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Abstract: Recent advances in the treatment of gastric cancer (GC) with chemotherapy, immunotherapy,
anti-angiogenic therapy and targeted therapies have yielded some improvement in survival outcomes;
however, metastatic GC remains a lethal malignancy and amongst the leading causes of cancer-
related mortality worldwide. Importantly, the ongoing molecular characterisation of GCs continues
to uncover potentially actionable molecular targets. Among these, aberrant FGFR2-driven signalling,
predominantly arising from FGFR2 amplification, occurs in approximately 3–11% of GCs. However,
whilst several inhibitors of FGFR have been clinically tested to-date, there are currently no approved
FGFR-directed therapies for GC. In this review, we summarise the significance of FGFR2 as an
actionable therapeutic target in GC, examine the recent pre-clinical and clinical data supporting
the use of small-molecule inhibitors, antibody-based therapies, as well as novel approaches such as
proteolysis-targeting chimeras (PROTACs) for targeting FGFR2 in these tumours, and discuss the
ongoing challenges and opportunities associated with their clinical development.
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1. Gastric Cancer Incidence and Current Treatments

Gastric cancer (GC) is the fifth most commonly diagnosed malignancy and the third
leading cause of cancer-related mortality worldwide [1]. In 2020, there were approximately
1.1 million new GC diagnoses, and the disease was responsible for ~769,000 deaths, with
most newly diagnosed cases presenting with metastatic disease. The incidence of GC is two-
fold higher in men than in women and particularly prevalent in eastern Asia and eastern
Europe. Whilst the global incidence of GC has been decreasing, the incidence has been
increasing amongst younger adults (age < 50 years) for reasons not fully understood [1].

1.1. Molecular Subsets of Gastric Cancer

The genomic characterisation of GCs has revealed that these tumours can be subdi-
vided into four molecular subtypes: microsatellite instability (MSI), Epstein–Barr virus
(EBV) positive, chromosomal instability (CIN) and genomically stable (GS) [2,3]. Whilst all
subtypes occur throughout the stomach, the prevalence of CIN tumours is highest in the
proximal stomach (cardia) and gastroesophageal junction (GEJ) (65%) and is less frequent in
the distal stomach (referred to as the “CIN gradient”), while MSI and GS tumours are more
common within the body, fundus and pylorus [2]. Several other means of subclassifying
gastric cancers with prognostic and predictive implications have also been identified by
integrating genetic changes with transcriptomic and epigenetic data [3–6], in what is a
continually evolving landscape.

Biomedicines 2024, 12, 1117. https://doi.org/10.3390/biomedicines12051117 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12051117
https://doi.org/10.3390/biomedicines12051117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-9123-7684
https://doi.org/10.3390/biomedicines12051117
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12051117?type=check_update&version=1


Biomedicines 2024, 12, 1117 2 of 19

1.2. Current Treatments for Metastatic Gastric Cancer

In the metastatic setting, cytotoxic chemotherapy is the current standard of care treatment for
GC, where patients treated with combination regimens of platinum and fluoropyrimidine-based
treatments have a median overall survival of 10–13 months [7,8]. In 2021, the CHECKMATE
649 trial showed that the addition of the anti-PD1 antibody nivolumab to fluoropyrimidine
and platinum-containing chemotherapy further improved the overall survival compared to
chemotherapy alone (13.6 vs. 11.8 months, HR 0.70 95% CI 0.61–0.81), and was FDA-approved for
all GC patients [8]. Microsatellite instability high (MSI-H) status occurs in ~3% of GCs and was
found to be a sub-group with long term responses to anti-PD1 therapy in the CHECKMATE 649
trial (38.7 months vs. 12.3 months) [8].

Other molecular subsets include HER2-amplified/expressing tumours, which account
for ~22% of all cases [9], for which treatment with the HER2-directed monoclonal antibody
trastuzumab (in combination with chemotherapy), and more recently the antibody–drug con-
jugate fam-trastuzumab deruxtecan-nxki, is clinically approved [9,10]. Additional approved
treatments include the anti-angiogenic therapy ramucirumab, which is approved for use as
second-line therapy either in combination with paclitaxel or as monotherapy [11,12].

With regards to emerging treatment targets, Claudin 18.2 is overexpressed in ~42% of
HER2-negative gastric cancers. Zolbetuximab, a monoclonal antibody targeting Claudin
18.2 has recently been shown to prolong progression-free survival when combined with
first-line chemotherapy (10.61 versus 8.67 months, HR 0.75, 95% CI 0.60–0.94; p = 0.0053),
and regulatory approval of zolbetuximab is currently pending [13].

Despite these treatment advances, there are several molecular subsets of GC for which
there are currently no targeted treatment options, and where there is a clear need to develop
new treatments in order to improve outcomes.

Fibroblast growth factor receptor 2 (FGFR2) is an important oncogenic driver of a
subset of GCs, and FGFR2 targeting represents a significant treatment opportunity for
patients harboring these tumours. However, despite decades of therapeutic develop-
ment, there are currently no FGFR2-targeted therapies approved for GC. Nevertheless,
recent clinical trials have shown encouraging signs of clinical activity for FGFR-targeting
small-molecule inhibitors in subsets of FGFR2-amplified cases (discussed below), while
FGFR2-targeting biologics have also shown promising clinical activity and are currently
being evaluated in phase III studies in combination with chemotherapy and immunother-
apy. Excitingly, several new strategies for targeting FGFR2 are also beginning to emerge.
Herein, we critically review the pre-clinical and clinical research undertaken to date to
target FGFR2, and outline the challenges and emerging strategies for improved targeting of
these tumours and advancing these agents into routine clinical use.

2. FGFR Signalling

Fibroblast growth factor receptors (FGFRs) are a family of five transmembrane re-
ceptor tyrosine kinases (FGFR1–5) [14]. FGFR1, FGFR2, FGFR3 and FGFR4 comprise of
three extracellular immunoglobulin (Ig)-like domains (Ig1-IgIII), a hydrophobic transmem-
brane segment and a cytoplasmic split tyrosine kinase domain. Comparatively, FGFR5
(FGFRL1) lacks an intracellular tyrosine kinase domain and may have an inhibitory role in
FGFR signalling by acting as a decoy receptor for fibroblast growth factor (FGF) ligands,
sequestering them from binding to FGFRs 1–4 [15].

In addition to the FGFRs, there are 18 mammalian FGFs, which are the natural ligands
of these receptors, which, upon binding to an FGFR monomer at the IgII and IgIII region
cause receptor dimerization. FGFs can be divided into five paracrine (FGF1, 4, 7, 8 and 9)
and one endocrine (FGF19) subfamilies and bind to either a single or multiple FGFRs [16].
The binding of paracrine FGFs requires the cofactor heparan sulfate proteoglycan (HSPG),
while Klotho proteins (α-Klotho/β-Klotho) are the cofactors required for binding of the
endocrine FGFs [17]. Ligand-induced FGFR dimerization results in the phosphorylation
of tyrosine residues (e.g., Y463, Y583, Y585, Y653, Y654, Y730 and Y776) within the intra-
cellular tyrosine kinase domain, which are highly conserved between mammalian FGFR1
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and FGFR2. Phosphorylated Y653 and Y654 act as allosteric regulators of kinase activity,
while Y463, Y583, Y585, Y730 and Y776 act as docking sites for Src-homology 2 (SH2) do-
main proteins, which consequently activate downstream signalling pathways [18,19]. For
example, fibroblast receptor substrate 2α (FRS2α) attachment to a phosphotyrosine residue
triggers the recruitment of son of sevenless (SOS) and growth factor receptor-bound pro-
tein 2 (GRB2), consequently activating the RAS/MAPK and the PI3K signalling pathways,
respectively. Other signalling pathways activated via FGFRs include the PLCγ/DAG/PKC
and JAK/STAT (Figure 1).
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Figure 1. Schematic diagram of the four major FGFR signalling pathways and location of binding sites
for FGFR-targeting agents. FGFR 1–4 monomers are comprised of an extracellular region with three
immunoglobulin-like domains, a transmembrane domain, and an intracellular region containing two
tyrosine kinase domains. FGF binding to FGFR (which is stabilised by HSPG) triggers receptor dimer-
ization and FRS2α phosphorylation. Phosphorylated FRS2α is then able to recruit SOS and GRB2,
which initiates the RAS/MAPK and PI3K/AKT/mTOR signalling pathways. Additional signalling
pathways initiated by FGFR activation include JAK/STAT and PLCγ/DAG/PKC. FGFR-targeting
agents, including small-molecule FGFR inhibitors and FGFR-targeting monoclonal antibodies, bind
to the tyrosine kinase domain and the immunoglobulin domain of FGFR, respectively, to inhibit
downstream signalling output. Abbreviations: FGF—fibroblast growth factor, FGFR—fibroblast
growth factor receptor, FGFRi: fibroblast growth factor receptor inhibitor.



Biomedicines 2024, 12, 1117 4 of 19

FGFR signalling pathways are also negatively regulated by a number of proteins
including the FGF synexpression protein Sef (similar expression to FGF), a transmembrane
protein that directly interacts with FGFR, and Sprouty proteins, which attenuate FGFR
signalling by inhibiting GRB2 [16].

Alternative splicing of FGFRs 1–3 adds an additional layer of regulation to FGFR
signalling. Specifically, alternate splicing of exons 8 and 9 in FGFRs 1–3 gives rise to tissue-
specific alternate IgIII extracellular domain binding regions (IIIb in epithelial tissues from
exon 8, and IIIc in mesenchymal tissues from exon 9), which are essential in determining
FGF binding specificities [20,21]. FGFR4 lacks this alternative exon and therefore does not
produce splice variants [22]. The range of FGF ligands and FGFR receptors results in highly
regulated signalling in different physiological contexts [21].

3. Aberrant FGFR Signalling in Gastric Cancer

Dysregulation of the FGF/FGFR signalling pathway in GCs arises primarily through
FGFR gene amplification, FGFR gain-of-function mutations, gene rearrangements, and
alternative splicing events, which alter ligand binding, or through a combination of these
aberrations [23].

3.1. FGFR2 Amplifications, Fusions and Mutations in GC

FGFR2 gene amplifications, which result in receptor overexpression and constitu-
tive oncogenic signalling independent of ligand binding, are the most common form of
genetically-driven FGFR2 dysregulation in GC, occurring in 4–7% of all patients [24–29].
This varies according to patient ethnicity, with a large international study of resected GCs
that determined FGFR2 amplification status by FGFR2 FISH (FGFR2/CEP10 ratio < 2),
reporting a prevalence of 7.4%, 4.6% and 4.2%, amongst patients from the UK, China and
Korea, respectively [27].

In the cancer genome atlas (TCGA) patient cohort, FGFR2-amplified GCs were most
frequently associated with the CIN (8%) and GS (9%) molecular subtypes [3]. Furthermore,
FGFR2-amplified GCs are more likely to be of high tumour grade [30], and of diffuse-type
histology [27,31,32], and several studies have associated FGFR2 amplification status with
poorer survival outcomes. For example, in studies of resected GC cases across all stages,
FGFR2 amplification was more likely to be associated with lymph node and distant metas-
tasis, and poorer overall survival [27,31,33]. A similar association has also been observed in
patients with metastatic GC treated with chemotherapy, where FGFR2 amplification status
was associated with poorer overall survival [27,30,33].

FGFR2 gene fusions, resulting from chromosomal translocations, occur in 0.5–3%
of GCs, although FGFR2 is the most frequently perturbed among FGFR family mem-
bers [28,29,34,35]. FGFR2 fusion partners reported to date in GC include TACC2, INPP5F,
WDR11 and BTBD16, and in most cases, these tumours harboured concurrent FGFR2 gene
amplification [28,34,35]. Notably, both the FGFR2 amplification and fusion events observed
in GC often result in truncation of exon 18 (E18), and loss of the C-terminus of the FGFR2
kinase domain. This region plays an important role in the negative regulation of FGFR2,
which may explain how these alterations confer oncogenic activity [36,37].

Finally, somatic FGFR2 mutations have been reported in 0.5–3% of GCs [29,34,38–40],
including the known hotspot mutations C382R and N549K, which affect the transmembrane
domain and tyrosine kinase domain of the receptor, respectively [29,38–41].

3.2. Alternate Splicing of FGFR2

As described above, alternate splicing of FGFR2 is an additional mechanism of
FGFR2-driven signalling regulation, as the alternatively spliced FGFR2 isoforms have
different ligand binding affinities. FGFR2-IIIb (FGFR2b) is the predominant FGFR2 isoform
expressed in epithelial tissues and has strong affinity for FGFs 1, 3, 7, 10 and 22, while
FGFR2-IIIc (FGFR2c) is predominantly expressed in mesenchymal tissues and has high
affinity for FGFs 1–2, -4, -6, -8, -9 -17 and -18 [42].
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Using FGFR2b isoform-specific antibodies, several studies have demonstrated that
FGFR2b overexpression assessed by immunohistochemistry correlates with FGFR2 am-
plification, indicating that it is the predominant isoform expressed in these tumours, and
also suggesting that it could be used as a cost-effective screening test to detect FGFR2
amplification [43,44]. As expected, FGFR2b overexpression assessed in this manner was
also associated with poorer survival [43,44]. Using novel antibodies that specifically detect
the FGFR2b and FGFR2c isoforms, a recent study further confirmed that epithelial-specific
FGFR2b is the predominant isoform overexpressed in GCs (4.5% of cases) [42], but also
identified a small subset of GCs (0.7%), which over-express FGFR2c [42]. These tumours all
also overexpressed FGFR2b, albeit in different tumour cells. Notably, although sample sizes
were small, dual FGFR2b/c expressing GCs had a significantly poorer outcome compared
to GCs that only overexpressed FGFR2b, which may be due to the expanded repertoire of
FGFs capable of activating FGFR2 in these tumours [22].

3.3. FGFR2 Overexpression

Other immunohistochemistry-based studies that have examined the overall frequency
of FGFR2 expression or overexpression in GC relative to normal gastric mucosa, have
reported expression ranges between ~30% [45–48] to as high as 61% of tumours [49]. This
may reflect differences in the antibodies used, or the method of scoring FGFR2 staining
intensity. Nevertheless, high FGFR2 expression assessed by these methods was reported
to be associated with more aggressive clinical features including tumour depth, lymph
node and distant metastases [49,50], and worse overall survival in patients with primary
gastric [47] and GEJ cancers [49,50]. Conversely, the predictive capacity of FGFR2 expres-
sion on chemotherapy benefit remains uncertain, with a recent report demonstrating no
relationship between FGFR2 expression and first-line cytotoxic chemotherapy response
rates [51], whereas other studies suggest that high FGFR2 expression may predict resistance
to anti-HER2 therapies [52]. Importantly, our understanding of the associations between
different levels of FGFR2 expression and the response to FGFR-targeted therapies contin-
ues to evolve. The establishment of standardized staining and scoring methods, possibly
informed by parallel genomic analyses, is required if FGFR2 immunostaining is to be
incorporated into routine clinical use as a companion diagnostic for predicting response to
FGFR2-targeted therapies (discussed further below).

4. Therapeutic Targeting of FGFR2 Using Small-Molecule Inhibitors
4.1. Small-Molecule Multi-Kinase Inhibitors

Several small-molecule multi-kinase inhibitors have been developed over the past two
decades, primarily as anti-angiogenic agents, which inhibit a range of kinases including VEGFR,
PDGFR, FLT3, RET, KIT and BCR-ABL. These include foretinib [53], cediranib (AZD2171) [54],
ponatinib [55], sorafenib [56], sunitinib [57], pazopanib [58], nintedanib [59], lenvatinib [60],
sulfatinib [61], dovitinib [62], lucitanib [63], SOMCL-085 [64], derazantinib [65], ODM-203 [66]
and regorafenib [67] (Table 1). Consistent with the similarity of the bi-lobed structure of the
FGFR protein kinase domain to that of all other protein kinases, these compounds also have
FGFR inhibitory activity [55,56,59,68,69], albeit at modestly higher concentrations to which
they inhibit VEGFR and PDGFR.

Table 1. List of FGFR2-targeting therapeutics by mode of action.

Multikinase
Inhibitors

Pan-FGFR
Inhibitors

FGFR2
Inhibitor(s)

Monoclonal
Antibodies

Antibody Drug
Conjugates

Cediranib Erdafitninb Lirafugratinib GP369 BAY 1187982

Ponatinib Infigratinib GAL-FR21 BAY 1179470

Pazopanib Pemigatinib PRO-007 BAY 2304058

Dovitinib Ch5183284 Bemaritzumab
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Table 1. Cont.

Multikinase
Inhibitors

Pan-FGFR
Inhibitors

FGFR2
Inhibitor(s)

Monoclonal
Antibodies

Antibody Drug
Conjugates

Sunitinib AZD4547 GAL-FR21

SOMCL-085 LY2874455 GAL-FR22

Derazantinib E7090 GAL-FR23

ODM-203 FIIN-1

Regorafenib PRN-1371

Futibatinib

Alofanib

Consistent with their capacity to inhibit FGFR activity, several of these compounds, includ-
ing cedirinib [69], pazopanib [58], ponatinib [68], dovitinib [55], sunitinib [57], SOMCL-085 [64],
derazantinib [65], ODM-203 [66] and regorafenib [67] have been shown to effectively inhibit
FGFR signalling, and to preferentially inhibit the proliferation of FGFR-altered GC cell lines
over non-altered lines at clinically relevant concentrations [70–72].

However, whilst some of these inhibitors have demonstrated promising clinical activity in
GC, there is currently insufficient evidence to suggest whether FGFR2 inhibition also contributes
to their clinical efficacy. For instance, in the phase II INTEGRATE trial, which randomised
152 patients with treatment refractory metastatic GC to receive regorafenib or placebo [73],
the overexpression of FGFRs 1–4 assessed by IHC was not associated with clinical benefit or
objective response [74]. Similarly, in a single arm phase II study of nintedanib in patients with
refractory oesophago-gastric cancers, 6 of 32 patients (19%) were progression-free at 6 months,
however, FGFR2 alterations (which were detected in 18% of patients), were not predictive of
progression-free survival (PFS) [75]. By contrast, FGFR2-expressing GC had a higher response
rate and longer survival from combination treatment with pazopanib plus chemotherapy.
Similarly, in a single arm phase II trial, patients with tumours overexpressing FGFR2 assessed
by immunohistochemistry (13%) had a prolonged median PFS (8.5 vs. 5.6 months; p = 0.050),
a higher response rate (87% vs. 69.5%), and a trend towards a prolonged overall survival
(13.2 vs. 11.4 months; p = 0.055) [76]. Finally, the GASDOVI-1 clinical trial of dovitinib in
FGFR2-amplified GC was completed several years ago, however, the results have not yet been
reported (NCT01719549). Additional studies are therefore still needed to establish whether
FGFR2-amplified/overexpressing cases derive greater benefit from multi-kinase inhibitors.

4.2. Small-Molecule Pan-FGFR Inhibitors

Several orally bioavailable pan-FGFR small-molecule inhibitors with specificity for the
FGFR 1–4 kinase domain have also been developed. These include non-covalent pan-FGFR
inhibitors (e.g., erdafitinib/JNJ-42756493, infigratinib/BGJ398, pemigatinib/INCB054828,
AZD4547, CH5183284, LY2874455, E7090), irreversible covalent FGFR inhibitors (e.g., FIIN-1,
PRN-1371, futibatinib/TAS-120), FGFR extracellular domain allosteric inhibitors (e.g., alofanib)
and more recently, FGFR2-selective inhibitors (e.g., RLY-4008, further discussed below). Of
these, only erdafitinib, futibatinib and pemigatinib are FDA-approved for the treatment of
FGFR-altered bladder cancer and cholangiocarcinoma [77,78], with none approved for the
treatment of GC.

Nevertheless, several of these compounds have been shown to inhibit FGFR signalling
and to inhibit the growth of FGFR-altered GC cell lines in vitro and in vivo in pre-clinical
studies, including AZD4547 [79], infigratinib [67,80], erdafitinib [67,81], futibatinib [67,82],
pemigatinib [83], LY2874455 [84] and E7090 [85]. Unsurprisingly, early phase trials of these
compounds in unselected GC patients demonstrated only limited clinical benefit. For
example, in a phase I study of the oral pan-FGFR inhibitor LY2874455, of 15 GC patients
evaluated for efficacy, only one patient had a partial response, and the patient’s tumour
was not FGFR2 amplified [86]. Similarly, in a phase Ib study of the FGFR extracellular
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allosteric inhibitor alofanib in 21 heavily pre-treated molecularly unselected GC patients,
there was only one partial response [87].

However, subsequent trials in selected patients with FGFR gene aberrations have
also been largely disappointing (further discussed in Section 6). For example, in a phase I
study of futibatinib, two partial responses were observed in a cohort of 9 patients with GC,
only one of whom had an FGFR2 amplification and the other a FGFR3–TACC3 fusion [88].
The randomised phase II SHINE trial also failed to report a clinical benefit for treating
GC patients with FGFR2 amplification or polysomy with the FGFR inhibitor AZD4547. The
study screened 960 patients with GC for FGFR2 amplification or polysomy, and eligible
patients (n = 71) were randomised to receive AZD4547 (amplified n = 18, polysomy n = 20)
or paclitaxel chemotherapy (amplified n = 15, polysomy n = 15, n = 30). The trial failed
to meet its primary endpoint of PFS, with a median PFS of 1.8 months and 3.5 months in
the AZD4547 and paclitaxel arms, respectively (HR 1.31, 80% CI 0.89–1.95). The objective
response rate (ORR) was 2.6% with AZD4547 and 23.3% in the paclitaxel arm. The lack of
enrichment of high-level FGFR2-amplified tumours in this study may have contributed to
the lack of response to AZD4547 [89].

Nevertheless, several trials involving multi-kinase or pan-FGFR kinase inhibitors are
currently ongoing in patients with FGFR2-altered tumours including GCs. These include the
multi-kinase inhibitor derazantinib, which is currently being tested as monotherapy as well as
in combination with anti-PD-1 or chemotherapy in FGFR2-altered GC (NCT04604132), and
anlotinib, which is currently being tested in combination with chemotherapy in patients with
metastatic GC (ChiCTR1900026291). Trials of the irreversible covalent binding FGFR inhibitors
futibatinib (TAS-120, NCT04189445) and infigratinib (NCT05019794) for FGFR 1–4-rearranged
solid tumours and FGFR2-amplified GC are also currently ongoing (Table 2).

Table 2. Trials in progress of FGFR-targeted therapy in gastro-oesophageal cancer. Abbreviations:
mFOLFOX6—5-fluorouracil, folinic acid, oxaliplatin.

Name
Clinicaltrials.gov Phase Design FGFR Targeting Target

Recruitment

FIDES-3
NCT04604132 Ib/II

Derazantinib
vs.

Derazantinib-paclitaxel-
ramucirumab

vs.
Derazantinib-atezolizumab

vs.
Paclitaxel-ramucirumab

FGFR2 fu-
sions/rearrangements/
amplifications; FGFR1,

FGFR2, or FGFR3
mutations/short

variants

254 (47 actual)

FORTITUDE-102
NCT05111626 Ib/III

Placebo with mFOLFOX6
and Nivolumab

vs.
Bemarituzumab with

mFOLFOX6 and Nivolumab

FGFR2b overexpression 528

FORTITUDE-101
NCT05052801 III

Bemarituzumab with
mFOLFOX6

vs.
Placebo with mFOLFOX6

FGFR2b overexpression 516

NCT02699606 IIa Erdafinitib FGFR mutations,
translocations, other 90 (actual 35)

NCT05019794 II Infigratinib FGFR2 amplification 80

NCT04189445 II Futibatinib FGFR2 amplification 115 (actual 115)

NCT04526106 I/II Lirafugratinib (RLY-4008)
FGFR2 fusion,
mutation, or
amplification

550
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4.3. FGFR2-Specific Inhibitors

An exciting recent study from Relay Therapeutics described the development of li-
rafugratinib (RLY-4008), a highly selective, irreversible FGFR2 kinase domain inhibitor
with >250- and >5000-fold selectivity for FGFR2 over FGFR1 and FGFR4 [90–92], devel-
oped by exploiting differences in the conformational dynamics between FGFR2 and other
FGFRs. In pre-clinical studies, lirafugratinib inhibited FGFR2 phosphorylation, down-
stream signalling and proliferation of FGFR2-amplified SNU-16 GC cells in vitro and
in vivo, and notably induced significantly less hyperphosphatemia compared to pan-FGFR
inhibitors [90]. Intriguingly, lirafugratinib was also able to suppress signalling and tumour
growth induced by common FGFR2 kinase domain mutations associated with acquired
resistance to pan-FGFR inhibitor treatment in cholangiocarcinoma patients such as the
FGFR2V564F gatekeeper mutation.

Lirafugratinib is currently being clinically tested in a phase I/II tumour agnostic study
of patients with FGFR2 alterations (ReFocus trial), comprising a dose escalation, dose
expansion and extension phase (NCT04526106) (Table 2). Recent data presented in abstract
form [93] from the Phase I/2 ReFocus trial reported on the efficacy in 98 patients with
FGFR2-altered solid tumours including GC patients (n = 22). Responses were observed
in eight tumour types including GC where the ORR was 18% and the disease control rate
(DCR) was 64%. The drug was reported to have a manageable toxicity profile including
fewer off-isoform effects including hyperphosphatemia (discussed below).

5. Factors Limiting Response to Small-Molecule FGFR2-Targeted Therapies in GC

Inherent, adaptive and acquired resistance to small-molecule FGFR inhibitors is cur-
rently the major challenge limiting the clinical progress of these agents, and which needs to
be overcome to enable the clinical progression of these treatments. In addition, toxicities
associated with the use of small-molecule FGFR inhibitors represent a further clinical
challenge. The various modes of resistance described to date and the toxicities associated
with small-molecule FGFR inhibitors are discussed below.

5.1. Tumour Expression of FGFR2

One emergent theme from the clinical studies undertaken to date is that homogeneous,
high-level FGFR2 amplification may be predictive of the response of GCs to small-molecule
FGFR inhibitors. For example, in the phase I study of the pan-FGFR inhibitor E7090 in
patients with advanced solid tumours, the sole partial response observed was in a GC
patient harboring a high-level FGFR2 amplification (copy number 51) [93]. Similarly, in a
single-institution translational study of 9 patients with FGFR2-amplified GC treated with
the pan-FGFR inhibitor AZD4547, of the 3 patients who achieved an objective response
(33.3%), all had homogenous, high-level FGFR2 amplification [94].

These findings suggest that the criteria used to assess likelihood of response to small
molecule FGFR2 inhibitors needs to be further developed, and assessment of FGFR2
protein overexpression by IHC alone may not be sufficient. This is further underscored
by the extensive intratumoural heterogeneity in FGFR2b protein expression in GCs (55.5%
of cases) [44], discordance in FGFR2 protein expression between primary and matched
metastatic lymph node samples (28% of cases) [44], and the high false negative rates of
detecting FGFR2 overexpression in a single tumour biopsy (up to 40% of cases), requiring
increasing the number of diagnostic biopsies [95].

One possible strategy for more successfully predicting the response to FGFR2 in-
hibitors could be the use of circulating tumour DNA (ctDNA) technology [96]. For instance,
the Japanese GI-SCREEN and GOZILA molecular profiling studies revealed that FGFR2
amplification in patients with advanced GC was more frequently detected by ctDNA se-
quencing (7.7% of cases) compared to by tissue analysis alone (2.6–4.4% of cases), and
notably 2 patients with FGFR2 amplification detected by ctDNA sequencing after tumour
progression but not by tissue analysis of the pre-treatment sample had responses to FGFR
inhibitors [97].
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5.2. Co-Occurrence of Other Oncogenic Drivers

Genomic profiling studies have revealed that approximately 20% of GCs harbouring
FGFR2 alterations (amplifications, mutations, fusions) also contained genetic alterations in
either MYC (17%), KRAS (10%), HER2 (10%), EGFR (8%), PI3K (6%) or MET (3%), which
could potentially impact the sensitivity to FGFR inhibition [37,98]. Notably, synergis-
tic anti-tumour activity was observed in an FGFR2-amplified and MET overexpressing
GC patient-derived xenograft (PDX) model treated with the FGFR inhibitor AZD4547 and
the MET inhibitor crizotinib, confirming the capacity of MET to confer at least partial
resistance to FGFR inhibition [99].

A kinome-wide CRISPR/Cas9 screen of FGFR2-amplified SNU-16 and Kato III cells
also identified a number of additional regulators of sensitivity to FGFR inhibition including
kinases involved in the ILK, SRC and EGFR signalling [100]. Providing functional vali-
dation of these targets, combination treatment of an FGFR inhibitor and either an EGFR
inhibitor (lapatinib) or an ILK inhibitor (Cpd22) synergistically inhibited the proliferation
of FGFR2-altered GC cell lines [100]; however, whether these factors drive resistance in a
clinical context remains to be demonstrated.

Finally, mutations in TP53 have been associated with resistance to FGFR inhibitors
in several tumour types [101] but have not yet been carefully examined in GC. Given
TP53 mutations are a common event in GC, including ~50% of FGFR2-amplified cases, this
would be an important biomarker to assess in ongoing clinical trials [101].

5.3. Adaptive Resistance to Small-Molecule FGFR Inhibition

The capacity of FGFR2-amplified GC lines to rapidly develop resistance to FGFR
inhibition has also been demonstrated in pre-clinical models. For example, research from
our own laboratory demonstrated that MAPK signalling (pERK1/2) is reactivated within
24–72 h of FGFR inhibitor treatment of FGFR2-amplified GC cell lines in vitro [74]. Im-
portantly, this could be overcome by combination treatment with the clinically approved
MEK inhibitor trametinib, revealing a potential strategy for enhancing the efficacy of these
treatments [74].

5.4. Acquired Resistance to Small-Molecule FGFR Inhibition in GC

Several studies have also generated models of acquired resistance to FGFR inhibitors
by continuous culture of FGFR2-amplified GC cell lines in the presence of FGFR inhibitors.
For example, Grygielewicz et al. [102] generated FGFR-inhibitor-resistant derivatives of
FGFR2-amplified SNU-16 cells by continuously culturing cells with increasing concentra-
tions of the FGFR inhibitors AZD4547, BGJ398 or PD173074 for 1 month. Molecular charac-
terization of the resistant line revealed a robust induction of an epithelial-to-mesenchymal
transition (EMT), evidenced by increased vimentin and decreased E-Cadherin expres-
sion, and upregulation of multiple signalling pathways, including ERK/MAPK, STAT3,
TGFb/SMAD and PI3K/AKT [102]. Lee et al. confirmed the induction of EMT in a follow-
up study by generating a similar model of FGFR-inhibitor-resistant SNU-16 cells [103], and
further demonstrated that the induction of EMT was driven by the increased expression of
EphB3, as EMT could be reversed, and resistant cells rendered sensitive to EphB3 inhibitor
treatment [103].

Likewise, Lau et al. established and cultured a novel FGFR2-amplified GC PDX model
with the FGFR inhibitor AZD4547 over 14 weeks in vivo [104]. Mechanistically, the authors
demonstrated that AZD4547 failed to induce the dephosphorylation of GSK3β in resistant
cells, thus preventing its conversion to its active tumour-suppressive state. Notably, GSK3β
is a known substrate of PKC and the authors showed that resistance could be overcome by
combination treatment of an FGFR inhibitor and the PKC inhibitor H7 [104].

Finally, with regards to mechanisms of genetically-driven acquired resistance, gatekeeper
mutations that impair drug binding in the ATP-binding pocket of the FGFR kinase domain
have been documented in FGFR2 fusion-positive cholangiocarcinoma [105] and FGFR3 fusion-
positive urothelial cancer patients treated with FGFR inhibitors [106]. While the emergence
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of these mutations has yet to be clinically documented in FGFR2-driven GCs treated with
FGFR inhibitors, a preclinical study did report the emergence of an FGFR2–V565F gatekeeper
mutation in an FGFR2-amplified GC xenograft model continuously treated with an FGFR
inhibitor in vitro [104].

Other genetic alterations identified in FGFR-inhibitor-resistant GC clones include
a JHDM1D–BRAF fusion, which was observed in a pre-clinical model of acquired resis-
tance [107], while a recent clinical study reported the emergence of an FGFR2–ACSL5 fusion
upon progression in a patient with FGFR2-amplified GC treated with the FGFR inhibitor
LY2874455 [108]. The mechanisms by which these fusion events confer resistance to FGFR
inhibitors, and strategies to overcome emergence of these clones, remain to be determined.

5.5. Toxicities Associated with Small-Molecule FGFR Inhibitors

A further limitation of pan-FGFR inhibitors is treatment-associated toxicities. These
include hyperphosphatemia, which is observed in >50% of patients in phase II clinical trials
and attributed to FGFR1 inhibition; and diarrhea, which occurs in 15–35% of patients and
is attributed to FGFR4 inhibition [90]. FGFR2-selective inhibitors including lirafugratinib
discussed above, and FGFR2-targeting antibodies discussed below, have the potential to
circumvent these toxicities by enabling more targeted FGFR2 inhibition.

6. FGFR2-Targeting Monoclonal Antibodies

An additional class of emerging FGFR2-targeting therapeutics are monoclonal an-
tibodies targeting the extracellular domain of FGFR2-IIIb (FGFR2b), thereby preventing
ligand binding. Monoclonal antibodies can be advantageous due their high specificity for
molecular targets and potential to induce additional anti-tumour effects such as antibody-
dependent cell-mediated toxicity (ADCC) [109], and a number of FGFR2-targeting anti-
bodies (e.g., GP369, GAL-FR21, PRO-007 and bemarituzumab) have shown efficacy in
pre-clinical models of FGFR2-amplified GC.

Almost a decade ago, GP369 was shown to effectively inhibit FGF7-ligand-induced FGFR2
phosphorylation, MAPK signalling and proliferation of FGFR2-amplified SNU-16 GC cells
in vitro, and to inhibit their growth in vivo [110]. Likewise, Galaxy Biotech developed a series
of FGFR2-targeting mAb’s (GAL-FR21, GAL-FR22 and GAL-FR23), of which GAL-FR21 was
shown to selectively bind the FGFR2-IIIb isoform, block the binding and phosphorylation of
FGFR2 by its ligands FGF2, FGF7 and FGF10 in SNU-16 cells, and inhibit the growth of FGFR2-
amplified GC cell lines (SNU-16, OCUM-2) in xenograft models [111]. However, neither of these
agents have progressed into the clinic. Similarly, the FGFR2-targeting mAb PRO-007 reduced
proliferation, invasiveness and MAPK signalling in FGFR2-amplified Kato III GC cells in vitro;
however, details regarding its FGFR2 isoform specificity and ability to inhibit FGF-induced
FGFR2 stimulation were not provided [112].

More recently, Amgen has developed and commenced clinical testing of bemar-
ituzumab (FPA144), a humanized IgG1 monoclonal antibody targeting FGFR2-IIIb, which
has also been glycoengineered (afucosylated) to enhance antibody-dependent cell-mediated
cytotoxicity (ADCC) against FGFR2-IIIb-expressing tumour cells. In preclinical studies,
bemarituzumab inhibited FGF7-induced FGFR2 phosphorylation and the proliferation
of SNU-16 cells in vitro and attenuated growth of the FGFR2-amplified GC xenografts
OCUM-2M and SNU-16 in vivo. The enhanced ADCC activity of bemarituzumab was
also demonstrated by its >20-fold higher affinity for human FcγRIIIa compared to a fuco-
sylated version of the antibody (FPA-144F), and its capacity (but not an ADCC-deficient
version, bemaritzumab-N297Q) to suppress tumour growth and increase the recruitment
of NK cells into the tumour microenvironment in a syngeneic mammary tumour model.
Bemarituzumab also augmented antitumour responses in mammary tumour cells when
combined with anti-PD1 antibodies, and in SNU-16 cells when combined with chemother-
apy, suggesting it may also enhance the efficacy of existing treatments [113].

Based on these pre-clinical findings, the clinical efficacy of bemarituzumab was initially
assessed in a phase I study of pre-treated patients with gastric or GEJ adenocarcinoma. Amongst
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the 28 patients with FGFR2 amplification, five patients (17.9%) achieved a partial response and
13 patients (46.4%) had stable disease [114] (Table 3). The follow-up, multicentre, multinational
FIGHT trial subsequently randomised 155 patients with FGFR2-IIIb IHC-positive (2+ or 3+
membranous staining in >0% of tumour cells) gastric or GEJ adenocarcinoma to FOLFOX
(5-FU, folinic acid, oxaliplatin) chemotherapy plus bemarituzumab or FOLFOX plus placebo.
While the trial did not meet its primary endpoint of PFS (HR 0.68 95% CI 0.44–1.04; p = 0.073),
higher therapeutic efficacy was observed in the bemarituzumab (ORR of 53%) compared to the
placebo group (40%) [115]. Furthermore, the median overall survival with prolonged follow
up was 19.2 months (95% CI 13.6-NR) and 13.5 months (9.3–15.3) in the bemarituzumab and
placebo groups, respectively (HR 0.60 95% CI 0.38–0.94) [116]. Importantly, this trial recruited
patients with FGFR2-IIIb-positive IHC expression (30% of screened patients), which is a larger
group of patients beyond FGFR2 amplification. However, a pre-specified subgroup efficacy
analysis of this trial recently reported greater efficacy in patients with FGFR2b overexpression
(2+/3+ staining) in >10% of tumour cells compared to the overall population [117], consistent
with the emerging paradigm that tumours with homogeneous or high-level FGFR2 overexpres-
sion are the most likely to benefit from FGFR2-targeted therapies.

Table 3. Selected clinical studies of FGFR targeted therapy in gastro-oesophageal cancer. Ab-
breviations: ORR—objective response rate, PFS—progression free survival, OS—overall survival,
mFOLFOX6—5-fluorouracil, folinic acid, oxaliplatin.

Study Treatment n ORR PFS
Months

OS
Months

Key
Eligibility

Criteria

Meric-Bernstam [88] Futibatinib 9 22% - - FGFR2
amplification

Van Cutsem [89] AZD4547
Paclitaxel

41
30

2.6%
23.3%

1.8
3.5

5.6
6.6

FGFR2
amplified and

polysomy

Pearson [94] AZD4547 9 33% - - FGFR2
amplification

Catenacci [114] Bemarituzumab 28 17.9% - - FGFR2b IHC
High

Wainberg [115]
Bemarituzumab
+ mFOLFOX6

FOLFOX6

77
78

53%
40%

9.5
7.4

HR 0.68
p = 0.07

19.2
13.5

HR 0.60 95% CI
0.38–0.94)

FGFR2b IHC
2+/3+

6.1. FGFR2-Targeting Antibody Drug Conjugates (ADCs)

A novel area of recent anticancer drug development is antibody-drug conjugates
(ADCs), generated by the covalent attachment of a cytotoxic drug to a monoclonal antibody
via a chemical linker. In this regard, BAY 1187982 is a novel ADC developed by Bayer,
consisting of the fully human FGFR2-IIIb- and FGFR2-IIIc-targeting monoclonal antibody
(mAb BAY 1179470), conjugated to the microtubule-disrupting agent auristatin. In preclini-
cal studies, BAY 1187982 displayed efficient internalization and robust anti-tumour activity
both in vitro and in vivo in FGFR2-amplified GC cell lines [118]. However, despite these
preclinical findings, the phase I study of BAY 1187982 produced no clinical responses in
20 patients with FGFR2-positive cancers, including one patient with oesophageal cancer,
and two patients with GC. Furthermore, toxicities including thrombocytopenia, proteinuria
and corneal epithelial microcysts led to the study being terminated early [119].

More recently, the FGFR2-targeting antibody BAY 1,179,470 has also been developed
as a targeted alpha-particle therapy (TAT), which utilizes a monoclonal antibody to deliver
an alpha-particle-emitting payload to tumour cells. Specifically, the alpha-particle-emitting
radionuclide thorium-227 was conjugated to BAY 1179470 via a chelator moiety to gen-
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erate an FGFR2-targeted thorium-227 conjugate (FGFR2-TTC, BAY 2304058). Pre-clinical
biodistribution studies confirmed the tumour-specific targeting of FGFR2-TTC, which also
demonstrated promising pre-clinical efficacy in FGFR2-amplified xenograft models includ-
ing SNU-16 GC cells [120]. The clinical efficacy of this agent remains to be determined.

6.2. Current FGFR2-Targeting Antibody-Based Clinical Trials in GC

The participants in the early phase trials of bemarituzumab may have been highly
selected to enrich the trial results for benefit and its efficacy is yet to be confirmed in
suitably powered phase III randomised studies. Therefore, bemarituzumab is currently
being tested as first-line therapy with chemotherapy or anti-PD1 therapy in two phase
III trials. FORTITUDE-101 (NCT05052801) is a double-blind, placebo-controlled phase
III trial in patients with untreated, unresectable, locally advanced or metastatic gastric or
GEJ adenocarcinoma not amenable to curative therapy, where patients are being random-
ized to bemarituzumab plus chemotherapy (mFOLFOX6) or placebo plus chemotherapy.
Comparatively, in FORTITUDE-102 (NCT05111626), the same patient groups are being
randomized to bemarituzumab plus chemotherapy and nivolumab versus chemotherapy
and nivolumab (Table 2). These trials are anticipated to complete recruitment in 2025 and
2026, respectively.

7. Emerging FGFR2-Targeted Therapies

Several innovative new approaches for targeting FGFR2 are also beginning to emerge
in the pre-clinical setting and have been elegantly reviewed recently [101]. These include
proteolysis-targeting chimeras (PROTACs), chimeric antigen receptor (CAR)-T cells and
soluble receptors. Among these agents, those that have been shown to effectively target
FGFR2 in GC models are the FGFR2-targeting PROTACs DGY-09–192 (which also targets
FGFR1) [121], and LC-MB12 [122], which comprise the FGFR inhibitor infigratinib linked
to recruiters of the E3 ubiquitin ligases VHL or cereblon, respectively. Both compounds
effectively degraded FGFR2 in GC cells [121,122], and interestingly, LC-MB12 preferentially
degraded FGFR2 over other FGFRs despite infigratinib being a pan-FGFR kinase inhibitor.
While the mechanism for this unexpected FGFR2 degrading specificity remains to be
determined, LC-MB12 displayed superior inhibition of proliferation and downstream
signaling in FGFR2-amplified GC cells, compared to infigratinib, in vitro and in vivo.
Clinical testing of these agents is now awaited.

8. Conclusions

FGFR2-amplified GC carries a very poor prognosis and is in urgent need of new
treatments. While the recent development of FGFR2-targeting therapies, including small-
molecule inhibitors, and FGFR2-specific antibodies have shown activity in pre-clinical
models and early phase trials, their clinical efficacy has so far not been sufficient to warrant
clinical approval. Nevertheless, small-molecule FGFR2 kinase inhibitors have shown
efficacy in GCs with high-level FGFR2 amplification [94], and more refined trials of these
agents in these well-defined molecular subsets may lead to their approval. Pre-clinical
studies have also identified several potential drug combinations that can overcome inherent
and adaptive resistance to single-agent FGFR inhibitors, which could also be fruitful
areas of clinical investigation and identify avenues to clinical approval. The FGFR2-IIIb-
targeting antibody bemarituzumab, which inhibits FGFR2 signalling and also induces
ADCC, has also shown clinical activity in randomised phase II trials and is now being
investigated in combination with chemotherapy and chemotherapy plus immunotherapy
in the FORTITUTE trials, the outcomes of which are being eagerly awaited. Novel strategies
for FGFR2-targeting also continue to be developed including FGFR2-specific small-molecule
inhibitors, antibody-based approaches such as ADCs and TATs, and target-degrading
approaches using PROTACs. Overall, given the progress to date and the breadth of
preclinical and clinical research currently underway to target this key oncogenic driver
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in GC, FGFR2 inhibitors are likely to have a meaningful clinical impact in patients with
FGFR2-driven GC in the future.
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