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Abstract: As the core component of the wind turbine generation gearbox, the gear-rotor-bearing
transmission system typically operates in harsh environments, inevitably leading to the occurrence
of composite faults in the system, which exacerbates system vibration. Therefore, it is necessary to
study the vibration characteristics of wind turbine helical gear-rotor-bearing transmission systems
with composite faults. This paper uses an improved energy method to calculate the theoretical
time-varying mesh stiffness of a helical gear with a root crack failure. On the premise of considering
the time-varying meshing stiffness of the faulty helical gear, the gear eccentric fault, and the nonlinear
support force of the faulty bearing, a multi-degree-of-freedom helical gear-rotor-bearing transmission
system with compound faults was established by using the lumped parameter method. The dynamic
model of the system was solved based on the Runge–Kutta method, and the vibration response of
the system under healthy conditions, single faults with gear eccentricity, single faults with tooth
root cracks, and coupled bearing composite faults were simulated and analyzed. The results show
that the simulation results based on KISSsoft software 2018 version verify the effectiveness of the
improved energy method; the existence of single faults and composite faults will cause the fault
characteristics in the time domain and frequency domain responses. In this paper, the influence
of a single fault and a complex fault on the time domain and frequency domain of the system is
mainly discovered through the fault study of the helical rotor-bearing system, and the influence of
the fault degree on the vibration of the gear motion system is discussed. The greater the degree of the
fault, the more vibration of the system occurs; accordingly, when the system is under the coupling of
tooth root crack and bearing fault, there is a significant difference compared with the healthy system
and the single fault system. The system vibration has obvious time domain and frequency domain
signal characteristics, including periodic pulse impacts caused by gear faults and time domain impact
caused by bearing. The fault characteristic frequencies can also be found in the frequency domain.
In this paper, the fault study of a helical gear of wind turbine generation provides a reference for
the theoretical analysis of the vibration characteristics of the helical gear-rotor-bearing system under
various fault conditions, lays a solid foundation for the simulation and subsequent diagnosis of
the composite fault signal of the system, and provides help for the fault diagnosis of wind turbine
gearboxes in the future.

Keywords: the improved energy method; meshing stiffness; multiple-degrees-of-freedom; helical
gear-rotor-bearing transmission system; compound faults; vibration characteristics

MSC: 37M05

1. Introduction

As one of the most widely used power and motion transmission devices in various
mechanical equipment, the gear-rotor-bearing transmission system plays a vital role in the
automotive, marine, aerospace, wind turbine, and other industries [1]. With the continuous
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development of modern industry, gears are developing towards high speed and heavy
loads. Due to the poor working environment of the gear-rotor-bearing transmission system
and influenced by various internal and external excitations, it is easy to cause the failure of
the gear, shaft, bearing, and other components in the system, aggravate the vibration of the
system, thereby reducing the transmission performance and the life of the system.

According to statistics, the faults of the wind turbine gearbox transmission system
are mainly caused by gear faults, accounting for about 60% [2], followed by bearings and
shafts [3]. The coupling relationship between gear pairs and bearings in the transmission
system is likely to cause composite faults in the system [4,5], resulting in extremely complex
vibration characteristics and increasing the difficulty of fault identification. Therefore,
considering the influence of various excitations in the transmission system, it is of great
significance to establish the dynamic model of the high-speed gear-rotor-bearing trans-
mission system of the wind turbine gearbox with composite faults, analyze the vibration
characteristics of the wind turbine gear transmission system with composite faults, and
provide a theoretical basis for the design of the wind turbine gearbox and the diagnosis of
composite faults.

Accurately calculating the time-varying meshing stiffness of gears with faults is the
key to studying gear dynamics, and the potential energy method is generally used to
solve the time-varying meshing stiffness of helical gears with faults. Yang and Lin [6]
first proposed a method for calculating gear meshing stiffness using the potential energy
method. Wu et al. [7] introduced linear cracks in the Yang model and calculated the
time-varying meshing stiffness of gears with root crack faults. Afterward, Wan et al. [8]
considered the variability of crack length and proposed a potential energy method based
on the slicing idea to calculate the time-varying meshing stiffness of helical gears with crack
faults. Ma [9] considers the spur gear teeth as a cantilever beam starting from the root circle
and proposes an improved calculation method for time-varying meshing stiffness. Huang
et al. [10,11] considered helical gears with spatial cracks and improved the calculation
method for the time-varying meshing stiffness of faulty helical gears.

For the study of the dynamic characteristics of faulty gears, Choy et al. [12] developed
a gear dynamics simulation program that can simulate and analyze gear transmission
systems with tooth surface pitting, wear, and local tooth breakage. Ian Howard et al. [13]
used a finite element model to calculate the meshing stiffness of gear with root cracks and
introduced friction to study the effects of root cracks and friction on the dynamic response of
gear systems. Afterward, he [14] established a 26-degree-of-freedom gear dynamics model
for a two-stage straight cylindrical gear transmission, which was used to compare and
study gear pitting and crack faults. Ma et al. [15] published a review of dynamic analysis of
gear transmission systems under root crack faults, summarizing the classification of crack
evolution paths in gear meshing pairs and summarizing crack faults in gear transmission
systems using time-varying meshing stiffness calculation methods. Wan et al. [16] used
the improved potential energy method to solve the time-varying meshing stiffness of spur
gears with crack faults. A 10-degree-of-freedom vibration dynamic model of spur gear-rotor
side-torsion coupling with a crack fault was established, and the vibration response of the
system was simulated. Han et al. [17] considered tooth surface peeling and local damage,
revealing the impact of gear pair meshing stiffness on single or multiple faulty teeth. Then,
an 8-degree-of-freedom spur gear dynamic model with composite faults was established,
and the dynamic responses under various fault states were solved and analyzed. Ma
et al. [18] established a dynamic model of a 12-degree-of-freedom primary gearbox gear-
rotor coupling system and studied the effects of crack depth, width, initial position, and
crack propagation direction on the time-domain and frequency-domain fault characteristics
and statistical indicators of the system. The fault characteristics were verified through
experiments. Cui et al. [19] considered tooth backlash, time-varying meshing stiffness,
and bearing radial clearance and established a nonlinear dynamic model of a gear-bearing
flexible shaft system considering internal breathing cracks and gear tooth wear. The effects
of tooth backlash, shaft cracks, and gear tooth wear on the nonlinear dynamic behavior
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of the gear-bearing system were studied. However, most scholars focus on single faulty
gears, and few papers have studied the dynamic response of gear systems with composite
faults. For the study of gear dynamics with composite faults, Liang and Zuo [20] published
a review on gear fault dynamic modeling, in which they pointed out that establishing more
efficient and accurate dynamic models containing composite faults is an important task
for future gear dynamics research. Zhao et al. [21] took into account that it is difficult to
identify the faults with weak signals in a multistage gear transmission system that contains
multiple faults in the case of coupled faults and established a fixed-axis nonlinear dynamics
model of the coupled faults of gear crack and planetary gear broken teeth, obtained the
fault frequency characteristics of the system with the change of excitation frequency, and by
comparing the theoretical and experimental signals, obtained the intrinsic frequency of the
system, the side frequency characteristics of the single faults, and the coupled faults. Cao
et al. [22] proposed a time-varying mesh stiffness calculation method for the fatigue cracks
and wear-coupled faults, then combined them with the coupled fault evolution model
and established the coupled fault evolution model. A coupled fault evolution model was
established, and a coupling fault evolution dynamics model was constructed by bringing
the obtained coupled fault meshing stiffness into the model of an 8-degree-of-freedom spur
gear drive system as a fault excitation. Dai et al. [23] constructed a 36-degree-of-freedom
dynamics model of a spur gear-axle-bearing system and simulated the system response
under the conditions of a single fault containing tooth spalling, a single fault of the bearing
inner ring, and the composite fault state of the two, respectively. The response of the system
was simulated and analyzed based on the spectrogram of the response, and finally, the
correctness of the model was verified using experiments.

In response to the research on the dynamic characteristics of faulty ball bearings, Patel
et al. [24] established a dynamic model of deep groove ball bearings considering single and
multiple defects on the inner and outer surfaces of the bearing and obtained the coupling
solution of the control equation. Patel et al. [25] established a 9-degree-of-freedom model
of a composite defect cylindrical roller bearing rotor system consisting of an inner and
outer ring with one defect each and solved the nonlinear contact force of the bearing. Seyed
et al. [26] conducted simulation and experimental analysis on angular contact ball bearings
with defects in the outer ring. And model and solve bearings without or with outer ring
defects. At the same time, the vibration response under different rotational speeds and axial
preload conditions was simulated. On the basis of the quasi-static model of bearings, Cheng
et al. [27] introduced a local contour function for the depth and circumferential variation
range of local defects and established a quasi-static analysis model of bearings considering
local defects. Ogundare et al. [28] provided a background for effective planetary bearing
failure analysis in the SA330 helicopter main gearbox by studying the characteristics
of planetary stars and some important frequency components that are crucial for fault
feature extraction.

It is not difficult to find that most of the current literature has insufficient research on
the improved calculation of meshing stiffness of helical gears with root crack faults, and
most of the literature only focuses on the vibration characteristics of a single-fault system
of gears and bearings; however, the vibration characteristics of helical gear-rotor-bearing
coupling systems with compound faults are rarely studied. To address the above issues,
in this paper, the time-varying meshing stiffness of helical gears with root crack faults
is calculated based on the improved energy method, and mathematical models of the
nonlinear support forces of angular contact ball bearings under several typical fault forms
are established. Under the premise of fully considering the various excitations in the helical
gear system and the nonlinear supporting force of the bearing, a 22-degree-of-freedom
dynamic model of the helical gear-rotor-bearing transmission system with composite faults
was established based on the lumped parameter method, and the vibration response of the
helical gear-rotor-bearing transmission system under various fault conditions was studied,
and the influence of fault parameters on the system response was analyzed.
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2. Calculation of Meshing Stiffness of Helical Gears with Root Cracks Based on
Improved Energy Method

In this paper, we propose an improved calculation method for time-varying meshing
stiffness of faulty helical gears containing root cracks. For spur gears, each tooth can be
regarded as a cantilever beam of variable cross-section, which is deformed under the action
of tooth surface load, and the cantilever beam model of variable cross-section for spur
gears is shown in Figure 1. The time-varying meshing stiffness of gears consists of five
parts: Hertz contact stiffness kh, bending stiffness kb, shear stiffness ks, axial compression
stiffness ka, and elastic stiffness of the matrix k f . The stiffness of each part can be expressed
by Equations (1)–(5):

kh =
F2

2Uh
=

πEB
4(1 − u2)

(1)

kb =
F2

2Ub
=

1∫ d
0

[(d−x) cos α1−h sin α1]
2

EIx
dx

(2)

ks =
F2

2Us
=

1∫ d
0

1.2 cos2 α1
GAx

dx
(3)

ka =
F2

2Ua
=

1∫ d
0

sin2 α1
EAx

dx
(4)

k f =
1

cos2 α1
EB

{
L∗

( u f
S f

)2
+ M∗

( u f
S f

)
+ P∗[1 + Q∗ tan2(α1)

] } (5)

where Uh, Ub, Us, Ua are Hertz contact deformation potential energy, bending deformation
potential energy, shear deformation potential energy, and axial deformation potential
energy, respectively. F is the meshing force in the meshing line direction. E, G, and µ are
Young’s modulus, shear modulus, and Poisson ratio, respectively. The significance of the
representation of the remaining parameters and the derivation process of their calculation
formulas are described in detail in the literature [8] and will not be repeated in this paper.
According to the above equation, the integrated meshing stiffness of a pair of spur gear
cassettes can be obtained, as shown in Equation (6).

kt =
n

∑
i=1

1
1

kh,i
+ 1

kb1,i
+ 1

ks1,i
+ 1

ka1,i
+ 1

k f 1,i
+ 1

kb2,i
+ 1

ks2,i
+ 1

ka2,i
+ 1

k f 2,i

(6)

Mathematics 2024, 12, 1410 4 of 39 
 

 

2. Calculation of Meshing Stiffness of Helical Gears with Root Cracks Based on  
Improved Energy Method 

In this paper, we propose an improved calculation method for time-varying meshing 
stiffness of faulty helical gears containing root cracks. For spur gears, each tooth can be 
regarded as a cantilever beam of variable cross-section, which is deformed under the ac-
tion of tooth surface load, and the cantilever beam model of variable cross-section for spur 
gears is shown in Figure 1. The time-varying meshing stiffness of gears consists of five 
parts: Hertz contact stiffness hk , bending stiffness bk , shear stiffness sk , axial compres-

sion stiffness ak , and elastic stiffness of the matrix fk . The stiffness of each part can be 
expressed by Equations (1)–(5): 

O

xrb d Fb F

Fahx h

The contact line

ψ

α 2

α1

α

 
Figure 1. Spur gear cantilever beam model. 

( )
2

h 2
h2 4 1

F EBk
U u

π= =
−

 
(1) 

( )
2

b 2
b 1 1

0

1
2 cos sin

dx
d

x

Fk
U d x h

EI
α α

= =
− −    (2) 

2

s 2
1s

0

1
1.2cos2 dx

d

x

Fk
U

GA
α

= =

  (3) 

2

a 2
1a

0

1
sin2 dx

d

x

Fk
U

EA
α

= =

  (4) 

( )
2

2
21

1

1

cos 1 tan
f

f f

f f

k
u u

L M P Q
EB S S

α α∗ ∗ ∗ ∗

=
     + + +         
       (5) 

where hU , bU , sU , aU  are Hertz contact deformation potential energy, bending de-
formation potential energy, shear deformation potential energy, and axial deformation 

Figure 1. Spur gear cantilever beam model.



Mathematics 2024, 12, 1410 5 of 36

Helical gears are calculated quite differently from spur gears due to the presence of
helix angles. In this paper, based on the previous work, the idea of converting helical gears
into a number of spur gears and integrating them along the contact line is still used to
solve the time-varying mesh stiffness of helical gears by using the slicing method and the
cumulative summation method. The case that the tooth root circle of the helical gear does
not coincide with the base circle is considered, and the tooth root transition circle angle is
also considered, and then the energy method formula is improved. When the radius of
the base circle is larger than the radius of the tooth root circle, the three-dimensional and
two-dimensional models of the helical gear variable-section cantilever beam are shown in
Figure 2.
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Based on the modified cantilever beam model for helical gears and the previous
equations, the improved gear-slicing bending potential can be derived with the expression
of Equation (7):

kb =
∫ l

0
dy{

1.5
E
∫ α2
−α1(y)

{1+cos α1(y)[(α2−α) sin α−cos α]}2(α2−α) cos α

[sin α+(α2−α) cos α]3
dα

}
+
∫ rb−r f

0
1.5{[d(y)+x1] cos α1(y)−h(y) sin α1(y)}2

2Eh3
x1

dx1

(7)

where hx1 is the distance between a point of the root transition curve and the gear centerline,

hx1 = hb + r0 −
√

r2
0 − x2

1, r0 is the radius of the root transition curve, hb = rb sin(α2).
Since Equation (7) cannot be solved directly for indefinite integrals, the idea of cumu-

lative summation, the bending stiffness kb of the helical gear can be re-expressed as:

kb =
N
∑

j=1

1{
1.5
E
∫ α2
−α′1

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α

[sin α+(α2−α) cos α]3∆y
dα

}

+
∫ rb−r f

0
1.5{[d(y)+x1] cos α′1−h(y) sin α′1}

2

2Eh3
x1

dx1

(8)

Similar to the process of solving the bending stiffness kb, the shear stiffness ks and
axial compression stiffness ka of helical gears are:

ks =
N

∑
j=1

1{
1.2
E
∫ α2
−α′1

(1+ν)(α2−α) cos α cos2 α′1
[sin α+(α2−α) cos α]∆y dα

} +
∫ rb−r f

0

1.2 cos2 α′

GAx1

dx1 (9)
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ka =
N

∑
j=1

1{
0.5
E
∫ α2
−α′1

(1+ν)(α2−α) cos α sin2 α′1
[sin α+(α2−α) cos α]∆y dα

} +
∫ rb−r f

0

sin2 α′

EAx1

dx1 (10)

When the radius of the base circle is smaller than the radius of the root circle, the
two-dimensional and three-dimensional models of the inclined gear tooth cantilever beam
slices are shown in Figure 3.
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At this point, the bending stiffness kb, shear stiffness ks, and axial compression stiffness
ka of the corrected helical gear are expressed by:

kb =
N

∑
j=1

1{
1.5
E
∫ f (α)
−α′1

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α

[sin α+(α2−α) cos α]3∆y
dα

} (11)

ks =
N

∑
j=1
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1.2
E
∫ f (α)
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(1+ν)(α2−α) cos α cos2 α′1
[sin α+(α2−α) cos α]∆y dα
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ka =
N

∑
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0.5
E
∫ f (α)
−α′1

(1+ν)(α2−α) cos α sin2 α′1
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} (13)

where:

f (α) =
{
−α3 r f cos(α4) ≥ rb
α4 r f cos(α4) < rb

(14)

α3 = α f −
[
(

π

2z
+ invα − invα f )

]
(15)

α4 = (
π

2z
+ invα − invα f ) (16)

where α f is the root circle pressure angle. The kh and k f of helical gears are constant
regardless of the relationship between the size of the root circle and the base circle.

The tooth root crack is defined by the crack angle v (constant) and the crack depth
q. Figure 4 shows a three-dimensional schematic of the cracked helical gear, as well as an
enlarged view of the slice when considering the case where the tooth root circle is not equal
to the base circle. In this paper, since the main study is on the response of the gear system
when containing faults, the crack extension shape is assumed to be a parallelogram with the
tangent length running through the entire tooth width, and the crack extension paths are
linear and equal in depth along the direction of the dashed line in the figure, ignoring the
effect of the crack thickness (degree of cracking) on the overall position of the gear tooth.
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Figure 4. Sliced view of a cracked helical gear. (a) b fr r> (b) b fr r< . 

From Figure 4, it can be seen that when root crack damage occurs in the gear, the 
contact line length of the working teeth at the same meshing position does not change, so 
for the single tooth stiffness with root crack damage, the Hertzian contact stiffness does 

Figure 4. Sliced view of a cracked helical gear. (a) rb > r f (b) rb < r f .

From Figure 4, it can be seen that when root crack damage occurs in the gear, the
contact line length of the working teeth at the same meshing position does not change, so
for the single tooth stiffness with root crack damage, the Hertzian contact stiffness does not
change. For radial compression stiffness, the presence or absence of cracks does not affect
the gear teeth to withstand radial loads, so the calculation of axial compression stiffness for
the faulty gear teeth can also be derived according to the calculation method for normal
gear teeth. Therefore, for the gear pair with root crack damage, it is only necessary to
recalculate the bending stiffness and shear stiffness under the crack condition to indirectly
obtain the integrated meshing stiffness with the gear pair with root crack damage. In
this paper, the time-varying meshing stiffness of cracked helical gears can be calculated
according to the following formula. The cracked helical gears are categorized into four
cases, and the sliced cantilever beam models of their corresponding cracked spur gears are
solved. Cases 1 and 2 are shown in Figure 5a,b; cases 3 and 4 are shown in Figure 6a,b.
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Figure 6. Sliced cantilever beam model of crack-failed helical gear for rb < r f . (a) rb < r f , hc1 ≥ hr

and α1 ≥ αg (b) rb < r f , hc1 < hr or hc1 > hr, α1 > αg.

(1) As in the case of Figure 5a, rb > r f , hc1 ≥ hr, and α1 ≥ αg:

The inertia distance and cross-sectional area of the section of a cracked tooth at a
distance x from the base circle are denoted as I′x and A′

x, respectively, and their expressions
are given below: {

I′x = 1
12 (hc1 + hx)

3
B x ≤ gc

I′x = 1
12 (2hx)

3B x > gc
(17)

{
A′

x = (hc1 + hx)B x ≤ gc
A′

x = 2hxB x > gc
(18)

where hc1 is the perpendicular distance from the crack tip to the gear centerline, which is
expressed as shown in Equation (19):

hc1 = Rb1 sin α2 − q sin v (19)

Based on the equations described in the previous section and the idea of the integral
method, the bending and shear stiffnesses of the cracked gear teeth can be derived as:

Kbcrack =
N
∑

j=1
1/

{
12
E
∫ α2
−αg

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α[

sin α2−
(

q1
rb1

)
sin ν+sin α+(α2−α) cos α

]3
∆y

dα

}
+

N
∑

j=1
1/

{
1.5
E
∫ −αg
−α′1

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α

[sin α+(α2−α) cos α]3∆y
dα

}
+
∫ rb−r f

0
1.5{[d(y)+x1] cos α′1−h(y) sin α′1}

2

2Eh3
x1

dx1

(20)

Kscrack =
N
∑

j=1
1/

{
1.2
E
∫ α2
−αg

(1+ν)(α2−α) cos α cos2 α′1[
sin α2−

(
q1
rb1

)
sin ν+sin α+(α2−α) cos α

]
∆y

dα

}

+
N
∑

j=1
1/

{
1.2
E
∫ −αg
−α′1

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α[

sin α2−
(

q1
rb1

)
sin ν+sin α+(α2−α) cos α

]
∆y

dα

}
+
∫ rb−r f

0
1.2 cos2 α′1

GAx1
dx1

(21)

(2) As in the case of Figure 5b, rb > r f and hc1 < hr or hc1 < hr and α1 < αg:
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Since x < gc is constant, the effective tooth thickness of the microelementary section
at a distance x from the tooth root is constant hc1 + hx, so I′x and A′

x can be simplified by
comparing with: {

I′x = 1
12 (hc1 + hx)

3B
A′

x = (hc1 + hx)B
(22)

The stiffness of each part can be expressed as:

Kbcrack =
N
∑

j=1
1/

{
12
E
∫ α2
−α′1

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α[

sin α2−
(

q1
rb1

)
sin ν+sin α+(α2−α) cos α

]3
∆y

dα

}
+
∫ rb−r f

0
1.5{[d(y)+x1] cos α′1−h(y) sin α′1}

2

2Eh3
x1

dx1

(23)

Kscrack =
N
∑

j=1
1/

{
1.2
E
∫ α2
−α′1

(1+ν)(α2−α) cos α cos2 α′1[
sin α2−

(
q1
rb1

)
sin ν+sin α+(α2−α) cos α

]
∆y

dα

}
+
∫ rb−r f

0
1.2 cos2 α′1

GAx1
dx1

(24)

(3) As in the case of Figure 6a, rb < r f , hc1 > hr, and α1 < αg:

Kbcrack =
N
∑

j=1
1/

{
12
E
∫ α2
−αg

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α[

sin α2−
(

q1
rb1

)
sin ν+sin α+(α2−α) cos α

]3
∆y

dα

}
+

N
∑

j=1
1/

{
1.5
E
∫ −αg
−α′1

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α

[sin α+(α2−α) cos α]3∆y
dα

} (25)

Kscrack =
N
∑

j=1
1/

{
1.2
E
∫ α2
−αg

(1+ν)(α2−α) cos α cos2 α′1[
sin α2−

(
q1
rb1

)
sin ν+sin α+(α2−α) cos α

]
∆y

dα

}

+
N
∑

j=1
1/

{
1.2
E
∫ −αg
−α′1

{1+cos α′1[(α2−α) sin α−cos α]}2
(α2−α) cos α[

sin α2−
(

q1
rb1

)
sin ν+sin α+(α2−α) cos α

]
∆y

dα

} (26)

(4) As in the case of Figure 6b, rb < r f , hc1 < hr or hc1 > hr, and α1 ≥ αg:

Kbcrack =
N

∑
j=1

1/

12
E

∫ α2

−α′1

{
1 + cos α′1[(α2 − α) sin α − cos α]

}2
(α2 − α) cos α[

sin α2 −
(

q1
rb1

)
sin ν + sin α + (α2 − α) cos α

]3
∆y

dα

 (27)

Kscrack =
N

∑
j=1

1/

1.2
E

∫ α2

−α′1

(1 + ν)(α2 − α) cos α cos2 α′1[
sin α2 −

(
q1
rb1

)
sin ν + sin α + (α2 − α) cos α

]
∆y

dα

 (28)

The integrated meshing stiffness of cracked gears can be solved by the following
equation:

K′
t =

1
1
kh

+ 1
kbcrack

+ 1
kscrack

+ 1
ka1

+ 1
k f 1

+ 1
kb2

+ 1
ks2

+ 1
ka2

+ 1
k f 2

(29)

The crack depth is 5 mm, the crack angle is 45◦, and the gear data are shown in Table 1.
Based on MATLAB, the results of the traditional energy method, the improved energy
method of this paper, and the KISSsoft simulation are compared. The comparison results
are shown in Figure 7a, which is the comparison of single tooth meshing stiffness, and
Figure 7b is the comparison of time-varying meshing stiffness.
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Table 1. Gear parameters.

Parameter Name Parameter Symbol Value

Number of teeth Z1, Z2 data
Pressure angle αn/(◦) 20

Spiral angle β/(◦) 15
modulus mn 8

Tooth width B/(mm) 120
Poisson’s ratio µ 0.25

modulus of elasticity E/(Gpa) 207
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Figure 7. Verification of time-varying meshing stiffness of faulty helical gears.

It can be seen from Figure 7a,b that the presence of tooth root cracks causes localized
attenuation of the meshing stiffness. The time-varying meshing stiffness of the faulty gear
solved based on the improved energy method is very close to the meshing stiffness of
the fault-free helical gear simulated based on the KISSsoft method. Compared with the
simulation results of the unimproved meshing stiffness, the improvement effect is obvious.
Therefore, it can be proved that the improved theoretical formula of time-varying meshing
stiffness of fault helical gears is effective and realistic.

3. Dynamics Modeling of the Helical Gear-Rotor-Bearing Coupling System with
Compound Faults
3.1. Dynamic Modeling of Helical Gear System

The dynamic model [29] diagram and geometrical position relationship of the faulty
helical gear-rotor-bearing transmission system are shown in Figure 8.

As shown in Figure 8, the fixed coordinate system Ai − xiyizi(i = 1, 2) is established
in the ideal center Ai of the driving and driven gears and the fixed coordinate system
Bi − xiyizi(i = 1 ∼ 4) is established in the ideal center Bi of the bearing; the rotation center
coordinates of the driving and driven gears are O1(x1, y1, z1) and O2(x2, y2, z2), respectively;
the center of mass coordinates are G1

(
xg1, yg1, zg1

)
and G2

(
xg2, yg2, zg2

)
; the mass of helical

gear is m1, m2; the moment of inertia relative to the center of mass is J1, J2; ρ1, ρ2 are
the eccentricity; rb1, rb2 are the base circle radius; the equivalent mass at the bearing
is mbi(i = 1 ∼ 4); the moment of inertia of the input device and the load are Jd and Jl ,
respectively; Ft, Fr, and Fa are, respectively, the tangential force, radial force, and axial
force when the gears are engaged; αt, αn are the end face pressure angle and normal phase
pressure angle, respectively; β, βt are the spiral angles of the graduation circle and Base
Circle, and α1 is the angle between the center line of two gears and the vertical direction.
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Figure 8. Dynamic model of faulty helical gear-rotor-bearing transmission system.

Based on the geometric relationship shown in Figure 8, the angular displacement of
the input/output device, driving, and driven gears can be represented by Equation (30):{

ψd = ω1t + θd ψ1 = ω1t + θ1
ψ2 = ω2t + θ2 ψi = ω2t + θl

(30)

In the formula, θd, θ1, θ2, θl are the torsional vibration angular displacement of the
input device, the driving and driven gears, and the load, respectively. At t = 0, the starting
rotation angle of the driving and driven gears is 0, and the direction of rotation of the
driving gears is positive. Then, the relationship between the center of mass G1, G2, and the
center of rotation O1, O2, is shown in Equation (31) [29]:

xg1 = x1 + ρ1 cos(−ψ1) xg2 = x2 + ρ2 cos(ψ2) zg1 = z1zg1 = z1

yg1 = y1 + ρ1 sin(ψ1) yg2 = y2 + ρ2 sin(−ψ2)

zg1 = z1 zg1 = z1

(31)

where xi, yi, zi(i = 1 ∼ 2) are the horizontal, vertical, and axial vibrational displacements
of the driving and driven gears, respectively. According to the geometric relationship, the
dynamic deformation displacement of the helical gear pair in the meshing line direction
can be expressed by Equation (32) [29]:

σ = (rb1θ1 − rb2θ2) + [(x1 + ρ1 cos(−ψ1))− (x2 + ρ2 cos(ψ2))] · cos(α12 − αt)
+[(y1 − ρ1 sin(ψ1))− (y2 + ρ2 sin(ψ2))] · sin(α12 − αt) + (z1 − z2) tan(β)− e(t)

(32)

where e(t) = e0 + e1 cos(ωet) is the integrated transmission error of the system, e0 is the
mean value of error, e1 is the amplitude of error, and ωe = 2πn1Z1/60 is the meshing
frequency. The meshing force of the gear meshing system along the meshing line direction
can be expressed as F = cm · dσ + k′t · f (σ), k′t is the faulty helical gear meshing stiffness
when the crack depth q = 0 mm, it is the time-varying meshing stiffness for healthy helical
gears. When ρ1 = ρ2 = 0 mm, the system does not contain gear eccentricity faults, while
when it is not 0, the system has eccentricity faults. f (x) is the tooth side clearance function
and can be expressed by Equation (33) [29];

f (x) =


x − b (x > b)

0 (−b ≤ x ≤ b)
x + b (x < −b)

(33)
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The meshing force F between the gears is decomposed into the x-, y-, and z-directions,
and the forces in each direction are shown in Equation (34) [29].

Fx = F cos(α1 − αt)
Fy = F sin(α1 − αt)

Fz = F tan(β)
(34)

3.2. Vibration Analysis Model of Angular Contact Ball Bearings with Faults

A plane model of an angular contact ball bearing is shown in Figure 9. It is assumed
that the outer ring of the bearing is fixed on the housing, and the inner ring is fixed on
the rotating shaft. The rolling bodies are arranged at equal angular intervals between the
inner/outer rings. The velocity vi, vo at the contact point between the rolling body and the
inner/outer ring of the bearing is shown in Equation (35) [29]:

vi = ωi · ri vo = ωo · ro (35)

where ri and ro are the radius of bearing inner/outer rings, respectively; ωi and ωo are
angular speeds of bearing inner/outer rings, respectively. Assuming that the rolling body
is purely rolling in the ideal state, then the rotational angular velocity of the cage and the
rolling body are equal, and the linear velocity of the rolling body can be expressed as:

vb =
(
v0 + vi

)
/2 =

(
ω0ro + ωiri

)
/2 (36)
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Figure 9. Diagram of angular contact ball bearing. Figure 9. Diagram of angular contact ball bearing.

In general, the inner ring of the rolling bearing rotates with the rotating shaft, while
the outer ring is bound with the bearing seat is not rotating, then there is ωi = 0, ω0 = ω.
Therefore, the formula of the angular velocity ωb of the cage can be obtained as shown
in (37):

ωb = 2 · νb/(R + r) = ωi · r/(R + r) (37)

Then, the rotation angle ωi of the i-th rolling body in time t is shown in Equation (38):

φi = ωbt + 2π(i − 1)/Nb i = 1, 2, · · · , Nb (38)

where Nb is the number of bearing rollers:
In Figure 9, db is the rolling body diameter of the bearing; d is the diameter of the axis;

di, do are groove diameters of inner/outer rings of bearings, respectively; dm is the pitch
diameter of the bearing, and dm = (di + do)/2; D is the diameter of the bearing outer ring.
The centrifugal force and gyroscopic moment generated by the rolling body are neglected
in the bearing model because of the low rotational speed of the system studied in this paper.
The deformation of the bearing at different positions is shown in Figure 10.
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In Figure 10, A and A′ represent the distance between the centers of curvature of the
grooves of the inner and outer rings of the bearing before and after loading, respectively;
α0 and α′0 are the contact angles before and after loading, respectively; P0 and P′

0 are
the position of the bearing outer ring raceway curvature center before/after the force,
respectively, because the bearing outer ring is fixed, the position of both are the same; Pi
and P′

i are the position of the center of curvature of the inner ring raceway of the bearing
before/after the force, respectively; δai, δri, θi are the radial deformation, axial deformation,
and angular deformation caused by the force and torque, respectively; Ri is the radius of
the inner ring raceway curvature center track; δi, δ0, and δbi are the contact deformation
and total deformation of the inner and outer channel of the ball bearing, respectively.

In Figure 10, the total deformation of the rolling body at position angle φi can be
expressed by the Equation (39):

δbi = δi + δ0 − hd = A′ − A − hd (39)

where hd is the additional displacement caused by localized bearing failure, healthy roller
bearings hd = 0 mm; rolling bearing localized damage is mainly manifested as spalling,
cracks, and indentations on the surface of the outer ring, inner ring, or rolling element,
and these failures are gradually formed by the early point damage at different stages of
development. When the inner and outer rings or the rolling elements are damaged, the
contact deformation between the rolling element and the inner ring and the outer ring will
change. The mathematical expression of hd in the form of bearing inner ring, outer ring,
and rolling element faults will be provided in Section 3.3 below.

According to the geometric relationship in Figure 10c, the distance A′ between the
curvature center locus of the inner and outer ring channels after loading can be expressed as:

A′ =
[
(A sin α0 + z + Riθi cos φi)

2 + (A cos α0 + x cos φi + y sin φi)
2
]1/2

(40)

Then, the normal contact deformation δbi of the i-th ball and raceway is shown in
Equation (41):

δbi = A′ − A − hd =
[
(A sin α0 + δa + Riθi cos φi)

2 + (A cos α0 + δr)
2
] 1

2 − A − hd (41)

Let δa = z, δr = x cos φi + y sin φiδa = z, then Equation (41) can be reduced to:

δbi = A′ − A − hd

=
[
(A sin α0 + z + Riθi cos φi)

2 + (A cos α0 + x cos φi + y sin φi)
2
] 1

2 − A − hd
(42)
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where x, y, and z are vibration displacements along x-, y- and z-directions, respectively; Ri
is the radius of the locus of curvature center of the inner ring channel, A is the distance
between the initial inner and outer ring channel curvature centers A = ri + ro + γo − db.

According to the geometric relation, the actual contact angle of the ball is α′0 at the
position Angle φi (the contact Angle of the inner and outer rings is equal).

tan α′0 = (A sin α0 + z + Riθi cos φi)/(A cos α0 + x cos φi + y sin φi) (43)

According to Hertz’s contact theory, the contact pressure generated by the i-th ball
and raceway is fbi. It is considered that only normal positive pressure can be generated
between the ball bearing and the raceway, so there is a force when the δbi > 0, as shown in
Equation (44):

fbi = Kcδbi
3/2 · H(δbi) (44)

Equation (44) is the normal load acting on the trench along the contact angle direction,
where Kc is the Hertzian contact stiffness; H(x) is the Heaviside function, and the axial and
radial components of this load decomposition can be expressed by Equation (45):

fri = fbi cos(α′0) = Kcδbi
3/2 · H(δbi) cos(α′0)

fai = fbi sin(α′0) = Kcδbi
3/2 · H(δbi) sin(α′0)

(45)

The components Fbx, Fby, and Fbz of bearing force generated by angular contact bearing
in x-, y-, and z-directions are, respectively:

Fbx =
Nb
∑

i=1
fri cos φi =

Nb
∑

i=1
= Kcδbi

3/2 cos(α′0) · H(δbi) cos φi

Fby =
Nb
∑

i=1
fri sin φi =

Nb
∑

i=1
= Kcδbi

3
2 cos(α′0) · H(δbi) sin φi

Fbz =
Nb
∑

i=1
fai =

Nb
∑

i=1
= Kcδbi

3/2 sin(α′0) · H(δbi)

(46)

3.3. Establishment of Bearing Excitation Model with Typical Faults

In order to simulate the faults of the inner ring, outer ring, and rolling element of
rolling bearings, the following will provide their mathematical expressions and solve their
corresponding solutions for each fault form.

(1) Fault model of bearing inner and outer rings
As shown in Figure 11, assuming that the shape of the local fault on the bearing

surface is a circular pit, the diameter and depth of the inner and outer ring fault areas
are represented by Ldi, Ldo and hdi, hdo, respectively; ∆hdi and ∆hdo are the actual depths
at which the rolling element of the bearing falls into the inner and outer rings of the
bearing, respectively; θie and θoe are half of the center angles corresponding to the inner
and outer fault areas, respectively; θid and θod represent the rotation angles of the center
of the damaged area in the inner and outer rings, respectively; Rb1 is the radius of the
rolling element.
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When the rolling element is in the fault position of the outer ring, due to the binding
angular velocity between the outer ring and the bearing seat being 0, the position angle θod
of the fault center of the outer ring is a constant, and displacement excitation only exists
when the rolling element is in the fault zone. Therefore, the additional displacement caused
by local failure of the bearing outer ring can be expressed as:

hd =

{
∆hdo abs{mod(φi − θod, 2π)} ≤ θoe
0 other

(47)

The parameters in Equation (47) can be represented by Equations (48) and (49).

θoe = arcsin
(

Ldo
ro

)
(48)

∆hdo = ro −

√
r2

o −
(

Ldo
2

)2
(49)

Similarly, when the rolling element is in an inner ring fault, due to the movement of
the bearing inner ring with the shaft, the position angle θid of the inner circle fault center is
time-varying, which can be expressed as: θid(t) = θid(0) + ω1 · t. Therefore, the additional
displacement caused by local failure of the bearing inner ring can be expressed as:

hd =

{
∆hdi abs{mod(φi − θid(t), 2π)} ≤ θie
0 other

(50)

The calculation method for the parameters in Equation (50) is similar to that of the
outer ring fault parameters and will not be given in this article.

(2) Fault model of bearing rolling element
For the rolling element of the bearing, its rotation will contact the inner and outer

rings of the bearing once, which will generate displacement excitation and cause impact
vibration of the system. In order to simulate the failure of the rolling element, it is assumed
that the rolling element is damaged by pits. When a failure occurs, the radial clearance of
the bearing will suddenly change. The schematic diagram of the rolling element failure
is shown in Figure 12. The diameter and depth of the fault area of the rolling element are
represented by Ldd and hdd, respectively; ∆hdd is the actual depth at which the bearing
rolling element falls into the inner and outer rings of the bearing, and θdd is the angle at
which the centerline of the fault area rotates during the rolling element’s rotation.
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Assuming that the j-th rolling element fails, its damage angle position at time t is:

θdd = ωst +
2π(j − 1)

Nb
(51)

where ωs is the rotational speed of the rolling element, which can be represented by
Equation (52):

ωs =
ω

2
dm

Db

[
1 −

(
Db
dm

cos α

)2
]

(52)

Assuming the position angle θ0 of the centerline of the initial position of the rolling
element is when the fault position of the first rolling element contacts the inner and outer
rings at time t, the additional displacement caused by local failure of the bearing rolling
element can be expressed as:

hd =


∆hdd abs{mod(θdd, 2π)− θ0} ≤ θde
∆hdd abs{mod(θdd, 2π)− π − θ0} ≤ θde
0 other

(53)

The calculation method for the parameters in Equation (53) is similar to that of the
outer ring fault parameters and will not be given in this article.

3.4. Compound Fault Helical Gear-Rotor-Bearing Coupling Dynamic Equation

It is considered that the helical gear-rotor-bearing system consists of gears, bearings,
transmission, and load devices. Based on the dynamics analysis of the system, the kinetic,
potential, and dissipation functions of the system are established and substituted into
the Lagrange equation; the differential equations of the system can be expressed as in
Equations (54)–(60).

The control differential equations for the input device and the left end bearing of the
drive shaft can be expressed by Equations (54) and (55):

Jd
..
θd + ct1

( .
θd −

.
θ1

)
+ kt1(θd − θ1) = Td (54)

mb1
..
xb1 + csx1

( .
xb1 −

.
x1
)
+ ksx1(xb1 − x1) + cb1

.
xb1 = Fbx1

mb1
..
yb1 + csy1

( .
yb1 −

.
y1
)
+ ksy1(yb1 − y1) + cb1

.
yb1 = Fby1 − mb1g

mb1
..
zb1 + csz1

( .
zb1 −

.
z1
)
+ ksz1(zb1 − z1) + cb1

.
zb1 = Fbz1

(55)
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The control differential equation of the driving gear is shown in Equation (56):

m1
..
x1 + csx1

( .
x1 −

.
xb1

)
+ csx2

( .
x1 −

.
xb2

)
+ ksx1(x1 − xb1) + ksx2(x1 − xb2)

= −Fx + m1ρ1
..
θ1 sin φ1 + m1ρ1

(
ω1 +

.
θ1

)2
cos φ1

m1
..
y1 + csy1

( .
y1 −

.
yb1

)
+ csy2

( .
y1 −

.
yb2

)
+ ksy1(y1 − yb1) + ksy2(y1 − yb2)

= −m1g − Fy + m1ρ1
..
θ1 cos φ1 + m1ρ1

(
ω1 +

.
θ1

)2
sin φ1

m1
..
z1 + csz1

( .
z1 −

.
zb1

)
+ csz2

( .
z1 −

.
zb2

)
+ ksz1(z1 − zb1) + ksz2(z1 − zb2) =

−Fz
(

J1 + m1ρ1
2) ..

θ1 + ct1

( .
θ1 −

.
θd

)
+ kt1(θ1 − θd) = m1ρ1

..
x1 sin φ1 + m1ρ1

..
y1 cos φ1 − Frb1

(56)

The control differential equations of the right bearing of the drive shaft and the left
bearing of the driven shaft are given in Equation (57):

mb2
..
xb2 + csx2

( .
xb2 −

.
x1
)
+ ksx2(xb2 − x1) + cb2

.
xb2 = Fbx2

mb2
..
yb2 + csy2

( .
yb2 −

.
y1
)
+ ksy2(yb2 − y1) + cb2

.
yb2 = Fby2 − mb2g

mb2
..
zb2 + csz2

( .
zb2 −

.
z1
)
+ ksz2(zb2 − z1) + cb2

.
zb2 = Fbz2

mb3
..
xb3 + csx3

( .
xb3 −

.
x2
)
+ ksx3(xb3 − x2) + cb3

.
xb3 = Fbx3

mb3
..
yb3 + csy3

( .
yb3 −

.
y2
)
+ ksy2(yb3 − y2) + cb3

.
yb3 = Fby3 − mb3g

mb3
..
zb3 + csz3

( .
zb3 −

.
z2
)
+ ksz3(zb3 − z2) + cb3

.
zb3 = Fbz3

(57)

The control differential equation of the driven gear is shown in Equation (58):

m2
..
x2 + csx3

( .
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.
xb3

)
+ csx4

( .
x2 −

.
xb4

)
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..
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(
ω2 +

.
θ2

)2
cos φ2

m2
..
y2 + csy3

( .
y2 −

.
yb3

)
+ csy4

( .
y2 −

.
yb4

)
+ ksy3(y2 − yb3) + ksy4(y2 − yb4)

= −m2g − Fy + m2ρ2
..
θ2 cos φ2 + m2ρ2

(
ω2 +

.
θ2

)2
sin φ2

m2
..
z2 + csz3

( .
z2 −

.
zb3

)
+ csz3

( .
z2 −

.
zb4

)
+ ksz3(z2 − zb3) + ksz4(z2 − zb4) = −Fz(

J2 + m2ρ2
2) ..

θ2 + ct2

( .
θ2 −

.
θl

)
+ kt2(θ2 − θl) = m2ρ2

..
x2 sin φ2 + m2ρ2

..
y2 cos φ2 − Frb2

(58)

The control differential equations for the left end bearing of the driven shaft and the
load device can be expressed in Equations (59) and (60):

mb4
..
xb4 + csx4

( .
xb4 −

.
x2
)
+ ksx4(xb4 − x2) + cb4

.
xb4 = Fbx4

mb4
..
yb4 + csy4

( .
yb4 −

.
y2
)
+ ksy4(yb4 − y2) + cb4

.
yb4 = Fby4 − mb4g

mb2
..
zb4 + csz4

( .
zb4 −

.
z2
)
+ ksz4(zb4 − z2) + cb4

.
zb4 = Fbz4

(59)

Jl
..
θl + ct2

( .
θl −

.
θ2

)
+ kt2(θl − θ2) = −Tl (60)

The representative meanings of each parameter in the above equation and the bearing
parameters are shown in reference [29], the remaining parameters of the gear are shown in
Table 2, and the parameters of the shaft are shown in Table 3.

Table 2. Remaining partial parameters of the gear.

Parameter Name Parameter Symbol Value

Driving/Driven gear mass m1, m2/(kg) 668, 141
Rotational inertia of
driving/driven gear J1, J2/(kg·m2) 44.35, 0.21

Meshing damping ratio ξm 0.1
Error mean/magnitude value e1, e0/(m) 2 × 10−5, 2 × 10−5

Lateral clearance b/(um) 10
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Table 3. Axis parameters.

Parameter Name Parameter Symbol Value

Shaft I and II bending stiffness ks1, ks2, ks3, ks4/(N·m−1) 6 × 108, 6 × 108, 1.5 × 108, 1.5 × 108

Bending damping ratio ξs 0.07
Shaft I and II torsional stiffness kt1, kt2/(N·m−1) 8 × 108, 1.5 × 108

Torsional damping ratio ξt 0.07
Moment of inertia of the driving and load device Jd, Jl/(kg·m2) 20, 5

Input and output revolutions n1, n2/(r·min−1) 500, 2000

4. Analysis of Vibration Characteristics of Helical Gear-Rotor-Bearing System
with Faults
4.1. Analysis of Vibration Characteristics of Health Systems

Based on the differential equations of the helical gear-rotor-bearing drive system
established in Section 3.4 of this paper, Matlab was used to program it, and the ode15s
command was used to solve the response of the system for the parameters in Tables 1–3.
Calculate the acceleration response during vibration of the fault-free system at input speed
n1 = 500 r/min, eccentricity of the driving and driven gears ρ1 = ρ2 = 0 mm, root crack
depth q = 0 mm, and additional displacement due to localized bearing failure hd = 0 mm
(This is mainly to provide a comparison to the later vibration characterization of the fault-
containing system). Figure 13a,d shows the time-domain waveform of the driving gear and
corresponding left end bearing in the y-direction, Figure 13b,e shows the spectrum in the
corresponding direction, and Figure 13c,f shows the envelope spectrum. In the figure, y1
represents the y-direction of the driving gear and yb1 represents the y-direction of the left
end bearing of the driving gear (the same expression will be used later).
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Figure 13. Time-domain waveforms, frequency spectra, and envelope spectra of driving gears
and. bearings 1 in y-direction. (a) Time-domain waveforms of gear; (b) Frequency spectra of gear;
(c) Envelope spectra of gear (d); Time-domain waveforms of bearings; (e) Frequency spectra of
bearings; (f) Envelope spectra of bearings.

From Figure 13a,d, it can be seen that with the periodic rotation of the gears, the
time-domain curves of y-direction acceleration of both the driving gear and the bearings
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change periodically, and the amplitude of vibration remains smooth and constant. From
the frequency spectrum and envelope spectrum of the driving gear in the y-direction in
Figure 13b,c, it can be seen that its frequency mainly includes the meshing frequency fm
and its octave frequency (2 fm, 3 fm,. . .n fm) of the gear, in which the meshing frequency fm
shows the strongest as the dominant frequency; from the frequency spectrum of the bearing
and the envelope spectrum of Figure 13e,f, it can be seen that, due to coupling, the gear
meshing frequency and octave frequency also appear in the y-direction of the bearing, but
the frequency component is weaker than that in the gear direction, in addition to this, a
weaker bearing dynamic stiffness frequency f3 (52 Hz) also appears, as can be seen from
the localized zoomed-in diagram (40–60 Hz).

In summary, the time-domain waveforms of the gears and bearings in the fault-free
helical gear-rotor-bearing system exhibit periodic vibration in all directions with vibration
amplitude is smooth, and the frequency components are mainly composed of the meshing
frequency fm and its octave frequency n fm, and fm is the dominant frequency.

4.2. Analysis of Vibration Response and Parameter Effects of a Single Fault System with
Gear Eccentricity
4.2.1. Analysis of Vibration Characteristics of a Single Fault System with Eccentricity

The existence of gear eccentricity will lead to gear transmission instability, resulting in
the system vibration response to produce fault characteristics; first of all, on the basis of
Section 4.1 in the text, respectively, take the gear eccentricity as ρ1 = 0 mm, ρ2 = 0.15 mm,
and ρ1 = 0.15 mm, ρ2 = 0 mm, respectively, to calculate the driving/driven gear containing
eccentricity fault state of the Helical gear-rotor-bearing dynamic response; the results are
shown in Figures 14 and 15, respectively. Figure 14a,d shows the vibration time-domain
response of the driven gear containing eccentricity, Figure 14b,e shows the corresponding
spectra, and Figure 14c,f shows the corresponding envelope spectra; Figure 15 shows the
simulation results when there is an eccentricity fault in the driving gear, and the expression
of the meaning of each figure is the same as that of Figure 14.
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From Figure 14a,d, it can be seen that compared with Figure 13a,d, when there is an
eccentricity fault in the driven gear, the time-domain waveforms at the y-direction of the
gear and the bearing show a shock vibration in the shape of a periodic ripple, and the
amplitude of the vibration increases significantly. From the envelope spectra of the gears
and bearings in Figure 14c,f, it can be seen that relative to the vibration response of the
healthy system, the mesh frequency of the gears and bearings in the y-direction of the
system containing the eccentricity fault and its octave on both sides of the system form a
side frequency band, the interval of which is the rotational frequency of the faulty gear
(the driven gear) ∆ f2 = f2 = n2/60 (33.3 Hz). It can be seen that the main frequencies of
the system containing the eccentricity of the driven gear are mainly composed of f2, n fm,
n fm ± m f2 (m, n = 1, 2, 3. . .).

From Figure 15a,d, it can be seen that the faults acting on the active gear show obvious
differences compared to the driven wheel, and the vibration time domain response of the
active gear (large gear) containing eccentricity faults remains almost the same as that of
the normal gear vibration signals, and the amplitude of the vibration remains basically
unchanged. It appears that the effect of the same eccentricity fault parameter on the
vibration response of the active wheel is weaker than that of the driven gear, which is due
to the fact that the diameter of the active gear is much larger than that of the driven gear,
and the change of the center of mass position due to the eccentricity fault is relatively small.
From the corresponding envelope spectrum in Figure 15c,f, it can be seen that due to the
eccentricity fault acting on the active gear, its side frequency is the active gear shaft rotation
frequency ∆ f1 = f1 = n1/60 (8.3 Hz), which is relatively weaker than Figure 14c,f, and its
component of the fault eigenfrequency is relatively weaker. It can be seen that the main
frequencies of the system containing active gear eccentricity are mainly composed of f1,
n fm, n fm ± m f1 (m, n = 1, 2, 3. . .).

It can be seen from the previous analysis that the vibration response of the system
is more sensitive to the eccentric fault of the pinion (driven gear). In order to study the
influence of the eccentric fault on the response of the gear system, this section takes the
driven gear with eccentric fault as the research object and takes the eccentric distance
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ρ1 = 0 mm, ρ2 takes 0 mm, 0.06 mm, 0.12 mm, and 0.18 mm to obtain the response of the
system at different eccentric distances, respectively. The response of the system at different
eccentricity distances is obtained. In this paper, the difference between the vibration
acceleration value in the fault state and the vibration acceleration value in the normal state
is defined as the residual signal denoted by Acc, which reduces the interference of the
transmission error on the crack fault characteristics, and the time domain and envelope
spectra of the residual of the gear vibration acceleration with different eccentricities are
shown in Figure 16.
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Figure 16. y-direction response residual comparison of driving gear, bearing 1.

From Figure 16a,c, it can be seen that with the increase of the eccentricity of the
driven gear, the residual amplitude of the time-domain response of the gears and bearings
is larger, and the vibration is more intense; from Figure 16b,d, the comparison of the
residual envelope spectra, it can be clearly seen that, with the increase of the eccentricity
of the gears and bearings, the amplitude of the main frequencies f2, fm and n fm increase,
while the mesh frequency and its harmonic frequency on both sides of the amplitude of
the sideband frequency of the mesh frequency and its harmonics. The amplitude of the
sideband frequencies also increases, and the fault characteristics become more obvious.

The gear eccentricity fault has an important and significant impact on the time-domain
and frequency-domain response of the system’s vibration. In order to more sensitively
reflect the impact of eccentricity fault degree on the system’s vibration response, statistical
analysis of eccentricity faults is needed. Statistical index analysis of the time-domain signals
of the system under different eccentricity fault parameter states can be used to evaluate the
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degree of eccentricity faults. Take the eccentricity fault of the driven gear from 0.01 mm to
0.36 mm, take a value every 0.02 mm, and solve it. Calculate the kurtosis and root mean
square of the time-domain vibration signal of the gear to evaluate the degree of eccentricity
fault. The calculation process of the above statistical indexes has been described in the
literature [30] and will not be expanded in detail here.

In order to compare the impact of eccentricity on fault characteristics, this article
uses the statistical index percentage method for calculation, and the calculation formula is
shown in Equation (61).

Xi =
Xi f − Xih

Xih
× 100% (61)

In the Equation (61), the subscript f represents the value of the statistical index of the
fault signal, h represents the value of the statistical index of the health signal, Xi(i= 1, 2)
represents the root mean square value and kurtosis of statistical feature quantities, respec-
tively. In order to visibly observe the statistical results, the calculated Xi is normalized, and
the processed Xi is denoted as X1

i , as shown in Equation (62):

X1
i =

Xi − Ximin
Ximax − Ximin

(62)

where Ximax and Ximin are the maximum and minimum values in Xi with different eccen-
tricity, respectively.

The comparison of the sensitivity of different statistical indicators to the degree of
eccentricity is shown in Figure 17.

Mathematics 2024, 12, 1410 25 of 39 
 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
ha

ng
e 

of
 in

di
ca

to
rs

 (%
)

Eccentricity (mm)

 RMS
 kurtosis

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e 

of
 in

di
ca

to
rs

 (%
)

Eccentricity (mm)

 RMS
 kurtosis

 
(a) (b)  

Figure 17. Comparison of sensitivity of different statistical indicators to the degree of eccentricity 
fault. (a) Non-normalized (b) Normalized. 

The trends of normalized and non-normalized crag and rms data are compared, re-
spectively, and the results are shown in Figure 17a,b. Figure 17a shows the trend of the 
statistical characteristics of the original simulated signal, and Figure 17b shows the trend 
of the signal with the increase of the eccentricity of the driven gear in the normalized case. 
As can be seen from Figure 17a, the two indicators have the same trend; both gradually 
increase with the increase of eccentricity level, and when 2ρ  < 0.06 mm when the curve 
of the growth trend is weak, the indicator is almost 0; in this range, the eccentricity of the 
system’s impact on the system can be negligible; and when 2ρ  > 0.06 mm when the un-
normalized and normalized statistical indicators of the trend of the sharp increase (the 
craggy performance is more pronounced). It can be seen that as the eccentricity continues 
to increase, the crag and the root mean square are more sensitive; when the eccentricity is 
in the lower range, the vibration amplitude of the system increases slowly, and when it 
reaches a certain value, it will lead to a significant increase in the vibration amplitude of 
the system. In real life, the existence of gear eccentricity cannot be avoided, but should 
minimize the installation error. To avoid the installation of gears, there is a large amount 
of eccentricity resulting in increased vibration of the system. 
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gear crack depth q = 12.5 mm, crack angle v  = 45°; solve the vibration response of the 
helical gear-rotor-bearing rotating system with a single fault containing tooth root crack; 
the simulation results are shown in Figure 18 (the frequency domain diagram contains the 
local amplification of part of the frequency band). The representations of each figure and 
the parameters in the figures are the same as in Section 4.2.1. 
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varying meshing stiffness has a greater impact on the results of the system response, and 

Figure 17. Comparison of sensitivity of different statistical indicators to the degree of eccentricity
fault. (a) Non-normalized (b) Normalized.

The trends of normalized and non-normalized crag and rms data are compared,
respectively, and the results are shown in Figure 17a,b. Figure 17a shows the trend of the
statistical characteristics of the original simulated signal, and Figure 17b shows the trend of
the signal with the increase of the eccentricity of the driven gear in the normalized case.
As can be seen from Figure 17a, the two indicators have the same trend; both gradually
increase with the increase of eccentricity level, and when ρ2 < 0.06 mm when the curve
of the growth trend is weak, the indicator is almost 0; in this range, the eccentricity of
the system’s impact on the system can be negligible; and when ρ2 > 0.06 mm when the
un-normalized and normalized statistical indicators of the trend of the sharp increase (the
craggy performance is more pronounced). It can be seen that as the eccentricity continues
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to increase, the crag and the root mean square are more sensitive; when the eccentricity
is in the lower range, the vibration amplitude of the system increases slowly, and when
it reaches a certain value, it will lead to a significant increase in the vibration amplitude
of the system. In real life, the existence of gear eccentricity cannot be avoided, but should
minimize the installation error. To avoid the installation of gears, there is a large amount of
eccentricity resulting in increased vibration of the system.

4.2.2. Analysis of Vibration Characteristics of a Single Fault System with Root Cracks

Taking the input speed n1 = 500 r/min; eccentricity ρ1 = ρ2 = 0 mm; Hb = 0 mm;
gear crack depth q = 12.5 mm, crack angle v = 45◦; solve the vibration response of the
helical gear-rotor-bearing rotating system with a single fault containing tooth root crack;
the simulation results are shown in Figure 18 (the frequency domain diagram contains the
local amplification of part of the frequency band). The representations of each figure and
the parameters in the figures are the same as in Section 4.2.1.
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Figure 18. ydirection and torsion time/frequency domain response of crack-containing faulty active
gear and bearing.

From Figure 13a,c, it can be seen that compared with Figure 18a,d, the time domain
waveforms in the y-direction of the gears and bearings have undergone obvious changes,
and the time domain response curves of the crack-containing faults, in addition to the mesh
impacts of the normal gears, also produce more obvious mutation impact response when the
cracked gear teeth are involved in the mesh, and the interval between the two neighboring
bilateral peaks of the impacts is a rotational period of the faulty gears T = 0.12 s. This is
consistent with the decay period interval between two adjacent stiffnesses of a faulty helical
gear with time-varying meshing stiffness. It can be seen that the time-varying meshing
stiffness has a greater impact on the results of the system response, and the tooth root crack
damage characteristics on the vibration signal form were also obtained. As can be seen
from the spectrogram Figure 18b,e, envelope spectrum Figure 18c,f, and local magnification
of the y-direction of the gears and bearings, the active gears and the corresponding bearings
spectrograms and envelope spectra show a modulated side-frequency band centered on the
gear meshing frequency fm and the octave frequency n fm, with the side-frequency intervals
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equal to the rotational frequency of the faulty gears, ∆ f1 = 8.3 Hz, which can be used to
diagnose the cracked root of the gears in the system. In summary, the frequency of systems
with single root crack faults is mainly composed of ∆ f1, n fm ± m f1(m, n = 1, 2, 3. . .).

To investigate the impact of root crack failure on system response, crack depths of
0 mm, 0.5 mm, 1.5 mm, 2.5 mm. . ., and 17.5 mm are taken as different crack levels. The root
mean square, kurtosis, kurtosis factor, shape factor, pulse factor, margin factor, and peak
factor of the system vibration time-domain waveform are calculated for different crack
depths to evaluate the degree of crack failure; the results are shown in Figure 19a,b.
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In order to investigate the impact of crack depth q on the vibration response of the
system, this section takes crack depths of 0 mm, 5 mm, 10 mm, and 15 mm, respectively, to
solve the vibration response of the system under different crack depths. Figure 19 shows
a comparison diagram of the y-direction acceleration residual and the residual envelope
spectrum of the driving gear under different crack depths. As shown in Figure 19a,c, as
the crack depth increases, the sudden impact in the y-direction of the gear becomes more
pronounced. From the locally enlarged images of some frequency bands in Figure 19b,d, it
can be seen that when there is a root crack fault, the amplitude of the sideband frequency
near the meshing frequency fm and its doubling frequency v increases with the increase
of the root crack. The increase in sideband frequency is not significant when the crack
depth is small, but when the crack fault reaches a certain level, its fault characteristics are
extremely obvious.
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As can be seen from Figure 20a, the seven statistical indexes have the same trend of
change; all of them gradually increase with the increase of crack grade, and all of them are
more sensitive to crack failure, but the percentage of each statistical index varies greatly at
different crack depths. From Figure 20a, it can be seen that the margin factor, peak factor,
and pulse factor change most obviously with the crack grade, and the change waveform is
almost the same, which is the most sensitive to the faults, followed by crag and crag factor;
the rest of the indicators also fluctuate near the x-axis is not very obvious. In Figure 20a,b,
it can be clearly seen that the trend of the curve change is weak when the crack depth is less
than 12.5 mm, but the trend of both the un-normalized and normalized statistical indicators
increases sharply when it is greater than 12.5 mm. This is due to the crack depth starting
from the center line of the gear. The deeper the crack is, the greater the stress concentration
of the gear is, resulting in a decrease in bearing capacity. Therefore, the gear crack fault
should be diagnosed in time to avoid the fault extending to the sensitive area and causing
irreparable accidents.
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in Table 4. Due to the fact that several typical fault characteristic frequencies of bearing 1 
in the table are all within (0~100 Hz), and through the analysis of the results in Table 4 of 
this article, it can be seen that the meshing frequency mf  (833.3 Hz) is the dominant fre-
quency; therefore, the envelope spectrum after this section only studies the frequency 
components of the (0~1000 Hz) frequency band. 
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4.2.3. Analysis of Vibration Characteristics of a Single Fault System with Bearing
Outer Ring

After this section, the vibration response of a single-bearing fault system will be
analyzed. The calculation of bearing fault characteristic frequencies can be referred to in
reference [31], and three bearing fault characteristic frequencies can be obtained, as shown
in Table 4. Due to the fact that several typical fault characteristic frequencies of bearing 1 in
the table are all within (0~100 Hz), and through the analysis of the results in Table 4 of this
article, it can be seen that the meshing frequency fm (833.3 Hz) is the dominant frequency;
therefore, the envelope spectrum after this section only studies the frequency components
of the (0~1000 Hz) frequency band.

Table 4. Fault characteristic frequency of bearings.

Parameters Bearing 1/Bearing 2 Bearing 3/Bearing 4

n1/n2 (r/min) 500 2000
fr/Hz 8.33 33.33
fo/Hz 51.85 148.15
fi/Hz 64.81 185.19
fb/Hz 74.07 296.30
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Set the fault parameters of the gears to 0, take the fault width of the bearing outer ring
as 5 mm, and bring the bearing outer ring fault model Equation (47) into Equation (36) to
solve the system vibration response, The vibration response of bearings in the 1-y direction
of a single fault system with an outer ring is shown in Figure 21 (where a shows the
time-domain response of bearings in the 1-y direction acceleration, Figure 21b shows the
time-domain response of bearings in the 1-y direction acceleration residual, Figure 21c
represents the corresponding frequency spectrum, and Figure 21d represents the envelope
spectrum. The corresponding positions in the following figure have the same meaning as
this section).
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Figure 21. Vibration response in the y-direction during a single failure of the outer ring of bearing 1.
(a) Time–domain waveforms of bearings (b) Time–domain waveforms residual diagram of bearings
(c) Spectrum diagram of bearings (d) Envelope spectrum of bearings.

It can be seen from Figure 21a,b that compared with the corresponding health sys-
tem response Figure 21a, when a local fault occurs in the outer ring of the bearing, the
amplitude of the time-domain waveform of the system vibration increases significantly,
and periodic impact vibration occurs. The time interval between the two impact peaks
is To ≈ 4.88337 − 4.90265 ≈ 0.01928 s, which corresponds to the characteristic frequency
fo (1/0.01928) of the bearing outer ring fault, and also proves the accuracy of the model.
From Figure 21c,d, it can be seen that the frequency domain components of the system with
bearing outer ring faults are relatively simple. In addition to the gear meshing frequency
fm, compared to Figure 13e,f, only the fault characteristic frequency fo and its doubling
frequency n fo(n = 1, 2, 3,. . .) of bearing 1 outer ring faults appear. This is due to the fixed
outer ring of the bearing, and it also proves that the model of the nonlinear support force
of the bearing with outer ring faults in this paper is reasonable.
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4.2.4. Analysis of Vibration Characteristics of a Single Fault System of Bearing Inner Ring

The fault parameters of the gear are set to 0, and the fault width of the bearing inner
ring is 5 mm. The fault model Equation (50) of the bearing inner ring is substituted into
Equation (36) to solve the vibration response of the system. The results are shown in
Figure 22. Due to the fact that the failure of the bearing inner ring rotates with the shaft,
the time-domain and frequency-domain responses of its vibration are more complex than
those of a single failure of the bearing outer ring. If the fault is in the loading area, the
vibration and impact generated will be more severe, resulting in higher amplitude. When
the position of the inner ring fault passes through the loading area, its amplitude will
decrease accordingly. By observing the envelope spectrum diagram (Figure 22d), it can
be seen that the main frequency components of the single fault system with inner rings
include not only the gear meshing frequency fm, the bearing inner ring fault characteristic
frequency fi, and the doubling frequency n fi, but also the active shaft rotation frequency
f1 and doubling frequency n f1, and the driven shaft rotation frequency f2. In this case,
the fault frequency of the inner ring is modulated by the rotation frequency (inner ring).
There are also modulation frequency components with intervals of f1 around fm, fi, and n fi,
namely fm ± m f1, n fi ± m f1(n, m = 1, 2, 3,. . .). The values of n and m in the following text
are the same as in this section, and there will be no further explanation. From Figure 22b, it
can be seen that the vibration impact interval is caused by the failure of the bearing outer
ring Ti = 4.65815 − 4.64273 ≈ 0.01543 s, which corresponds to the calculated characteristic
frequency fi(1/0.01543) of the bearing inner ring fault in Table 4. At the same time, since the
rotation of the driving shaft does not affect the location of the bearing inner ring fault, the
impact of the inner ring fault will periodically change with the rotation of the shaft, and the
repeated cycle ∆T = 4.76273 − 4.64273 ≈ 0.12 s is exactly the rotation frequency f1(1/0.12)
of the active shaft, which also proves that the model with inner ring fault is reasonable.
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Figure 22. Vibration response in the y-direction during a single failure of the inner ring of bearing 1.
(a) Time–domain waveforms of bearings (b) Time–domain waveforms residual diagram of bearings
(c) Spectrum diagram of bearings (d) Envelope spectrum of bearings.
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4.2.5. Analysis of Vibration Characteristics of a Single Fault System of Bearing
Rolling Element

The gear fault parameter is set to 0, and the fault width of the bearing rolling element
is set to 5 mm. The fault model Equation (53) of the bearing rolling element is substituted
into Equation (36) to solve the system vibration response. As shown in Figure 23, due to
the fact that the rolling element rotates with the cage and still rotates itself, the time and
frequency domains of its vibration are also complex. When the bearing rolling element
contains defects, it can be seen from the spectrum and envelope spectrum (Figure 23c,d)
that the main frequencies of a single fault system containing rolling elements are the gear
meshing frequency fm, the bearing rolling element fault characteristic frequency fb, and
its higher harmonic frequency n fb. In addition, due to the collision strength of the rolling
element when it contacts the outer ring at the fault location being greater than the collision
with the inner ring, there will also be half-harmonic 0.5 fb (37 Hz) and quarter-harmonic
0.25 fb (18.5 Hz) components of fb. From Figure 23a,b, it can be seen that when a rolling
element fault exists, the system generates significant vibration shocks with an interval time
of Tb = 4.82014 − 4.80664 ≈ 0.0135 s, which corresponds to the characteristic frequency
fb(1/0.0135) of rolling element faults in Table 4, verifying the correctness of the response of
the system with rolling element faults.
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Figure 23. Vibration response in the y-direction when a single fault occurs in the rolling element of
bearing 1. (a) Time–domain waveforms of bearings (b) Time–domain waveforms residual diagram of
bearings (c) Spectrum diagram of bearings (d) Envelope spectrum of bearings.
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4.3. Analysis of Vibration Characteristics of a System with Composite Faults of Gears and Bearings
4.3.1. Vibration Response of a System with Root Cracks and Bearing Outer Ring
Composite Faults

Based on Section 4.2.3, the vibration response of the system is solved by taking the gear
crack depth of 15 mm. The y-direction vibration response of the bearing in the system with
root crack fault and outer ring fault coupling is shown in Figure 24. From Figure 24a,b, it can
be seen that compared to the response of the bearing outer ring single fault system, the time-
domain vibration waveform of the system under coupled fault state becomes more complex.
In addition to exhibiting the fault characteristics of the outer ring of the bearing, the
vibration impact time interval also exhibits the fault characteristic time T = 0.12 s caused by
tooth root cracks, which corresponds to the frequency f1(1/0.12) of the rotating shaft where
the faulty gear is located. This is because the system in the composite fault state combines
the single fault of tooth root cracks and the single fault of the outer ring of the bearing
in terms of vibration characteristics. From Figure 24c,d, it can be seen that in addition to
the gear meshing frequency and the outer ring fault frequency fo, 2 fo, 3 fo . . . of bearing
1, there are also obvious active shaft rotation frequency f1 and its doubling frequency
n f1(n = 1, 2, 3,. . .). Due to the coupling effect of the system, there is also a combination
frequency of gear meshing frequency and bearing fault characteristic frequency fm ± n fo,
and a modulated sideband frequency with an interval of active gear rotation frequency
(∆ f1 = 8.3 Hz) appears around fm and fo. This is formed by modulating the root crack fault
characteristic frequency and bearing outer ring fault characteristic frequency with the shaft
frequency, respectively. In summary, the main frequency components of the system with
tooth root cracks and bearing outer ring coupling faults are fm, n fo, fm ± n fo, n fo − m f1,
and fm − m f1.
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Figure 24. Vibration response of the bearing 1 in the y-direction for the composite failure of root
crack and outer ring. (a) Time–domain waveforms of bearings (b) Time–domain waveforms residual
diagram of bearings (c) Spectrum diagram of bearings (d) Envelope spectrum of bearings.



Mathematics 2024, 12, 1410 30 of 36

4.3.2. Vibration Response of a System with Root Cracks and Bearing Inner Ring
Composite Faults

On the basis of Section 4.2.4, the vibration response in the y-direction of the bearing
in the system with a gear crack depth of 15 mm and coupling of root crack fault and
inner ring fault is shown in Figure 25. By comparing Figures 22 and 25, it can be seen
that under the coupling effect of tooth root crack fault and bearing outer ring fault, the
modulation signal of the system is severe, resulting in more complex time-domain and
frequency-domain responses of the system. From the acceleration residual signal in the 1-y
direction of bearing in Figure 25b, it can be seen that the vibration impact time interval in
the signal not only has the fault characteristics of the bearing inner race but also has the
fault characteristic Ti = 0.12 s caused by tooth root cracks. From Figure 25d, it can be seen
that the main frequency components of the system with composite faults are almost the
same as those of the system with bearing inner ring faults. However, due to the coupling
effect of tooth root crack fault and inner ring fault modulation side frequency, the amplitude
of the side frequency increases, the distribution range widens, and there are many uncertain
combination frequencies.
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Figure 25. Vibration response of the bearing 1 in the y-direction for the composite failure of root
crack and inner ring. (a) Time–domain waveforms of bearings (b) Time–domain waveforms residual
diagram of bearings (c) Spectrum diagram of bearings (d) Envelope spectrum of bearings.

4.3.3. Vibration Response of a Composite Fault System with Root Cracks and Bearing
Rolling Elements

On the basis of Section 4.2.5, the vibration response in the y-direction of the bearing in
the system with a gear crack depth of 15 mm and coupling of root crack fault and rolling
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element fault is shown in Figure 26. When there is a coupling fault, the time interval
between system vibration and impact, the rolling element fault feature Tb = 0.0135, and the
gear crack fault feature T = 0.12 s. From Figure 26d, it can be seen that the main frequencies
of the coupling system with root crack faults and rolling element faults are gear meshing
frequency fm, driving shaft rotation frequency f1, and doubling frequency n f1, driven
shaft rotation frequency f2, combined frequency f2 − f1, bearing rolling element fault
characteristic frequency fb = 74.07 Hz, and its doubling frequency n fb, and the combined
frequency ( fm ± m f1, fm ± m f2, fm ± n fb, n fb ± m f1) formed by the sideband frequency
generated by fault coupling.
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Figure 26. Vibration response of the bearing 1 in the y-direction for the composite failure of root crack,
eccentricity, and bearing rolling body. (a) Time–domain waveforms of bearings (b) Time–domain
waveforms residual diagram of bearings (c) Spectrum diagram of bearings (d) Envelope spectrum
of bearings.

5. Conclusions

In order to study the response of a faulty helical gear-rotor-bearing transmission
system and the influence of fault parameter changes on system response, the theoretical
time-varying meshing stiffness of healthy and faulty helical gears with root cracks was
obtained based on an improved energy method. A dynamic model of a composite fault
helical gear-rotor-bearing transmission system was established considering multiple faults,
and the vibration response of the system to various faults was discussed and analyzed. The
conclusions drawn are as follows:
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(1) Compared with the simulation results of KISSsoft software 2018 version, it was
verified that the theoretical time-varying meshing stiffness of helical gears calculated by the
improved energy method is reasonable and in line with reality. The time-varying meshing
stiffness of the faulty gear solved based on the improved energy method is very close to the
meshing stiffness of the fault-free helical gear simulated based on the KISSsoft method, and
the improvement effect is obvious compared with the simulation results of the unimproved
meshing stiffness;

(2) Under the consideration of internal and external excitations such as time-varying
meshing stiffness of helical gears containing crack faults, nonlinear support force of three
kinds of bearings with typical faults, eccentricity faults of gears, tooth-side clearance,
transmission errors, etc., the dynamics model of the high degree-of-freedom composite
faulty helical gear-rotor-bearing transmission system is established by the centralized
parameter method and the vibration response of the system is solved;

(3) The existence of gear eccentricity and crack single faults will lead to the system
response to generate fault characteristics, with the eccentricity and crack depth increasing
the more obvious fault characteristics; master/slave gears have the same eccentricity fault,
the smaller diameter gears caused by the system vibration is stronger; when the slave
gear eccentricity distance is greater than 0.06 mm, the system time domain response of
the indicators increased significantly. When the crack depth is less than 12.5 mm, the
trend of curve change is weak, but when it is greater than 12.5 mm, the trend of both
non-normalized and normalized statistical indicators increases sharply. This is because the
closer the crack depth is to the centerline of the gear, the greater the stress concentration of
the gear, resulting in a decrease in the gear’s bearing capacity. Therefore, gear crack faults
should be diagnosed in a timely manner to avoid the fault extending to sensitive areas and
causing irreversible accidents;

(4) When there is a single fault in the inner ring, outer ring, and rolling element of the
bearing, the frequency domain response of the bearing in the system will have correspond-
ing fault characteristic frequencies and their multiples. Compared to the corresponding
health system response, when a local fault occurs in the outer ring of the bearing, the
amplitude of the time-domain vibration waveform of the system significantly increases,
and periodic impact vibration is generated. Due to the fact that the failure of the bearing
inner ring rotates with the shaft, the time-domain and frequency-domain responses of its
vibration are more complex than those of a single failure of the bearing outer ring. If the
fault is located in the loading area, the vibration impact generated will be more severe,
resulting in higher amplitude. When the position of the inner ring fault rotates past the
loading area, its amplitude will decrease accordingly;

(5) When tooth root cracks and composite faults occur in the helical gear-rotor-bearing
system, as well as in the inner race, outer race, and rolling element of the bearing, the time-
domain and frequency-domain signal characteristics of the system vibration are obvious.
The time domain includes both periodic pulse impacts caused by gear faults and impacts
caused by bearings, and the fault characteristic frequency can also be found in the frequency
domain. The vibration characteristics of the system with composite faults are significantly
different from those of healthy and single-fault systems. Compared to the response of a
single fault system on the outer ring of a bearing, the time-domain vibration waveform of
the system under coupled fault conditions becomes more complex. The vibration impact
time interval not only shows the fault characteristics of the outer ring of the bearing but
also shows the fault characteristics caused by tooth root cracks. Under the coupling effect
of tooth root crack fault and bearing inner ring fault, the modulation signal of the system is
severe, resulting in more complex time-domain and frequency-domain responses of the
system. The vibration impact time interval in the signal not only exhibits the characteristics
of bearing inner ring faults but also the fault characteristics caused by tooth root cracks.
Due to the coupling effect of tooth root crack faults and inner ring fault modulation edge
frequencies, the amplitude of edge frequencies increases, the distribution range becomes
wider, and many uncertain combination frequencies appear;
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(6) By analyzing the vibration response of the system, the main frequency components
at the bearings of the system under different composite states were obtained. The research
results can provide a reference basis for the theoretical analysis of the vibration charac-
teristics of the helical gear-rotor-bearing system under various fault conditions and also
lay a solid foundation for the simulation of the system with composite fault signals and
subsequent diagnosis.
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Nomenclature

kh Hertz contact stiffness
kb Bending stiffness
ks Shear stiffness
ka Axial compression stiffness
k f Elastic stiffness of matrix
Uh Hertz contact deformation potential energy
Ub Bending deformation potential energy
Us Shear deformation potential energy
Ua Axial deformation potential energy
F The meshing force in the meshing line direction
E Young’s modulus
G Shear modulus
µ Poisson ratio
d The distance from the meshing point to the base circle
h The distance from the meshing point to the centerline of the gear
B Tooth width
Ix The distance of inertia of the tooth from the cross-section at the base circle x
Ax The cross-sectional area of the tooth from the cross-section at the base circle x

hx
The distance from the point at the base circle x from the centerline of the
single tooth of the gear

α1
The angle between the meshing force and the direction of the perpendicular
line of the centerline of the gear

r0 The radius of the root transition curve
α f The root circle pressure angle
q The crack depth
v The crack angle
hc1 The perpendicular distance from the crack tip to the gear centerline
Z1, Z2 Number of teeth
αn Pressure angle
β Spiral angle
mn modulus
m1, m2 The mass of helical gear
J1, J2 The moment of inertia relative to the center of mass
ρ1, ρ2 The eccentricity
rb1, rb2 The base circle radius
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Ft Respectively, the tangential force
Fr Radial force
Fa Rxial force

θd, θ1, θ2, θl
The torsional vibration angular displacement of the input device,
the driving and driven gears, and the load, respectively

G1, G2 The center of mass
O1, O2 The center of rotation

xi, yi, zi
The horizontal, vertical, and axial vibrational displacements of the
driving and driven gears, respectively

e0 The mean value of error
e1 The amplitude of error

vi, vo
The linear velocity of the contact points between the rolling elements and
the inner and outer rings of the bearing

ωi, ω0 Angular velocity of the inner and outer rings of the bearing
Nb The number of bearing rollers
α12 The angle at which the gear is located
db The rolling body diameter of the bearing
d The diameter of the axis
di, do Groove diameters of inner/outer rings of bearings, respectively
dm The pitch diameter of the bearing

A, A′ The distance between the centers of curvature of the grooves of the
inner and outer rings of the bearing before and after loading

α0, α′0 The contact angles before and after loading

P0, P′
0

The position of bearing outer ring raceway curvature center before/after
the force, respectively, because the bearing outer ring is fixed

Pi, P′
i

The position of the center of curvature of the inner ring raceway of
the bearing before/after the force, respectively

δai, δri, θi
The radial deformation, axial deformation, and angular deformation
caused by the force and torque, respectively

Ri The radius of the inner ring raceway curvature center track

δi, δ0, δbi
The contact deformation and total deformation of the inner and outer
channel of the ball bearing, respectively

hd The additional displacement caused by localized bearing failure
A The distance between the initial inner and outer ring channel curvature centers
Kc The Hertzian contact stiffness
H(x) The Heaviside function

Fbx, Fby, Fbz
The component of the nonlinear support force generated by
angular contact ball bearings in three directions

Ldi, Ldo, hdi, hdo The diameter and depth of the inner and outer ring fault areas are represented

∆hdi, ∆hdo
The actual depths at which the rolling element of the bearing falls into
the inner and outer rings of the bearing

θie, θoe Half of the center angles corresponding to the inner and outer fault areas
θid, θod The rotation angles of the center of the damaged area in the inner and outer rings
Rb1 The radius of the rolling element
ωs The rotational speed of the rolling element
ksxi, ksyi, kszi Bending stiffness of the main and driven shafts
kt1, kt2 Torsional stiffness of driven shafts and driven shafts
csxi, csyi, cszi Bending damping of main and driven shafts
ct1, ct2 Torsional damping of the main and driven shafts
cbxi, cbyi, cbzi Damping in the direction of the bearing
Fbxi, Fbyi, Fbzi Nonlinear support force in the direction of the bearing
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