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Abstract: Graph clustering aims to divide nodes into different clusters without labels and has
attracted great attention due to the success of graph neural networks (GNNs). Traditional GNN-
based clustering methods are based on the homophilic assumption, i.e., connected nodes belong
to the same clusters. However, this assumption is not always true, as heterophilic graphs are also
ubiquitous in the real world, which limits the application of GNNs. Furthermore, these methods
overlook global positions, which can result in erroneous clustering. To solve the aforementioned
problems, we propose a novel model called Preserving Global Information for Graph Clustering
with Masked Autoencoders (GCMA). We first propose a low–high-pass filter to capture meaningful
low- and high-frequency information. Then, we propose a graph diffusion method to obtain the
global position. Specifically, a parameterized Laplacian matrix is proposed to better control the global
direction. To further enhance the learning ability of the autoencoders, we design a model with a
masking strategy that enhances the learning ability. Extensive experiments on both homophilic and
heterophilic graphs demonstrate GCMA’s advantages over state-of-the-art baselines.
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1. Introduction

Due to the powerful representation learning ability of graph structures, graph neural
networks (GNNs) have achieved great success in numerous applications, such as node
classification [1,2], graph clustering [3,4] and more. GNNs can effectively learn node repre-
sentations by aggregating information from neighboring nodes. This capability enables
the accurate classification of nodes into predefined categories. By leveraging the inherent
connectivity patterns within graphs, GNNs can identify clusters or communities of related
nodes. This is particularly useful for understanding the underlying structures of com-
plex networks. Their ability to capture both local and global dependencies within graphs
has revolutionized the field of graph-based machine learning. Among them, deep graph
clustering is a basic but challenging unsupervised task that has attracted much attention
recently. Clustering aims to divide data into different groups without labels and is applied
in many areas such as recommendation systems and biological systems.

Most graph clustering methods are GNN-based and aim to derive a low-dimensional
representation of nodes while incorporating graph structures. And self-supervised learn-
ing is a popular concept for obtaining such representations and can generally be cat-
egorized into generative learning and contrastive learning. Among them, contrastive
learning methods always apply an augmentation approach to obtain positive and nega-
tive samples, ensuring that positive samples are brought closer while negative samples
are pushed away. SCGC [5] and CCGC [3] are the most recent contrastive methods and
have achieved dominant performance. Generative learning often involves using a graph
autoencoder (GAE) [6] and is commonly paired with classical clustering techniques like
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K-means. However, refs. [7,8] suggest that by following a straightforward graph recon-
struction principle, GAE may excessively prioritize proximity information, which is not
always advantageous for self-supervised learning.

Masking strategies for autoencoders have achieved great success in both natural
language processing (NLP) and computer vision (CV) domains. Notable examples include
BERT [9] and MAE [10], respectively. Interestingly, masked autoencoders should also be
well-suited for graph data, as both edges and nodes can be easily masked or unmasked
for self-supervised learning, as demonstrated by existing studies [11]. While the strong
generalization ability of masking is conducive for learning effective graph embeddings,
few studies have specifically applied it to clustering tasks.

Further, traditional clustering methods are based on the homophily assumption, i.e.,
connected nodes are from the same cluster, which is not always true. As a matter of fact,
graphs always contain a wide range of frequencies [12], and high-frequency components
are paramount in many tasks. However, existing GNN-based clustering methods only
focus on low-frequency information in graphs, inevitably overlooking some discriminative
information. This limitation restricts their applications in real-world scenarios. Homophily
is always unknown for an unsupervised learning task. Thus, in these methods, heterophily
can result in the smoothing operation generating similar representations for nodes with
different labels, which can lead to poor clustering performance of GNNs. Real-world
graphs are not always assortative: they are sometimes disassortative. For example, in
dating networks, individuals of the opposite sex are more likely to make connections, while
in protein structures, different compounds are more inclined to connect. In such scenarios,
performance will be hampered if we use a low-pass filter to enforce similar representations
among connected nodes. Therefore, high-frequency components are valuable for making
the representations more discriminative. Focusing solely on low-frequency information
can restrict practical application using real-world graphs.

Further, traditional graph clustering methods only focus on the original features and
local neighbor information by stacking 2–4 layers for the GNN, which results in a failure
to capture global information [13]. A toy example illustrating the significance of global
information can be seen in Figure 1. Different colors indicate various types of nodes.
Although nodes v1 and v2 share similar original features and two-hop neighbors, their
global information can be very different. Previous clustering methods, which ignore global
information, will mistakenly classify them into one cluster. This issue arises because the
methods learn the representations of two nodes using only local information, neglecting
the nodes’ relative positions within the graph. For instance, in social networks, where
individuals form communities based on shared interests or affiliations, capturing global
patterns is vital for identifying cohesive groups and understanding their interactions.

To enable deeper convolution, several studies have attempted to devise various ar-
chitectures [13,14], including initial residual networks and normalization techniques. For
graph clustering, autoencoders are widely applied architectures that are trained to recon-
struct input data; autoencoders often have a bottleneck layer for dimensionality reduction.
Variants try to make the GNN encoder layer deeper to capture more neighbors [15]. How-
ever, these approaches are still limited to local neighbors, leaving the challenge of effectively
capturing global information unresolved.

To address the aforementioned problems, we propose a method called Preserving
Global Information for Graph Clustering with Masked Autoencoders (GCMA). Firstly, we
propose a low–high-pass filter to capture meaningful low- and high-frequency information.
After that, we propose a graph diffusion method for the global position representation of
each node and preserve it in the node’s features. To better control the global direction, we
propose a parameterized Laplacian matrix. To enhance the model’s learning ability, we
design a masked autoencoder model. Capturing global patterns is crucial for understanding
complex interdependencies within the graph. In this context, masked autoencoders offer a
promising solution by selectively preserving global information while filtering out noise,
thus improving the learning ability for the global information. This paper addresses the
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necessity of global information preservation in graph clustering tasks and explores the
effectiveness of masked autoencoders for this purpose. To sum up, our contributions are
as follows:

• To improve the learning ability of autoencoders, we propose to use a mask technique
on the original information and encoded features. To the best of our knowledge, we
give the first attempt to apply masked autoencoders to the graph clustering task.

• We propose a graph diffusion method to obtain a node’s global position representation
and preserve it in the node’s features. We also propose a parameterized Laplacian
matrix to make the global direction adaptive.

• We design a low–high-pass filter that screens important low-frequency and high-
frequency information conveyed by the data. A discriminative representation is ob-
tained by graph filtering, which encodes topological structure information into features.

• Experimental results on both homophilic and heterophilic datasets suggest that the
proposed method outperforms existing graph clustering methods, including recent
self-supervised learning methods.

Figure 1. A toy example to show the importance of global information. Different colors indicate
different groups. Nodes v1 and v2 share similar neighborhood patterns and original features but have
totally different global information. Traditional clustering methods will group them into one cluster.

2. Related Work
2.1. Graph Clustering

Graph clustering aims to divide data into different groups in an unsupervised manner,
which is a fundamental yet challenging task. These methods can be simply divided into
three kinds: generative approaches, adversarial approaches and contrastive approaches.
Our method belongs to the first kind.

Generative approaches are always based on autoencoders and reconstruct an adjacency
matrix or features. They can efficiently incorporate both structure and content information
into an attributed graph. For example, graph autoencoder (GAE) and variational GAE
(VGAE) [16] use autoencoders to reconstruct the adjacency matrix, while marginalized GAE
(MGAE) [17] is proposed for reconstructing node features. To include more hop neighbors,
SDCN [15] transfers the encoded information and captures structural nuances at higher
orders. Additionally, the aforementioned method involves two separate steps: clustering
and graph embedding, which are conducted independently. There is a possibility that
the learned representations may not be suitable for subsequent clustering tasks. To tackle
this issue, AGC [18] proposes a goal-directed graph attentional autoencoder architecture.
Specifically, an attention network is utilized to assess the importance of neighbors to a
target node, and an inner product decoder is trained to reconstruct the graph structure.
However, this approach still exhibits high complexity in terms of time and space. In an-
other study, GMM-VGAE [19] introduces Gaussian mixture models to the variational graph
autoencoder (VGAE) to capture the inherent complex data distributions, leading to the
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development of a unified end-to-end learning model for graph clustering. Additionally,
DNENC [20] proposes a neighbor-aware GAE to gather information from neighbors, and it
employs an end-to-end learning strategy. Recently, several contrastive clustering methods
have also been proposed. Contrastive learning aims to learn discriminative features of data
by maximizing the similarity of positive pairs and minimizing the distance of negative pairs.
It demonstrates significant performance, even surpassing supervised learning methods.
For instance, SimCLR [21] constructs self-supervised samples using data augmentation by
treating images from different views in a mini-batch as negative pairs, while BYOL [22]
operates without negative samples. In the realm of graphs, several contrastive learning
methods have emerged. GraphCL [23] proposes four data augmentation types to learn
unsupervised representations of graph data, while MVGRL [7] compares two diffusion
matrices converted from the adjacency matrix for representation learning. GCA [24] intro-
duces a joint data augmentation scheme adaptable to both graph structure and attributes.
However, many of these methods assume that the given graph is reliable, and they rely on
data augmentation to identify positive pairs. Much work has focused on contrastive graph
learning by maximizing mutual information (MI) between node and graph representations,
yielding state-of-the-art results. For instance, deep graph infomax (DGI) [25] enhances
node representations to capture more global information, while contrastive clustering [26]
designs a dual contrastive learning paradigm operating at instance and cluster levels.
SCAGC [27] employs a clustering module to generate clustering labels by comparing the
representations of distinct clusters, and DCRN [28] proposes a dual network to reduce
information correlation and applies K-means on embeddings. Most recently, CGC [12] pro-
poses a graph-level contrastive regularizer to refine the graph structure. CCGC [3] proposes
to improve the quality of negative samples. SCGC [5] proposes a simple augmentation
method with only MLP.

However, these clustering methods only focus on feature and local structure informa-
tion, which ignores the global position information.

2.2. Graph Masked Autoencoder

Masking is often used for data augmentation during training. By randomly masking
certain parts of input data (such as words in sentences or pixels in images), models learn
to be more robust and generalize better. The learning objective of a masked autoencoder
is to conceal segments of the input data and predict the obscured content, constituting a
form of self-supervised learning. Although the masked autoencoder technique has achieved
great success in the CV and NLP areas, it has received comparatively less attention within
the domain of GNN. In CV [10], masking is often used for image inpainting tasks, where
certain regions of an image are intentionally obscured or “masked” out. This masking
process involves replacing the pixel values in the masked regions with special placeholders
or zeros, effectively removing the information from those areas. The goal is to train a model,
such as a convolutional neural network or a generative adversarial network, to predict or
“fill in” the missing information in the masked regions based on the surrounding context.
This process helps the model learn to understand and reconstruct visual content, enabling
tasks such as image completion and restoration. In NLP, masking is commonly used in
language model pretraining tasks such as BERT [9]. During pretraining, a certain percentage
of tokens in the input text are randomly selected and replaced with a special masked token.
The model is then trained to predict the original tokens based on the context provided by
the surrounding tokens. This masked language model pretraining allows the model to
learn contextual representations of words or subwords, capturing syntactic and semantic
relationships within the text. MGAE [29] attempts to apply the masking approach to the
edges of the graph structure, using it as a form of self-supervised learning. MaskMAE [30]
introduces novel one-sided and path mask strategies, accompanied by theoretical analysis of
the side mask strategy. GiGaMAE [31] also employs masking techniques on both nodes and
edges. However, these methods rely on labels to train the model and lack improvement in
the graph clustering task.
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2.3. Graph Filtering

Many research studies have indicated that smooth graph signals contain more low-
frequency signals than high-frequency ones [32]. The pioneering works of [33,34] employ
filters in the Fourier space for graph structures. In recent times, there has been widespread
adoption of low-pass filters to derive smooth representations [32,35]. However, these
methods often overlook meaningful high-frequency information, treating it as noise. Some
studies have emphasized the significance of high-frequency components, suggesting that
they contain valuable information [36]. AutoGCN [37] utilizes three graph convolutional
filters to capture meaningful information at different frequencies while imposing a con-
straint on filter functions to have linear and quadratic complexity. Similarly, refs. [37,38]
emphasize the significance of the high-frequency band of graph signals and design flexible
GNN models that excel on both homophilic and heterophilic graphs for node classification.
However, these approaches rely on neural networks. In contrast, we propose a simple and
shallow method to capture both meaningful low- and high-frequency information.

3. Methodology
3.1. Notation

To begin, we define a graph G = (V , A, X) with node set V , feature matrix X and
adjacency matrix with N nodes A ∈ RN×N . If node i and node j are connected, then
Aij = 1; otherwise, Aij = 0. Its symmetric normalized adjacency matrix with a self-loop is

Ã = D− 1
2 (A + I)D− 1

2 . The normalized graph Laplacian is given by L = I − Ã. Let Xi
represent the i-th row of X.

3.2. Graph Filtering

Many works [1,39] consider the feature matrix as graph signals and propose smoothing
it with graph filters. Motivated by their success, we propose a low–high-pass filter to
perform neighbor information aggregation as an independent learning step before training.
This approach efficiently captures both low- and high-frequency information.

Let L = UΛU⊤ be the eigendecomposition, where Λ = diag[µ1, µ2, ..., µN] is the
diagonal matrix of eigenvalues, and µi ∈ [0, 2]. A spectral filter on graph signal X can be
expressed as follows:

g(L)X = Ug(Λ)U⊤X

= Udiag[g(µ1), g(µ2), ..., g(µN)]U⊤X,
(1)

where g(µ) represents the filter function. The choice of g(µ) is crucial for graph filtering.
Most graph clustering methods set g(µ) = 1 − µ

2 to smooth the signals of neighboring
nodes, which is considered to be a low-pass filter. Let H represent the smoothed signals. It
is easy to have:

H = Udiag[(1 − µ1

2
)m, (1 − µ2

2
)m, ..., (1 − µN

2
)m]U⊤X

= (I − L
2
)mX,

(2)

where m is the filter order. Through the proposed low-pass filter, high-frequency compo-
nents in node features will be filtered out.

However, filtering with only a low-pass filter treats all high frequencies as noise, which
fails to capture meaningful high-frequency information. To have a low–high-pass filter,
i.e., the low frequency and high frequency dominate the middle frequency, we combine a
high-pass filter and a low-pass filter:

H = [(I − L
2
)m + (

L
2
)m]X. (3)
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This filter is flexible and can adapt to both homophilic and heterophilic graphs. In
Figure 2, we plot g(λ) with different values of m, which leads to different types of filters. A
large m represents more variation, where distant neighbors could be helpful. The high-pass
filter pushes a node’s feature vector away from those of its neighbors, while the low-pass
filter does the opposite. It can be seen that the proposed filter can capture both low- and
high-frequency information. In this way, homophilic neighbors tend to be similar, while
heterophilic neighbors tend to be different in H [12].

Figure 2. Some examples of our proposed low–high-pass filter.

3.3. Global Position Encoding

To achieve finer control over directional information, we define a new class of Lapla-
cian matrices, i.e., the parameterized normalized Laplacian matrix:

L(β) = D−βLDβ−1, (4)

and we define the corresponding parameterized normalized adjacency matrix:

A(β) = I − L(β), (5)

where the parameter β ∈ [0, 1].
Graph diffusions refer to classic models underlying the centrality, influence and

similarity of nodes. Graph diffusion propagates along reachability searches. Traditional
graph diffusions can be seen as spacial cases of Equation (5). For example, when β = 1

2 , A is

symmetric normalized, i.e., A = D− 1
2 AD− 1

2 ; when β = 1, A is random-walk normalized,
i.e., A = D−1 A. Inspired by [40], we consider these graph diffusions as PageRank, and
global position encoding is defined as k-steps of graph diffusions:

Bi =
[

A(β)ii, A2(β)ii, ..., Ak(β)ii

]
∈ Rk. (6)

The size of the neighborhood influencing each node can be adjusted through the
teleport probability β. The flexibility in selecting β allows us to customize the model
for different types of networks. Diverse graph structures require the consideration of
varying neighborhood sizes. Different from [40], which utilizes the full matrix of A for all
pairs of nodes, we employ a low-complexity approach to the parameterized normalized
adjacency matrix by only considering the probability of a node i landing on itself, i.e.,
A(β)ii. The global direction can be controlled by β. This approach offers a distinctive node
representation by assuming that each node has a unique k-hop topological neighborhood
for a sufficiently large k. However, this assumption can be debated. For example, when
analyzing strongly regular graphs, each node in a graph has the same positional encoding
for any given k value, as they are isomorphic by construction. Despite having identical
position encodings for all nodes within a graph, these positional encodings are unique
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for each class of isomorphic graphs, leading to accurate classification. Based on the above
analysis, Bi can provide a global view of node i’s positions.

3.4. Graph Masked Autoencoder
3.4.1. Graph Mask Encoder

Define the masked graph as G ′ = Mask(G). We then input G ′ into the encoder and learn
a representation in a low-dimensional space. Finally, the decoder is applied to reconstruct
the graph information. Similar to GiGaMAE, we use GCN [1] and GAT [41] as encoders
and MLP as the decoder.

At the masking stage, only masking and reconstructing either H or A limits the model’s
ability to learn from the other, thus hindering the acquisition of comprehensive information.
However, simultaneously masking both can detrimentally affect model learning, as it may
result in insufficient information for graph reconstruction. Thus, we propose to use two
models to learn the information. Further, GNNs with H and A learn the representations
of nodes with only local information, overlooking their relative positions within the graph.
Thus, we preserve the global position B in the model. Masking in autoencoders selectively
preserves global information while filtering out noise, thus improving the learning ability
for the global information. To begin with, we represent the random masking process
as P. P =

{
Pe, Pf , Pp

}
, where Pe ∈ {0, 1}N×N , Pf ∈ {0, 1}d and Pp ∈ {0, 1}k are edge,

feature and position mask matrices, respectively. Then, we have P(G = (V , A, H)) ={
V , A ∗ Pe, Hdiag(Pf )⊕ Bdiag(Pp)

}
= {V , A′, H′} = G ′, where A′, H′, ∗ and ⊕ indicate

the masked feature, masked adjacency matrix, Hadamard product and concatenation. We
input them into the encoder with two models and obtain node representations S1 and S2, i.e.,

S1 = GCN(G)
S2 = GAT(G).

(7)

3.4.2. Graph Mask Decoder

Various methods concentrate on distinct facets of graph data. For instance, GAE
emphasizes learning the graph structures, whereas AE with X primarily focuses on node
attributes. Hence, we contemplate embedding reconstruction methods that aim to amalga-
mate multiple models. The loss function is formulated based on mutual information (MI).
Sn ∈ RN×dn indicates the n-th reconstruction target. Information from different modalities
is stored in the chi-square continuous embedding space.

In graph clustering, the decoder reconstructs relatively fewer informative multi-dimensional
node features. Traditional GAEs employ either no neural decoders or a simple MLP for de-
coding with less expressiveness, causing the latent code to be nearly identical to the input
features. In order to incentivize the encoder to acquire compressed representations even further,
GpraphMAE [11] proposes a re-masking technique to handle the latent representations during
decoding. Note that the global information is encoded in latent space; thus, re-masking can
further improve the learning ability for global information during reconstruction. Denote the
masking process as Pd ∈ {0, 1}d. Then Sn becomes Zn. Each Zn is then fed into a multilayer
perceptron (MLP). So we have Z̃n = MLP(Z1 + Z2) ∈ RN×(d+k).

3.4.3. Loss Function

During target reconstruction, the l2-norm loss considers the characteristics of each
target individually, disregarding their interrelationships. Conversely, cross-entropy is
more suitable for discrete variables. Given that we are calculating the reconstruction loss
involving multiple targets, it is crucial to capture as much pertinent information as possible
from the targets. Therefore, we opt to use MI as the basis for calculating the loss. Our
reconstruction loss is defined as:
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f1(x, y) = exp
(

x × y
∥x∥ × ∥y∥

)
f2(x, y, z) = exp

(
x × (y ⊕ z)

∥x∥ × ∥y ⊕ z∥

) (8)

To reconstruct the original input features, we use the loss L0 = ∑n
i=1

∥∥Z̃i − Hi ⊕ Bi
∥∥.

Finally, our total loss is defined as:

L = f1
(
Z̃, Z1

)
+ f1

(
Z̃, Z2

)
+ f2(Z̃, Z1, Z2) + L0 (9)

Our result is from performing K-means on S1 + S2. The overall model can be seen
in Figure 3.

Figure 3. Overall model.

4. Experiments
4.1. Datasets

To verify our proposed method, we test it on five widely used benchmark datasets,
which are Cora, CiteSeer, PubMed [1], Wiki [42] and Large Cora [43]. Cora, CiteSeer,
PubMed and Large Cora are citation networks, while Wiki is a webpage network. To
further test our model in real-world applications, we evaluate the proposed model for
clustering tasks on heterophilic graph datasets, including webgraphs from WebKB datasets
(http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/, (accessed on
14 May 2024)): Wisconsin, Cornell, Texas, Chameleon, and Wikipedia networks Squirrel [44].

The homophily of a graph is computed as:

Homophily =
1
N ∑

v∈V
αv and αv =

|{u ∈ Nv|ℓ(u) = ℓ(v)}|
|Nv|

, (10)

where ℓ(u) indicates the label of node u. A large value Homophily indicates more connected
nodes from the same class. The details of these datasets are shown in Table 1.

Table 1. The statistics of all datasets.

Dataset Nodes Edges Features Classes Homophily

Cora 2708 5429 1433 7 0.83
CiteSeer 3327 4732 3703 6 0.71
PubMed 19l,717 44,338 500 3 0.79
Wiki 2405 17,981 4973 17 0.46
Large Cora 11,881 64,898 3780 10 0.73

Squirrel 5201 217,073 2089 5 0.22
Chameleon 2277 2325 31,371 5 0.23
Wisconsin 251 515 1703 5 0.16
Cornell 183 298 1703 5 0.11
Texas 183 325 1703 5 0.06

4.2. Baselines

We compare GCMA with recent popular clustering methods. SCI [42] integrates net-
work topology with semantic information to detect communities and infer their meanings

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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simultaneously. ARGE and ARVGE [45] propose an adversarial graph embedding framework
that encodes both the topological structure and node content in a graph into a compact rep-
resentation. GAE, VGAE [16] and MGAE [17] are traditional graph autoencoder methods.
AGC [32] leverages high-order graph convolutions to capture global cluster structures and
adaptively select the appropriate order for different graphs. DAEGC [18] combines attention
networks to capture both the topological structure and node content. SDCN [15] proposes
an autoencoder to capture more structural information. ARGA AX and ARVGA AX [46] are
adversarial methods that focus on latent code distributions. DGI [25] maximizes the mutual
information between patch representations and high-level summaries. VGAE with Gaussian
mixture models (GMM-VGAE) [19] combines an autoencoder with a semi-supervised module.
DNENC-Att (with a graph attentional autoencoder) and DNENC-Con (with a graph convolu-
tional autoencoder) [20] are the most recent autoencoder methods. FGC [35] and CGC [12]
are the most recent shallow methods and apply high-order structure and contrastive learning
ideas, respectively, as regularizers. CCGC [3] and SCGC [5] are the most recent contrastive
methods and propose a new augmentation strategy.

4.3. Setup

The same as our baselines, we use grid search to find the best performance. The
learning rate is fixed to 1 × 10−2. The maximum number of epochs is set to 200, and
training stops when the model converges. GCMA has four hyperparameters: m, β, k and
the mask ratio. The variable m is searched in [1, 2, 3, 4, 5]. We set m = 5 on Cora and
CiteSeer, m = 3 on Large Cora and PubMed, and m = 2 on the other datasets. The variable
β is searched in [0.1, 0.5, 0.7]. We set β = 0.1 on CiteSeer and Chameleon, β = 0.7 on
Large Cora and Wiki, and β = 0.1 on other datasets. It can be seen that datasets with
large neighborhood sizes prefer a relatively large β. The variable k is fixed at 15 since
most homophilic neighbors can be included in 15 hops according to [47]. The mask ratio is
fixed at 30% for Pf , Pp and Pe. We use three metrics that are popular for clustering studies,
including clustering accuracy (ACC), normalized mutual information (NMI) and adjusted
Rand index (ARI). Their definitions are:

ACC =
∑n

i=1 δ(map(li) = yi)

n
, (11)

NMI(Y, L) =
2I(Y; L)

H(Y) + H(L)
, (12)

F1 = 2 × Precision × Recall
Precision + Recall

, (13)

where δ represents an indicator function, li signifies the assigned label for node i, yi denotes
the ground truth label of node i, map is a transformation function that maps li to its group
label based on the Kuhn–Munkres algorithm, H(Y) represents the entropy of Y, and I(Y; L)
denotes the mutual information between two discrete variables. These metrics provide
quantitative measures of clustering quality, allowing for comparison between different
clustering algorithms and parameter settings.

4.4. Results Analysis

The clustering results for homophilic graphs are presented in Table 2. It can be seen
that our method demonstrates superior performance in most cases. For the methods based
on autoencoders, such as DNENC-Att, DNENC-Con and GMM-VGAE, GCMA can surpass
them by a large margin. This demonstrates that the masking strategy can enhance the
learning ability of the autoencoders. For the methods that utilize the contrastive learning
idea, such as CGC, CCGC and SCGC, they generally perform better than other autoencoder
methods. This indicates that contrastive methods continue to dominate in self-supervised
methods. However, GCMA can surpass them in most cases, confirming the validity of our
method. GCMA combines the strengths of graph convolutional networks with masked
autoencoders, effectively preserving global information while filtering noise. By selectively
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propagating relevant global features, GCMA produces more informative representations,
leading to improved clustering performance. Note that GCMA fails to achieve the best
performance only on the NMI metric for PubMed and the F1 metric for Large Cora. This
may be because these two datasets are too sparse, which results in less information being
learned from masked edges. In general, the experimental results successfully verify the
effectiveness of GCMA compared to recent clustering methods on homophilic graphs.

Table 2. Clustering performance on homophilic graphs. The best performance is marked in bold.

Methods Cora CiteSeer PubMed Wiki Large Cora

ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1%

SCI [42] 41.21 21.57 11.82 33.45 9.77 18.01 44.89 5.99 35.73 32.72 26.38 19.03 26.78 11.31 7.68
ARGE [45] 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41 41.40 39.50 38.27 - - -
ARVGE [45] 63.80 45.00 62.70 54.40 26.10 52.90 58.22 20.62 23.04 41.55 40.01 37.80 - - -
GAE [16] 53.25 40.69 41.97 41.26 18.34 29.13 64.08 22.97 49.26 17.33 11.93 15.35 - - -
VGAE [16] 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95 28.67 30.28 20.49 - - -
MGAE [17] 63.43 45.57 38.01 63.56 39.75 39.49 43.88 8.16 41.98 50.14 47.97 39.20 38.04 32.43 29.02
AGC [32] 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72 47.65 45.28 40.36 40.54 32.46 31.84
DAEGC [18] 70.40 52.80 68.20 67.20 39.70 63.60 67.10 26.60 65.90 38.25 37.63 23.64 39.87 32.81 19.05
SDCN [15] 60.24 50.04 61.84 65.96 38.71 63.62 65.78 29.47 65.16 - - - - - -
ARGA AX [46] 59.70 45.50 57.90 54.70 26.30 52.70 63.70 24.50 63.90 - - - - - -
ARVGA AX [46] 71.10 52.60 69.30 58.10 33.80 52.50 64.00 23.90 64.40 - - - - - -
DGI [25] 71.81 54.09 69.88 68.60 43.75 64.64 - - - 44.37 42.20 40.16 - - -
GMM-VGAE [19] 71.50 54.43 67.76 67.44 42.30 63.22 71.03 30.28 69.74 - - - - - -
EVGC [48] 72.95 55.76 71.01 67.02 41.89 62.89 70.80 35.63 70.32 51.46 49.37 45.14 - - -
DNENC-Att [20] 70.40 52.80 68.20 67.20 39.70 63.60 67.10 26.60 65.90 - - - - - -
DNENC-Con [20] 68.30 51.20 65.90 69.20 42.60 63.90 67.70 27.50 67.50 - - - - - -
FGC [35] 72.90 56.12 63.27 69.01 44.02 64.43 70.01 31.56 69.10 51.10 44.12 34.79 48.25 35.24 35.52
CGC [12] 75.15 56.90 66.22 69.31 43.61 64.74 67.43 33.07 67.14 59.04 53.20 45.43 50.18 34.10 43.79
CCGC [3] 73.88 55.56 70.98 69.84 44.33 62.71 68.32 31.08 68.84 60.21 54.54 44.32 51.21 34.55 44.89
SCGC [5] 73.88 56.10 70.81 70.81 45.25 64.80 67.76 33.82 68.23 60.43 53.76 44.56 51.09 34.02 44.56

GCMA 76.12 57.21 71.43 71.95 45.98 65.21 72.04 33.45 71.04 61.32 55.43 45.80 51.85 36.01 44.23

The clustering results on heterophilic graphs are presented in Table 3. It can be seen
that GCMA and CGC have clear advantages over other methods. Similar to GCMA, CGC
also considers high-frequency information, making it significant for heterophilic graphs.
This conclusion is similar to semi-supervised learning. However, GCMA can outperform
CGC by a significant margin thanks to the global positional information we utilize. Note
that heterophilic graphs are also noisy. Therefore, the results show that the proposed filter
and masked autoencoders in GCMA provide robustness to noisy and variable graph data
by learning compact representations while filtering out irrelevant features. This robustness
ensures more reliable and interpretable clustering results, even in the presence of noise. In
general, GCMA can successfully be applied to both homophilic and heterophilic graphs,
which is more practical than methods that only focus on one type of graph structure.

Table 3. Clustering performance on heterophilic graphs. The best performance is marked in bold.

Methods Squirrel Chameleon Wisconsin Cornell Texas

ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1%

DAEGC [18] 25.55 2.36 24.07 31.08 7.89 9.17 39.62 12.02 6.22 42.56 12.37 30.20 45.99 11.25 18.09
ARVGA-Col-M [49] - - - - - - 54.34 11.41 - - - - 59.89 16.37 -
RWR-Col-M [49] - - - - - - 53.58 16.25 - - - - 57.22 13.82 -
FGC [35] 25.11 1.32 22.13 34.21 11.31 9.05 50.19 12.92 25.93 44.10 8.60 32.68 53.48 5.16 17.04
CGC [12] 27.23 2.98 20.57 36.31 11.21 12.97 55.85 23.03 27.29 44.62 14.11 21.91 61.50 21.48 27.20
CCGC [3] 26.03 1.78 20.21 33.21 10.98 10.22 53.31 22.67 25.81 45.54 13.62 21.66 60.98 19.34 22.73
SCGC [5] 26.76 1.98 20.99 34.11 11.37 10.67 54.34 21.57 25.81 45.76 13.53 22.09 61.22 19.77 21.94

GCMA 30.15 4.21 24.83 39.97 15.32 14.33 56.95 24.12 29.11 46.30 15.76 22.78 63.20 22.01 29.22

4.5. Ablation Study

To further verify our proposed model, we test the model by deleting key components.
Firstly, we test our method without a low–high-pass filter and name it GCMA w/o f . The
results are illustrated in Table 4. It can be seen that the performance deteriorates in all cases;
therefore, low-pass filtering is beneficial for training. Furthermore, we test our method with
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only one model. We refer to the one without GAT as GCMA w/o GAT and the one without
GCN as GCMA w/o GCN. The results in Table 4 show that the performance degrades
dramatically. This result is consistent with our previous conclusion that masking both A and
X with only a single model results in a lack of information. Further, we test our method
without the global position and name it GCMA w/o G. The results are in Table 4. It can be
seen that the global position is very helpful in most cases. Finally, we visualize the Cora and
CiteSeer representations with GCMA using the t-SNE technique in Figure 4. Compared with
the original features, it can be seen that GCMA has a clear advantage in identifying clusters.

(a) (b)

(c) (d)

Figure 4. Visualization of Cora and CiteSeer with GCMA. (a) Cora’s original features. (b) Cora’s rep-
resentations with GCMA. (c) CiteSeer’s original features. (d) CiteSeer’s representations with GCMA.

Table 4. Results of ablation study. The best performance is marked in bold.

Methods Cora CiteSeer PubMed Wiki Large Cora

ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1% ACC% NMI% F1%

GCMA w/o f 72.74 50.83 64.04 68.88 42.97 62.93 68.55 31.86 67.77 58.14 53.97 46.23 44.81 28.36 32.69
GCMA w/o
GAT 74.17 54.25 67.26 60.18 38.90 56.76 67.75 33.37 67.72 57.01 52.02 39.25 47.36 33.73 43.61

GCMA w/o
GCN 75.43 55.75 68.20 66.94 41.63 61.59 68.91 32.43 68.87 59.22 55.13 43.52 50.92 21.40 27.20

GCMA w/o G 74.54 54.45 68.77 68.78 42.37 62.94 68.76 31.50 68.52 59.96 54.95 43.42 47.76 33.88 43.81

GCMA 76.12 57.21 71.43 71.95 45.98 65.21 72.04 33.45 71.04 61.32 55.43 45.80 51.85 36.01 44.23

4.6. Parameter Analysis

Our model has four hyperparameters: filter order m, β, which controls the directional
information, the hop of global neighbors k and the mask ratio. We test on the Cora and
CiteSeer datasets. For m and β, we set m = [1, 2, 3, 4, 5] and β = [0.1, 0.3, 0.5, 0.7, 1.0]. The
results are shown in Figure 5. It can be seen that our method is insensitive to them; thus,
GCMA can work well for a large scale of hyperparameters on both datasets. For the mask
ratio, we set it to [5%, 10%, 15%, 20%, 25%]. The results are shown in Figure 6. Both Cora
and CiteSeer show a similar trend. When the mask ratio is 0, i.e., without masking, GCMA



Mathematics 2024, 12, 1574 12 of 15

achieves poor results. It achieves the best performance when the masking ratio is around
30–45%, which further verifies that masking can help improve learning ability. When the
ratio increases, the performance decreases as a result of insufficient information. We set
k = [5, 10, 15, 20, 25]. The results are also shown in Figure 6. When k = 5, it achieves the
worst results, while the other values of k exhibit comparable performance. Thus, global
information has clear advantages for enhancing performance.

Figure 5. Results of parameter analysis for m and β: (a–c) are on Cora, while (d–f) are on CiteSeer.

Figure 6. Results of parameter analysis on mask ratio and k: (a,b) are on Cora, while (c,d) are
on CiteSeer.
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5. Future Directions

• Exploring different masking strategies: In this work, we used the traditional augmen-
tation strategy of masking. Future work could explore different masking strategies to
see if they can further improve the model’s learning ability. This includes investigat-
ing different types of masks, such as one-sided and path masks, and examining their
impact on the model’s performance. The new masking strategies could be verified
through experiments with the ACC metric.

• Adapting the masking strategy to different graph structures: While the GCMA method
demonstrates remarkable performance on attributed graphs, which are characterized
by their rich node features and interconnections, there remains a compelling need to
apply it to diverse graph structures, such as hypergraphs and bipartite graphs.

• Application to other tasks: While our focus has been on graph clustering, the mask
techniques we have developed could potentially be applied to other tasks. Future
work could explore these possibilities.

• Integration of graph attention mechanisms: Incorporating graph attention mechanisms
into masked autoencoders could improve their ability to capture important global
structures in graphs. Graph attention mechanisms enable nodes to dynamically attend
to their neighbors based on learned attention weights, allowing the model to focus
on relevant global information while filtering out noise and irrelevant features. Extra
constraints can be considered for attention weights.

6. Conclusions

This study introduces a novel method called Preserving Global Information for Graph
Clustering with Masked Autoencoders (GCMA), which was meticulously crafted to tackle
the inherent complexities of deep graph clustering tasks. It first introduces a low–high-pass
filter to capture meaningful low- and high-frequency information. By integrating masked
autoencoders into the domain of graph clustering, we leverage their formidable capability
for representation learning, thereby enhancing the effectiveness of clustering efforts. No-
tably, GCMA pioneers an innovative graph diffusion technique, which is synergistically
paired with a parameterized Laplacian matrix for precise global direction control. This
innovative fusion significantly enhances the model’s ability to capture the crucial global
insights necessary for achieving nuanced clustering outcomes. Through exhaustive experi-
mental evaluations conducted across a spectrum of benchmark datasets, GCMA emerges
as a beacon of superiority, outshining established methodologies with resounding clar-
ity. These empirical validations resolutely underscore GCMA’s prowess in reshaping the
landscape of graph clustering applications, reaffirming its status as a transformative force
poised to push the boundaries of research in this domain. Overall, masked autoencoders
play a crucial role in learning both structure and feature information for effective graph
clustering. By selectively retaining relevant global information while filtering out noise,
masked autoencoders generate more accurate and comprehensive representations of graph
data without labels, resulting in enhanced clustering performance. Further, preserving
global information is crucial for effective graph clustering, as it enables researchers to
uncover hidden structures, gain insights into complex interdependencies, and produce
better clustering solutions.
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