
to dead-time compensation. Therefore, it is crucial to select the appropriate dead-time
handling method for the specific application scenario [8].

When the modulation index of the PCS is high, the addition of dead time can easily
result in individual drive signals being shorter than the minimum turn-on or turn-off time,
leading to narrow pulses. This incomplete switching of power devices increases switching
losses, causes output waveform distortion, and may even lead to thermal accumulation
and burnout of the power devices. Common narrow pulse suppression methods include
direct narrow pulse elimination, zero-sequence voltage injection, and non-nearest three-
vector SVPWM modulation. The principle of the direct narrow pulse elimination method
is to exclude or extend the pulse width when the pulse width of the PWM signal is less
than a set limit, avoiding the generation of narrow pulses. However, this may lead to
over-adjustment of the voltage in one phase while the voltages in other phases remain
unchanged, disrupting the balance of the three-phase voltages. The zero-sequence voltage
injection method adjusts the PWM waveform by injecting a zero-sequence voltage into the
three-phase voltages to eliminate or expand narrow pulses. While maintaining constant
line voltages, this method addresses narrow pulse issues by modifying the phase voltages,
but this may introduce narrow pulses in other phases and increase the harmonic content of
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the output voltage [9]. Additionally, the non-nearest three-vector method can be employed
to avoid narrow pulses by replacing the basic vectors with action times shorter than the
minimum pulse width. However, this method comes at the cost of increased switching
frequency and a reduced distribution area for narrow pulses [10].

Furthermore, imbalance in the DC neutral-point potential is a core issue in three-
level converters, and can be categorized into DC imbalance and AC oscillation [11]. The
primary causes of DC imbalance can be summarized as follows: 1⃝ inconsistency in ca-
pacitor parameters [12]; 2⃝ asymmetric loading [10]; and 3⃝ inherent characteristics of
the control strategy [13]. Common compensation methods for DC imbalance introduce
a third-harmonic zero-sequence voltage into the modulation wave, resulting in a triple-
frequency ripple in the DC voltage, known as AC oscillation. The magnitude of the AC
oscillation ripple depends on the output current, power factor, and DC capacitance. An
excessive ripple can lead to distortion in the AC output voltage and excessive voltage stress
on power devices.

Disturbance voltages generated by the nonlinear factors of PCS can cause distortion in
the output voltage of the inverter, leading to adverse effects such as phase current distortion,
torque ripple, and degraded control performance [14]. Currently, the mainstream control
method for PCS involves synchronizing with the power grid through a phase-locked loop
(PLL) and transmitting energy to the grid in the form of a current source. Under a strong
grid, grid-following control (GFL) can achieve precise power control and obtain high
grid-connected power quality. However, in microgrids with a high proportion of power
electronics, the system has low inertia and insufficient support capabilities. Significant
fluctuations in line impedance can lead to voltage fluctuations or even oscillations at the
grid-connection point. Grid-following control can easily trigger grid-connected current
resonance or even instability [15]. Additionally, due to three-phase imbalance and sudden
load changes, PCS controlled by GFL are unable to provide inertia and voltage support
to the microgrid, resulting in noticeable power quality issues such as current/voltage
harmonics, imbalance, and voltage fluctuations [3].

This article aims to optimize the control of a three-level PCS in a microgrid. The
primary contribution of this paper is the proposal of a comprehensive compensation
control method for nonlinear factors in the ANPC three-level topology. Building upon
existing dead-time elimination techniques for NPC three-level topologies, this method
optimizes dead-time elimination for ANPC topologies, exhibiting robust fault tolerance
against errors in current polarity. Even under high modulation indices, it achieves a
favorable grid-connected current waveform. Furthermore, the paper harmonizes the zero-
sequence voltage required for balancing the neutral-point potential and suppressing narrow
pulses, providing an optimized range for zero-sequence voltage injection.

In this article, Section 1 introduces the application background of renewable energy
power generation, and summarizes the current status of research on three-level nonlinear
factors, including dead-time effect, DC neutral-point potential imbalance, narrow pulse, and
other related issues. Section 2 analyzes the formation mechanism of the nonlinear output
voltage waveform in ANPC three-level topology. Section 3 optimizes the control of three
influencing factors, elaborates on the coupling relationships among various influencing
factors, and proposes a comprehensive compensation control method for the nonlinear
factors of the ANPC three-level topology. Section 4 validates the effectiveness of the
proposed control algorithm through hardware-in-the-loop simulations, demonstrating its
ability to effectively reduce the low-order harmonic content of the output voltage and
grid-connected current under various fault conditions. Section 5 summarizes and provides
an outlook for optimization methods for nonlinear factors.

2. Analysis of Nonlinear Factors of PCS

The topology of an ANPC three-level PCS is shown in Figure 1. Unlike the carrier
modulation strategy of a two-level PCS, the carrier modulation of the ANPC topology
mainly relies on carrier stacking algorithms. Narrow pulses may occur near the zero point
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and peak of the modulation wave, causing the switching tubes to fail to turn on or off
properly. Additionally, the introduction of dead time can exacerbate narrow pulses or
even lead to pulse shaping, further causing nonlinear distortion in the output voltage and
current. When a dead time is introduced, theoretically, the two complementary pulses
are no longer strictly complementary, and there is a situation where both complementary
power switches are at 0 during the dead time. At this point, the output voltage is related
to the polarity of the current. When the current is greater than 0, the output voltage is
−Udc/2; when the current is less than 0, the output voltage is −Udc/2.
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Figure 1. ANPC topology of PCS. 
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The average error voltage ∆Vd can be expressed as follows:

∆Vd =
T∗ − Ton

Ts
=
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(ton − toff + td)/Ts (i < 0)

(1)

In Equation (1), Ts denotes the switching period, T* represents the theoretical turn-on
time within Ts, while Ton signifies the actual turn-on time. The symbol i stands for the
grid-connected current, with its reference direction aligning with that of iLa depicted in
Figure 1. Any deviation between T* and Ton gives rise to an output voltage error, denoted
as ∆Vd. This ∆Vd is intricately linked to the power device’s turn-on time ton, turn-off time
toff, and dead time td. Furthermore, the polarity of ∆Vd is contingent on the polarity of i.

The average error voltage ∆Vd leads to an error current, which can be expressed as:
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As shown in Equation (2), the dead-time effect results in deviations in the fundamental
frequency component of the output current, as well as the presence of 6k + 1th-order
positive-sequence currents and 6k − 1th-order negative-sequence currents. These harmonic
currents lead to distortion in the output current.

For three-level PCS, nonlinear factors such as dead time and DC neutral-point potential
imbalance can influence the output waveform, introducing low-order harmonics. In power
systems with high penetration of intermittent and renewable energy sources (IBR), when
the frequency of these low-order harmonics coincides with the quasi-resonant frequency of
the weak grid, the low-order harmonic currents can be amplified, significantly affecting
the quality of the grid-connected power. The Norton equivalent circuit for a PCS grid-
connected system is shown in Figure 2, where is_αβ(s) represents the equivalent current
source of the inverter, while Zo(s) denotes its output impedance. The voltage at the grid-
connected point is designated upcc_αβ(s), ug_αβ(s) represents the grid voltage, and Zg(s)
stands for the line impedance.
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The expression of the grid-connected current of the PCS can be obtained from Figure 2
as follows:

iαβ(s) = [is_αβ(s)−
ug_αβ(s)

Zo(s)
]

1
1 + Zg(s)/Zo(s)

= A(s)B(s) (3)

According to the impedance criterion, the B(s) in Equation (3) can be regarded as
a closed-loop transfer function with a forward channel gain of 1. Therefore, Zg(s)/Zo(s)
should satisfy the Nyquist stability criterion. As the dead time increases, the system’s phase
margin decreases, and the output impedance of the PCS approaches the grid line impedance
towards 180◦. With the increase in line impedance, low-order resonance may occur in the
grid-connected current, leading to a decrease in the quality of the grid-connected power.

From the above analysis, it can be seen that the nonlinear factors of the inverter mainly
include dead-time effects, narrow pulse effects, and DC neutral point imbalance. These
factors are coupled and jointly cause distortion in the output waveform of the inverter.

3. Principle of Dead Zone Elimination Method and Optimal Control of ANPC
Three-Level PCS
3.1. ANPC Three-Level PCS Dead Zone Elimination Method

Figure 3 depicts the circulating current process in phase A of the ANPC PCS. In
this figure, ua exhibits three distinct levels, corresponding to the P state, O state, and N
state, when the AC output point is linked to the P point, O point, and N point of the
DC bus capacitors, respectively. Depending on the positive and negative values of the
modulation voltage ua

* and the current ia, Figure 3 can be categorized into four quadrants
within a single power frequency cycle. Specifically, Figure 3a depicts ua

* > 0 and ia > 0,
Figure 3b shows ua

* < 0 and ia > 0, Figure 3c illustrates ua
* < 0 and ia < 0, and Figure 3d

represents ua
* > 0 and ia < 0. Within each quadrant, two distinct stages are observed: the

current charging stage and the current freewheeling stage. During the charging stage,
the amplitude of the current rises, effectively charging the AC inductor (L in Figure 1).
Conversely, during the freewheeling stage, the current amplitude decreases as the AC
inductor discharges its stored energy. Sa1~Sa6 represent the driving pulses that correspond
to the IGBTs (Qa1~Qa6), with ‘0’ indicating the low state and ‘1’ indicating the high state
of the driving pulses. Given that there are two alternative paths in the O state, there exist
multiple modulation strategies that can achieve normal modulation. Here, we present the
commonly used PWM-1 modulation method. To prevent short-circuiting in the converter,
it is crucial to ensure that Sa1 and Sa5, Sa2 and Sa3, or Sa4 and Sa6 are not simultaneously
turned on. Consider Figure 3a as an example. When ua

* is greater than or equal to 0 and ia
is positive, the P state corresponds to the current boosting stage. In this stage, Sa1 and Sa2
are set to ‘1’, Sa3, Sa4, and Sa5 are set to ‘0’, and Sa6 is set to ‘1’. This arrangement ensures
that IGBTs Sa3 and Sa4 share the same voltage (Udc/2). Moving to the freewheeling stage
depicted in Figure 3b, Sa1 flips to ‘0’, and the current freewheels through the freewheeling
diode of Sa5 to Sa2, and then through the freewheeling diode of Sa6 to Sa2. Notably, Sa5
exhibits pulse redundancy, meaning its switching state does not impact the commutation
path. Similar observations can be made in other intervals, further confirming the existence
of pulse redundancy during the current freewheeling stage.
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Figure 3. Current commutation diagram of ANPC three-level topology. (a) ia > 0 and ua transitions 
between P and O states. (b) ia > 0 and ua transitions between O and N states. (c) ia < 0 and ua transi-
tions between O and N states. (d) ia < 0 and ua transitions between P and O states. 
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To avoid the dead-time effect, redundant states in the drive pulses can be eliminated
based on the polarity of the original modulation wave ua

* and current ia. This results in the
PWM signals for Sa1 to Sa6 shown in Figure 4a. The fundamental mechanism for generating
the drive pulses is similar to traditional carrier-based PWM. Drive pulses are generated by
comparing ua

* with two in-phase stacked carriers, Cr+ and Cr−. Redundant drive pulses
are alternately disabled based on the polarity of the reference current ia and modulation
wave ua

*. Specifically, Sa1 is disabled when ua
* > 0 and ia < 0, Sa5 is disabled when ua

* > 0
and ia > 0, Sa4 is disabled when ua

* < 0 and ia > 0, and Sa6 is disabled when ua
* < 0 and

ia < 0.
Eliminating redundant states in the modulation depicted in the above figure brings

significant advantages. Notably, Sa1 and Sa5, Sa2 and Sa3, and Sa4 and Sa6 will not si-
multaneously equal ‘1’, essentially preventing the occurrence of current shoot-through.
Consequently, the dead time between traditional complementary drive pulses can be elimi-
nated. Moreover, the absence of dead-time effects reduces low-frequency output voltage
distortion, while also decreasing the number of switching events, leading to lower switch-
ing losses. The PWM shown in Figure 4a exhibits a dead-time-free characteristic, referred
to as dead-time elimination. However, traditional dead-time elimination methods heavily
rely on accurate current polarity detection. As is evident in Figure 4b, when there is a delay
in polarity judgment, polarity errors occur within the regions where the current is greater
than 0, resulting in extra forbidden and enabled intervals for Sa1 and Sa3, respectively.
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Similarly, in regions where the current is less than 0, Sa4 and Sa6 experience similar
polarity errors. These polarity errors lead to voltage gaps in the output voltage, causing
voltage distortion. Additionally, due to the current pumping and freewheeling processes
within a switching cycle, current ripple exists. This ripple can cause unexpected polarity
jumps at the zero-crossing points, resulting in abnormal dead-time elimination judgments
at these points.

3.2. ANPC Three-Level PCS Dead Zone Elimination Optimization Method

To retain the dead-time elimination feature while reducing dependency on current
polarity, it is necessary to maintain the redundant states during the freewheeling phase of
the drive pulse signals. In the event of a misjudgment of current polarity, the presence of
these redundant states can effectively minimize errors in the output voltage. Building upon
the work in reference [8], this paper proposes a dual modulation wave PWM technique
for the ANPC three-level PCS. This paper introduces an additional modulation wave
ua

** to complement the original modulation wave ua
*. The magnitude of ua

** is adjusted
based on the current polarity. Both modulation waves act concurrently during the current
freewheeling phase, creating overlapping periods between the additional drive pulses
and the original drive pulses of the dead-time elimination PWM. This approach prevents
shoot-through and eliminates dead-time effects. The proposed dual modulation wave
PWM is illustrated in Figure 5.

In Figure 5, an additional modulation wave ua
** is introduced alongside the original

modulation wave ua
*. ua

** generates redundant drive pulses during the current free-
wheeling phase. When ia ≥ 0, the magnitude of ua

** is increased by ∆u*/2 relative to ua
*.

Conversely, when ia < 0, the magnitude of ua
** is reduced by ∆u*/2 relative to ua

*. Within
the original redundant regions, carrier modulation is performed based on ua

**, with Sa1–Sa2–
Sa4 and Sa3–Sa5–Sa6 using the same modulation wave. The specific distribution is indicated
by the different colors of Sa1~Sa6 in Figure 5. As can be seen in the enlarged area of Figure 5,
the amplitude difference ∆u* between ua

** and ua
* creates an overlapping low-level time

Tu, between the high levels of Sa1 and Sa5. This prevents shoot-through failures, and the
high-level duration of the output voltage remains the same as that theoretically calculated.
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Therefore, it can be concluded that the dual modulation wave PWM belongs to the category
of dead-time elimination, being essentially free from dead-time effects. The added drive
pulses, occurring during the freewheeling phase, do not affect the original output voltage
of the dead-time elimination PWM.
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Based on the similarity triangle relationship shown in Figure 5, the increased amplitude
of the modulation wave ∆u* can be derived as follows: ∆u =

2Tu

Ts

Udc
2

Tu = td

(4)

In Equation (4), Ts represents the switching period, and Udc is the DC bus voltage.
The overlapping low-level time within a single switching period is 2Tu. The ∆u* is directly
proportional to Tu and inversely proportional to Ts. Unlike traditional dead-time, which
can introduce dead-time effects, Tu does not affect the output voltage. Therefore, Tu can be
set as the dead-time td.

In the ANPC dual modulation wave PWM, when the modulation index is relatively
high, the generated amplitude may exceed the carrier, causing over-modulation. As can be
seen in Figure 6a, over-modulation only occurs in the modulation wave ua

** used during
the freewheeling phase, resulting in the disappearance of the redundant drive pulses added
during the current freewheeling stage. However, the freewheeling phase does not affect
the output voltage, so it does not cause output current distortion issues even when the
modulation index is high. Furthermore, the proposed method exhibits better fault tolerance
for current polarity judgments compared to conventional dead-time elimination methods.
As illustrated in Figure 6b, even in the event of a current polarity error, the PWM pulse is
enabled during the freewheeling phase. Although this pulse deviates from the theoretical
pulse by an amplitude of ∆u*, this deviation only generates two voltage error pulses within
a single switching period of the output voltage. This is a significant improvement compared
to Figure 6b, where more noticeable voltage loss occurs in the output voltage during regions
of incorrect current polarity. Therefore, in areas where current polarity misjudgments are
more frequent, such as near the current zero-crossing points, the proposed method can
significantly improve output voltage and effectively reduce output voltage distortion. This
effectively mitigates the dependency of dead-time elimination methods on the accuracy of
current polarity judgments.
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3.3. Principle and Optimization Control of Midpoint Potential Balance for ANPC Three-Level PCS

First, the relationship between midpoint potential fluctuation and midpoint current in
three-level ANPC topology is analyzed, as shown in Figure 7. In the figure, Udc1 and ic1
represent the voltage and current of the upper DC bus capacitor, respectively, while Udc2
and ic2 represent the voltage and current of the lower DC bus capacitor, respectively. Udc
stands for the total voltage of the DC bus.
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Assuming that the average voltage deviation between the upper and lower capacitors
of the DC bus is ∆udc, then we have:

iC1 = C
Udc1 − Udc2

Ts
= C

∆udc
Ts

iC2 = −C
∆udc

Ts

(5)
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The relationship between ∆udc and the neutral point current iO is:

iO = iC1 − iC2 = 2C
∆udc

Ts
(6)

The relationship between the neutral point potential and the compensating neutral
point current iOX can be derived as:

iox = −iO = −2C
∆udc

Ts
(7)

Therefore, the balance control of the neutral point potential in a three-level system
can be converted into neutral point current balance control. The average value of the
three-phase neutral point currents within a switching period can be expressed as:

iO = iadao + ibdbo + icdco (8)

dio = 1 − |di|, (i = a, b, c) (9)

In a three-phase three-wire symmetrical system, injecting zero-sequence voltage can
alter the three phase voltages without affecting the line voltage output. The modified phase
voltage is: 

u∗
a = ua + uz

u∗
b = ub + uz

u∗
c = uc + uz

(10)

By adjusting the zero-sequence compensation voltage uz, ui can be modulated, subse-
quently influencing dio and ultimately regulating the neutral point current iO. Consequently,
by manipulating the zero-sequence voltage, we can effectively alter the neutral point cur-
rent, fulfilling the objective of maintaining balanced neutral point voltage control.

The control strategy, as shown in Figure 8, involves sending the voltage difference
between the upper and lower capacitors to a closed-loop PI regulator to obtain the magni-
tude of the zero-sequence component. Depending on the direction of the d-axis component
of the three-phase current id, the zero-sequence component is added to the modulation
signals of each phase, resulting in modulation waves with zero-sequence compensation.
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3.4. Narrow-Pulse Suppression Principle and Optimal Control of ANPC Three-Level PCS

The minimum pulse width represents the smallest duration of a pulse within a funda-
mental wave period of the PWM pulse sequence. When the modulating pulse falls below a
specified limit, known as the narrow pulse limit tnarrow, it results in a narrow pulse issue.
If the generated drive width is less than tnarrow, the switching devices will fail to operate
properly. The narrow pulse width can be converted to a voltage, represented as unarrow,
using the equations: 

unarrow =
Udc

2
tnarrow

Ts
umin = unarrow

umax =
Udc

2
− unarrow

(11)
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In Equation (11), umin and umax represent the minimum and maximum modulation
voltages, respectively, that do not cause narrow pulses.

The narrow pulse regions in a three-level system are divided into two areas: when
the modulation wave is close to zero, and near its amplitude. Narrow pulses are inevitable
when the modulation wave is in the vicinity of zero regardless of the modulation level.
When the modulation level is low, most of the modulation wave exists in this region,
resulting in significant narrow pulse effects. The two narrow pulse regions near the
amplitude occur only when the modulation wave is high and enters this zone. The longer
the modulation wave stays in this region, the more pronounced the impact.

This paper optimizes the zero-sequence injection method based on Sine Wave Pulse
Width Modulation (SPWM). The midpoint voltage ∆uNP deviation caused by the midpoint
current is:

∆uNP =
1

2C

τ+Ts∫
τ

INPdt (12)

Assuming an initial midpoint voltage deviation of ∆uNP0, the adjusted condition
should satisfy

∆uNP + ∆uNP0 = 0 (13)

Zero-sequence voltage Uz should be added such that Uz is between the three-phase
modulated waves to ensure Umin < Uz < Umax, corresponding to zero-sequence duty cycle
dz. Therefore, the adjusted three-phase modulated wave duty cycle is

d∗ao = da + dz
d∗bo = db + dz
d∗co = dc + dz

(14)

Based on the carrier comparison logic of DSP regular sampling, this paper compensates
for the minimum turn-on and turn-off pulse widths during the rising and falling processes,
respectively.

This paper adopts a complete narrow pulse compensation control strategy, as illus-
trated in Figure 9.
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In the DSP programming, modulation is implemented using the regular sampling
method, with the modulation wave ux loaded at both the zero point and the periodic
value of the carrier counter. When the counter is decrementing and the modulation wave
is less than the minimum pulse width, the modulation wave is compensated to uupdate
and used for comparison during the incrementing process. Similarly, when the counter is
incrementing and the difference between the modulation wave and the maximum count
value is less than the minimum pulse width, the modulation wave is also compensated
to uupdate and used for comparison during the decrementing process. The compensation
method is as follows:

uupdate = ui + Uz, (i = a, b, c)

Uz =


sign(ui)unarrow − ui , |ui| < unarrow

0 , unarrow < |ui| < Udc
2 − unarrow

sign(ux)(
Udc

2 − unarrow)− ui ,
∣∣∣Udc

2 − ui

∣∣∣ < unarrow

sign(ux) =

{
1
−1

, ui > 0
, ui < 0

(15)

3.5. ANPC Three-Level PCS Nonlinear Factors Comprehensive Compensation Control

It is worth noting that in the aforementioned optimization algorithms, both the narrow
pulse suppression and the neutral-point potential balancing control methods require the
injection of a zero-sequence voltage. This results in an interaction between the two methods:
narrow pulse suppression and neutral-point voltage balancing control both utilize zero-
sequence voltage injection, leading to interactions such as the neutral-point voltage control
potentially causing narrow pulse issues in other phases, and narrow pulse suppression
potentially causing similar issues. Additionally, the dead-time elimination method pro-
posed in this paper may also introduce narrow pulse problems. Therefore, a comprehensive
evaluation of the effects of neutral-point potential balancing control, dead-time elimination,
and narrow pulse suppression is necessary. To address this issue, this paper proposes
a comprehensive compensation strategy that takes into account neutral-point potential
balancing, dead-time elimination, and narrow pulse suppression. This control strategy is
illustrated in Figure 10.
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After using this constraint condition, the zero-sequence component limit region used 
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divided into discontinuous regions, indicating a balance control method that compro-
mises the neutral point balance control capability. 
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Figure 10. The comprehensive compensation strategy taking into account the balance of midpoint
potential, dead zone elimination and narrow pulse suppression.

The design concept of this method is to restrict the regions for zero-sequence voltage
injection in order to eliminate narrow pulses and dead times. By doing so, a modulation
wave range that completely avoids narrow pulses and the range of injectable zero-sequence
voltages can be calculated. Subsequently, in the neutral-point potential balancing control
algorithm, an appropriate zero-sequence voltage component is selected and injected within
the aforementioned range of zero-sequence voltages. This ensures the absence of narrow
pulses and superior neutral-point potential balancing control capability.

To guarantee that the modulation wave after neutral-point potential balancing control
does not generate narrow pulses, the three-phase modulation waves after adding the zero-
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sequence component for neutral-point balancing control should simultaneously satisfy the
following constraint conditions:

−1 + umin − min(ua, ub, uc) < uz < 1 − umin − min(ua, ub, uc)
umin = udt + unarrow

(16)

After using this constraint condition, the zero-sequence component limit region used
by the midpoint balance control is shown in Figure 11. The overshoot headspace between
the three-phase modulated wave ux and the carrier amplitude 1.0 is the overmodulation
margin space. When narrow pulse compensation and dead-time elimination are not taken
into account, the range of adding zero-sequence components voltage uZ for neutral point
balance control corresponds to the shaded area in Figure 11a. However, considering the
impact of narrow pulses, subtracting the uZ used for narrow pulse compensation from
Figure 11a further results in Figure 11b, which depicts the range of zero-sequence compo-
nents for neutral point balance control. It can be observed that the compensation area is
divided into discontinuous regions, indicating a balance control method that compromises
the neutral point balance control capability.
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4. Implementation and Verification of Control Strategy

As shown in Figure 12, the semi-physical simulation experimental platform used a
MT6016 from a Chinese company ModelingTech (Shanghai, China) [16] as the rapid control
prototype (RCP) model controller, and another MT6016 as the hardware-in-the-loop (HIL)
simulator for the three-level hardware circuit. A hardware connection was established
between the two devices for voltage sampling, PWM drive signal transmission, and other
necessary functions.
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Figure 12. Semi-physical simulation platform.

This article takes a PCS with a rated power of 1725 kW as the simulation object, and
its main electrical parameters are shown in Table 1.

Table 1. Electrical parameters of PCS with rated power of 1.725 MW.

Electrical Parameter

DC Voltage: 1000~1500 V Switching Frequency: 3600 Hz
Grid Voltage: 690 V Dead Time: 5 us
AC current: 1443 A L Filter: 0.1 mH

4.1. Experiment 1: Verification of Dead-Time Elimination Function

With a DC voltage set at 1200 V and a modulation index of approximately 0.94, a
comparison of grid-connected currents with and without dead-time elimination, taking
into account the dead-time effect, is shown in Figure 13. The experiment employed closed-
loop current control to sample and synchronize the grid connection with a unit power
factor, resulting in a grid-connected current of approximately 1443 A. As can be seen from
Figure 13a, the dead-time effect significantly impacted the positive zero-crossing points
of the current, creating small zero-voltage steps, and introducing noticeable distortion
near the peak of the current. However, as shown in Figure 13b, after incorporating dead-
time elimination, the current waveform appeared significantly smoother and exhibited a
higher sinusoidal. A comparison of the harmonic content in Table 2 reveals that the grid-
connected current harmonic distortion decreased from 2.84% to 2.15% after compensation.
This comparison shows that the dead-zone elimination method can effectively reduce the
3rd–19th harmonics of the grid-connected current and improve the power quality.
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Table 2. Comparison of dead-time effect and dead-time elimination in grid-connected current THD.

Harmonic Order Dead-Time Effect % Dead-Time Elimination %

THD 2.84 2.15
3 0.2 0.04
5 0.8 0.12
7 0.6 0.09
9 0.5 0.01
11 1.21 0.17
13 0.6 0.1
15 0.16 0.04
17 0.25 0.04
19 0.15 0.02

4.2. Experiment 2: Functional Verification of Dead-Time Elimination under
Over-Modulation Conditions

With a DC bus voltage set at 980 V and a modulation index of approximately 1.15, a
comparison of grid-connected currents with and without dead-time elimination, consid-
ering the dead-time effect, is shown in Figure 14. The experiment continued to employ
closed-loop current control to sample and synchronize the grid connection with a unit
power factor. As shown in Figure 14a, when the dead-time effect was present, the output
voltage was limited, resulting in a grid-connected current of approximately 960 A, which
failed to reach the rated current and exhibited more severe current distortion. However,
after incorporating dead-time elimination, the current could reach the rated value with
reduced current distortion, as shown in Figure 14b. A comparison of the harmonic content
in Table 3 reveals that the Total Harmonic Distortion (THD) of the grid-connected current
decreased from 6.32% to 2.51% after compensation, with a significant reduction in the
low-order harmonic content from the 3rd to the 19th harmonics.
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4.3. Experiment 3: Functional Verification of the Improved Dead-Time Elimination Method under
Current Sampling Delay

DC bus voltage set at 1200 V and current sampling delay of two computational cycles
at 3.6 kHz, equivalent to 54 us, were used to simulate the delay caused by sampling cal-
culations, filtering computations, and other factors in practical systems. A comparative
experiment was conducted between the conventional dead-time elimination method and
the improved dead-time elimination method under the condition of current sampling
delay, as shown in Figure 15. Figure 15a demonstrates that the conventional dead-time
elimination method is significantly affected by current sampling delay, rendering it unsuit-
able for practical use. The optimized dead-time elimination method exhibits significant
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improvement in resilience to current sampling delay, validating the effectiveness of this
approach, as shown in Figure 15b.

Table 3. THD comparison of dead-zone elimination methods before and after optimization under
over-modulation conditions.

Harmonic Order Dead-Time Effect % Dead-Time Elimination %

THD 6.32 2.51
1 100 100
3 0.4 0.04
5 4.49 0.69
7 2.18 0.35
9 0.11 0.04
11 0.53 0.64
13 1.33 0.27
15 0.09 0.04
17 0.18 0.08
19 0.1 0.01
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Figure 16a demonstrates the optimization ability of the comprehensive compensation 
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V voltage difference was eliminated after the compensation control is applied. However, 
it can be seen from the figure that there was still a slight oscillation in the DC voltage, and 
further research is needed on this voltage oscillation issue. Figure 16b presents the grid-
connected current waveform under open-loop grid-connection conditions with the inte-
grated compensation control proposed in this paper. Before the integration of compensa-
tion, due to the modulation index reaching 1.15, the system was at the critical state of over-
modulation. Prior to compensation, the output voltage was affected by the dead zone, 
leading to changes in the grid-connection vector relationship. This resulted in a decrease 
in the amplitude of the grid-connected current and the generation of a certain amount of 
reactive current. However, after incorporating integrated compensation, the impact of the 

Figure 15. Comparison of grid-connected current before and after the optimized dead-zone elim-
ination method is adopted under current sampling delay. (a) Grid-connected current and voltage
waveform with conventional dead-zone elimination method. (b) Grid-connected current and voltage
waveform with optimized dead-zone elimination method.

4.4. Experiment 4: Comprehensive Compensation

The experiment was conducted under the conditions of a 5 us dead time, a current
sampling delay of 54 us, a DC bus voltage of 980 V, and a 10 V voltage difference added to
the midpoint voltage of the DC bus. These conditions pose the risk of over-modulation and
issues related to narrow pulses and unbalanced DC midpoint potential. The experiment
compared and analyzed the impact of dead time, narrow pulses, and midpoint potential
imbalance on the output current using an open-loop experimental approach. A comparison
between the conventional SPWM modulation method and the proposed comprehensive
compensation modulation method is shown in Figure 16.

Figure 16a demonstrates the optimization ability of the comprehensive compensation
function for the balance of the midpoint potential of the DC bus voltage. The original 10 V
voltage difference was eliminated after the compensation control is applied. However,
it can be seen from the figure that there was still a slight oscillation in the DC voltage,
and further research is needed on this voltage oscillation issue. Figure 16b presents the
grid-connected current waveform under open-loop grid-connection conditions with the
integrated compensation control proposed in this paper. Before the integration of compen-
sation, due to the modulation index reaching 1.15, the system was at the critical state of
over-modulation. Prior to compensation, the output voltage was affected by the dead zone,
leading to changes in the grid-connection vector relationship. This resulted in a decrease
in the amplitude of the grid-connected current and the generation of a certain amount
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of reactive current. However, after incorporating integrated compensation, the impact
of the dead zone on the inverter output voltage was significantly reduced, enabling the
calculation of the active current based on open-loop computation. Additionally, there was
a notable improvement in the Total Harmonic Distortion (THD) of the current after the inte-
grated compensation. This demonstrates the effectiveness of the proposed comprehensive
compensation strategy.
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comprehensive optimization control was adopted.

5. Conclusions

This article introduces an SPWM method for dead-time elimination in ANPC three-
level topology. To address the issues of midpoint potential imbalance and narrow pulses
under a high modulation index in three-level topologies, a comprehensive compensation
control strategy is further proposed, encompassing dead-time elimination, midpoint po-
tential balancing, and narrow pulse suppression. The proposed method enhances the
modulation wave magnitude based on dead-time elimination, which in turn affects the
zero-sequence component required for midpoint potential balancing and narrow pulse
suppression. Prioritizing dead-time elimination, the method calculates the upper and lower
limits of the zero-sequence component available for midpoint potential balancing, while
ensuring complete compensation for narrow pulses. By prioritizing dead-time elimination,
followed by narrow pulse suppression, and finally midpoint potential balancing, the cou-
pling between these three factors is decoupled. The effectiveness of the proposed method
was verified through hardware-in-the-loop simulations.

It should be noted that the optimization algorithm proposed in this paper still has
some limitations, and focuses on the optimization of the ANPC topological dead zone
elimination method. The control of the neutral point potential balance under this method
still needs to be improved, and the DC voltage in this method still has a large ripple
voltage, which needs to be further optimized and perfected. In addition, this method
mainly adopts the Phase Disposition PWM (PD-PWM) modulation method, which could
be further optimized in the future to improve the conversion efficiency of the inverter.
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