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Abstract: The safety of vegetable food is compromised by various factors, including the inefficient
or excessive use of sanitizers. Instances of individuals falling ill after consuming raw vegetables
have been reported, with outbreaks of diseases caused by pathogens on fresh vegetables becoming
increasingly prevalent globally, attracting significant media coverage and impacting the economic
viability of vegetable cultivation. Measures to enhance food safety in postharvest horticultural
produce involve controlling microbial proliferation and minimizing cross-contamination. Sanitizers
were utilized in the food safety arsenal for a variety of purposes, including pathogen elimination and
microbe reduction, hand, tool, and vegetable contact surface cleaning, and produce shelf-life extension.
Choosing an appropriate sanitizer for all vegetables is difficult due to a lack of knowledge on which
sanitizers are ideal for the many types of vegetables grown on farms under different environmental
circumstances. Although chlorine-based sanitizers, such as sodium or calcium hypochlorite, have
been widely used for the past 50 years, recent research has revealed that chlorine reacts with an organic
compound in fresh vegetables to produce trihalomethane, a carcinogen precursor, and as a result,
many countries have prohibited the use of chlorine in all foods. As a result, horticulture research
groups worldwide are exploring non-chlorine, ecologically friendly sanitizers for the vegetable
industry. They also want to understand more about the present procedures in the vegetable business
for employing alternative sanitizers, as well as the efficacy and potential dangers to the food safety of
fresh salad vegetables. This review paper presents detailed information on non-chlorine sanitizers,
such as their efficacy, benefits, drawbacks, regulatory requirements, and the need for additional
research to lower the risk of marketed salad vegetable food safety.

Keywords: non-chlorine sanitizer; food safety; common fresh salad vegetables

1. Introduction

Vegetables are becoming a more essential “healthy” group than animal proteins,
complex carbohydrates, or sweeter alternatives like fruits in today’s diets, as consumers
demand safer, fresher, and healthier options [1–3]. Fresh vegetables, including cucumber,
tomato, carrot, capsicum, lettuce, green chili, and onion, are frequently used as salad
items in Asian countries and are an essential part of a healthy diet. The demand for
ready-to-eat fresh produce also means that cutting, peeling, and dicing vegetables is
an increasingly common practice, significantly raising food safety risks. Bacteria (such
as Aeromonas spp., Bacillus cereus, Clostridium botulinum, Clostridium perfringens, E. coli
(pathogenic and non-pathogenic), L. monocytogenes, Pseudomonas spp., Salmonella spp.,
Shigella spp., S. aureus, and Yersinia enterocolitica), viruses (such as Hepatitis A, Rotavirus and
Norovirus), and parasites (such as Cryptosporidium parvum, Cyclospora cayetanensis, Giardia
lamblia, and Toxoplasma gondii) are the food safety concern microorganisms. Table 1 provides
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a list of the microorganisms responsible and the specific vegetables that contributed to
foodborne outbreaks.

Table 1. Selected vegetable pathogens linked with outbreaks.

Bacteria Selected Vegetables References

Toxin producing Bacteria

Clostridium botulinum Carrots [4]

Escherichia coli Lettuce, tomato [5,6]

Staphylococcus aureus Lettuce, tomato, and carrot [7–9]

Non-toxin producing Bacteria

Listeria monocytogenes Lettuce, tomato [10,11]

Salmonella spp. Lettuce, tomato [12,13]

Shigella spp. Lettuce, salad vegetables [14]

Yersinia enterocolitica Carrots, cucumber, lettuce, and tomatoes [15–17]

Viruses

Hepatitis A and Norovirus Lettuce [18,19]

Protozoa

Cryptosporidium spp. and Cyclospora spp. Lettuce [20,21]

Plant pathogenic fungi are mainly responsible for the spoilage of vegetables, known as
quality deterioration. The initial microbial loads and diversity of microorganisms present
on fresh vegetables at harvest vary depending on factors such as horticultural practices,
employee health and hygiene, field or farm settings, farm management regimens, and so
on [22,23]. In addition, not all microorganisms are capable of proliferating on produce
commodities. Several microbial species, however, can break the protective barriers plants
possess, grow, and cause spoilage of these products, while others can enter the plant tissue
only through wounds, but once the protective cover has been compromised, the chances
of spoilage increase exponentially [24]. Common spoilage bacteria including Aeromonas
spp., Pectobacterium spp., Xanthomonas spp., Pseudomonas spp., and Erwinia spp. are mainly
responsible for bacterial soft rot, while Bacillus spp. and lactic acid bacteria cause the
spoilage of vegetables, known as quality deterioration. Common fungi species, including
Rhizopus stolonifer, Fusarium oxysporum, Aspergillus niger, Fusarim solani, and Geotrichum
candidum, were found to be associated with the spoilage of horticultural crops [25,26].
Table 2 summarizes the microorganisms causing postharvest deterioration of various
fresh vegetables.

Table 2. Summary of microorganisms causing postharvest spoilage of selected fresh produce.

Bacteria/Fungi Type of Spoilage Selected Vegetables References

Aeromonas and Pectobacterium spp. bacterial soft rot Lettuce [27]

Lactic acid bacteria spoilage Tomato [28]

Xanthomonas leaf spot and bacterial spot on tomato Lettuce and Tomato [29]

Pseudomonas bacterial spot Carrot, Lettuce, and Tomato [29]

Erwinia soft rot Carrot, Cucumber, Lettuce, and Onion [29]

Bacillus coagulans spoilage Cucumber, Onion, and Tomato [29]
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Table 2. Cont.

Bacteria/Fungi Type of Spoilage Selected Vegetables References

Thielaviopsis basicola black root rot Carrot [30]

Pythium cottony rot Cucumber [29]

Phytophthora Buckeye rot Tomato [31]

Penicillium (blue mold) and Rhizopus spoilage Cucumber and Tomato [29]

Aspergillus niger black rot Onion and Tomato [32]

Sclerotinia white rot, white mold Carrot, Lettuce, and Tomato [24]

Geotrichum sour rot Carrot, Lettuce, Onion, and Tomato [33]

Collectotrichum Anthracnose Capsicum, Cucumber, Onion, and Tomato [34]

Rhizopus spp. storage rot, rhizopus rot Capsicum, Carrot, Cucumber, and Tomato [35]

Botrytis spp. neck rot, grey mold Carrot, Cucumber, Lettuce, Onion, and Tomato [29]

Fusarium and Alternaria spp. soft rot, dry rot, and black rot Capsicum, Carrot, Cucumber, Onion, and Tomato, [27]

All of these vegetables have the potential to pick up pathogenic microorganisms while
being harvested on the field, handled afterward, processed and packaged in the pack house,
or transported and distributed to stores. The agroecology of the geographical locations,
genetic diversity, agronomic practices, and environmental responses in different farm pro-
duction stages all influence the level of microbial contamination. Following the postharvest
process, human activity and the environmental responses of the vegetable-packing plants
can also increase the risk of contamination. The overwhelming majority of published
studies stated that contamination occurs primarily prior to harvesting, either from animals,
domestic or wild; through contaminated manure, sewage, irrigation water, wastewater
from livestock operations; during harvesting, transport, processing, distribution, pack
house, and marketing; or even at home [36–39]. Vegetable food safety risks in connection to
agroecology during farm production and the environment of vegetable-packaging facilities
during postharvest operations can be significant, and this field of study is just beginning.
As mentioned in the literature, vegetables can also become infected at the retail or consumer
levels, and this can happen through direct contamination, contact with contaminated soil
or water, symptomatic and asymptomatic employees, or cross-contamination with other
foods [40]. This risk, however, is completely determined by regional food safety culture,
which is also a new area of study. Figure 1 depicts the typical annual average microbiologi-
cal quality and safety indicator microorganisms discovered in different salad vegetables in
Bangladesh from 2010 to 2022, where almost all the parameters are above the acceptable
limit set by the regulatory agencies.
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ogens and lower microbial load; (2) to control microbiological hazards from human 
sources; (3) to maintain a safe environment and control product cross-contamination; (4) 
to reduce fungi’s ability to propagate; (5) to disinfect and/or clean the processing facility, 
machinery, and any surfaces that come into contact with the vegetable crop; (6) to make 
sterile water; (7) to sterilize water-holding vessels; (8) to maintain the product’s cleanli-
ness; and (9) to increase shelf life [42]. 

Although various microbial agents are available for sanitizing fresh produce, their 
efficacies differ, and none can eliminate pathogens without compromising sensory qual-
ity. Recent research has also demonstrated that chlorine is ineffective at reducing patho-
gens, and the creation of chlorine byproducts harms human health [43]. As a consequence, 
there is considerable interest in developing a chlorine substitute that is both safer and 
better for the environment. On the other hand, various non-chlorine sanitizers including, 

Figure 1. Indicators of microbiological quality (total aerobic bacteria, total coliform bacteria, total
yeast, and mold) and safety (E. coli and Salmonella) were distributed on an annual basis in salad
vegetables such as tomato, cucumber, carrot, coriander leaf, green chili, and lettuce in Bangladesh
between 2011 and 2022 [41].

2. Use of Sanitizers

The most common reasons to use sanitizer are: (1) to eliminate any bacteria or
pathogens and lower microbial load; (2) to control microbiological hazards from human
sources; (3) to maintain a safe environment and control product cross-contamination; (4) to
reduce fungi’s ability to propagate; (5) to disinfect and/or clean the processing facility,
machinery, and any surfaces that come into contact with the vegetable crop; (6) to make
sterile water; (7) to sterilize water-holding vessels; (8) to maintain the product’s cleanliness;
and (9) to increase shelf life [42].

Although various microbial agents are available for sanitizing fresh produce, their
efficacies differ, and none can eliminate pathogens without compromising sensory quality.
Recent research has also demonstrated that chlorine is ineffective at reducing pathogens,
and the creation of chlorine byproducts harms human health [43]. As a consequence, there
is considerable interest in developing a chlorine substitute that is both safer and better for
the environment. On the other hand, various non-chlorine sanitizers including, calcined
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calcium, hydrogen peroxide, ozone, peroxyacetic acid, organic acid, natural antimicrobial
agents, or combinations of these and other physical sanitization techniques have been seen
in the literature for washing fresh salad vegetables to improve the quality and safety of these
vegetables; however, it is vital to remember that the efficiency of any sanitizer, chlorine
or non-chlorine, depends on factors such as concentration, contact time, and application
method. Proper handling and sanitation practices are crucial regardless of the type of
sanitizer used to ensure the safety and quality of fresh salad vegetables. Additionally,
regulatory guidelines and specific industry requirements should be considered when
selecting and implementing sanitization methods. The disadvantages and advantages of
chlorine-based sanitizers and non-chlorine sanitizers are summarized in Table 3.

Table 3. The disadvantages and advantages of chlorine-based sanitizers and non-chlorine sanitizers.

Factors Chlorine-Based Sanitizers Non-Chlorine Sanitizers

Reduced Chemical Residue Can leave behind chemical residues that may
affect the taste and safety of vegetables

Can effectively sanitize vegetables without
leaving harmful residues

Gentler on Produce
Can sometimes be harsh on delicate salad

vegetables, potentially causing discoloration
or off-flavors

Often gentler and less likely to affect the
appearance or taste of the vegetables

Effective Pathogen Reduction
Can be effective in pathogen reduction but the

creation of chlorine byproducts harms
human health

Can effectively reduce pathogens and no
known byproducts which harm human

health are produced

Organic Compliance Does not adhere to organic standards Align more closely with organic
certification requirements

Versatility May not be suitable for certain
sensitive vegetables

Often be used across a wider range of
vegetables without adverse effects

Reduced Environmental Impact Can have environmental implications, including
the formation of harmful disinfection byproducts

No environmental implications or impact
and no formation of harmful byproducts

Consumer Preferences May not be preferred by some consumers
because they cause harm to the environment

May be preferred due to perceived health
and environmental benefits

Generally, the ideal sanitizing agent should possess two key qualities: an adequate
level of antimicrobial activity and little to no impact on the product’s sensory quality. Con-
sumer demands for safe and ecologically friendly products would increasingly influence
sanitizer selection for both domestic and international use. There is a lack of information
on suitable alternatives, more environmentally friendly sanitizers, their efficacy on various
products, and their market acceptance. The US Environmental Protection Agency (EPA)
has registered and authorized nearly 4000 antimicrobial sanitizers, including 275 distinct
active components [44]. Choosing the best sanitizer for specific vegetables (cucumber,
tomato, carrot, capsicum, lettuce, green chili, and onion) might be challenging, given the
lengthy list. The most commonly used sanitizers in the food business are chlorine-based,
which include sodium or calcium hypochlorite, acidified chlorite, electrolyzed water, and
others; they have been tested on a variety of fresh produce and are effective against a
wide range of pathogens [45]. However, chlorine can interact with organic matter in the
natural environment to produce halogenated byproducts like trihalomethanes or haloacetic
acids [46]. Because these byproducts are carcinogenic and unfriendly to the environment,
using chlorine to wash fresh vegetables has been prohibited in countries such as Belgium,
Switzerland, and the Netherlands for safety reasons [47]. As a result, Table 4 includes a
number of substitute sanitizers proven to improve the safety and quality of salad vegetables,
such as calcinated calcium, aqueous chlorine dioxide (ClO2), ozone, hydrogen peroxide,
peroxyacetic acid, organic acid, and plant bioactive compounds or essential oils. Table 4
describes each non-chlorine sanitizer, their dose level, advantages, and disadvantages.
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Table 4. List of various applicable non-chlorine sanitizers for washing fresh salad vegetables.

Sanitizer Allowable Levels Advantages Disadvantages Rinse Step Additional Comments References

Calcinated
calcium (CCa)

Use 1 g powder/10 L water (giving a
concentration of 0.01% and pH about 11)

and 40 s wash.

Calcinated calcium (CCa) is safe
and eco-friendly; produced from

marine waste (scallop shells).

If not dissolved properly, may
contribute to residues on the

vegetable surface. Can be affected by
organic load in wash water.

Yes
Effective at lower dose, high pH,
and less contact time. Available

and cheap.
[48,49]

Hydrogen
peroxide (H2O2)

Typical concentration used: (0.04–2%).
Environmentally friendly. Declared

GRAS by FDA.

Breaks down easily, no harmful
by-products. Higher temperatures

could produce better reduction.

Higher concentrations can cause
browning or bleaching in certain

products and can be corrosive and
irritating. Unstable and

degrades fast.

No

Commercially available at 31–70%
but 30–50% is most common.

Dilute (3%) solutions are available
to consumers.

[50,51]

Ozone (O3)
No regulatory limit but typically used at

2–10 ppm for up to 5 min. Activity
reduced in presence of organic load.

Declared GRAS by FDA.
Environmentally friendly.

Effective at low concentrations.
No harmful end products.

Has to be generated on-site; unstable
and highly reactive. Corrosive to

equipment. OSHA requirements on
employee exposure.

No
Solubility in water increases at

lower temperatures and pH. Does
not work as well at higher pH.

[52–56]

Organic acids (acetic acid, citric
acid, lactic acid, tartaric acid,
oxalic acid, ascorbic acid, and

phytic acid)

1% oxalic acid, 0.03% phytic acid, 0.5%
CA, 0.5% lactic for 2 min or 2% acetic

acid for 15 min.

Organic acids have been used as
sanitizers for fresh produce. The

FDA recognizes organic acids
as GRAS.

Their usefulness against
microorganisms is generally low and
requires high concentrations for long
periods. Sensory quality might also
be affected with 5–15 min treatment.

No

Effective at higher conc., depends
on water quality and costly.

Antimicrobial efficacy is
dependent on the microorganism

strain and acid type.

[57–59]

Aqueous
chlorine dioxide (ClO2)

ClO2 5 mg/L, 60 s overhead spray and
brush roller system at 25 ◦C.

Easy to handle; inexpensive. It can
be used in the form of a spray, or

by immersion or washing.
Concentration and contact can be

maintained. Easy to adopt in
industrial washing lines.

Produce surface properties can affect
ClO2 accessibility to microbes.

Residual moisture after the water
rinsing can promote

microbial growth.

Yes
Not suitable for dried foods.

Relatively less effect on microbial
Internalization.

[60,61]

Peroxyacetic acid

Strong oxidizing agent.
Use 80 ppm–150 ppm; 2 min on fruits

and vegetables. Can work well in
cooler temperatures.

Environmentally friendly and less
corrosive to equipment. Works at

a wide range of pH values and
temperatures.

Effective against biofilms.
Not as sensitive to organic load

as chlorine.

Costs more than chlorine. Vinegar
odor. Loses its effectiveness in the
presence of metals (copper). High

concentrations damage produce and
can shorten shelf life.

No
Store in a well-ventilated area.

Concentrated peroxyacetic acid is
a safety hazard.

[62–66]

Plant extracts (bioactive
compounds)

Grape stem extract, 2.5% solution; 2 min,
and dried for 30 min could reduce
pathogens by 2.0–4.0 log CFU/g in

lettuce.
Oregano aqueous extract for 2 min.

Green tea extract 60% GTE for 5 min.
Essential oil (Cypriot oregano), 0.1% for

10 min.

The antibacterial activity could be
due to the damage of cytoplasmic

membranes, inhibition of
synthesis of nucleic acids, cell wall
components, and cell membranes

[67,68].

Fewer effects than chemical
sanitizers and non-economic
efficiency. Unpleasant aroma.

Longer durations.

No

Store in dark place. Since sensitive
to light, volatile nature. Higher

concentration
(0.5%) results in softer fruits.

[69–72]

GRAS = generally recognized as safe; GTE = green tea extract.
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2.1. Calcinated Calcium (Green Agrowash®)

Calcinated calcium is a pyrolysis product of waste shell aggregate, which is baked into
a fine, odorless, natural, environmentally beneficial, and biodegradable powder. Japan’s
Specifications and Standards for Food Additives (JSFA) has approved using this shell pow-
der with microparticles in food. This powder is sparingly soluble in water and possesses
antibacterial and antifungal activities, which has proven effective in killing bacteria and
fungi and removing contaminants from the fruit and vegetable surfaces [73–75]. One gram
of powder in 10 L tap water, or (0.01% solution), is recommended for a 40–60 s wash.
Followed by a clean water wash, this was able to eliminate pathogens and remove other
contaminants from the surface of the vegetables. However, using more than the suggested
concentration can leave a white stain on stainless steel or glass surfaces. Since calcinated
calcium is made from natural ingredients, it is readily accessible, inexpensive, does not
harm the environment, and is not toxic to humans or animals.

2.2. Hydrogen Peroxide

Hydrogen peroxide, commonly known as hydrogen dioxide, can be used to sterilize
fruits and vegetables as a liquid or gas. It is considered “generally recognized as safe” or
GRAS by the FDA and EPA and is environmentally friendly because it breaks down to
oxygen and water. The organic load in the wash water has an impact on it, but pH has no
effect. Fresh vegetables can be sanitized with hydrogen peroxide at concentrations no more
than 59 ppm, according to FDA approval. The usage of hydrogen peroxide in conjunction
with acetic acid (PAA) has increased recently, as opposed to using it alone. Hydrogen
peroxide causes cells to die by altering osmotic pressure, leading to the loss of cell wall
integrity. This compound is cheap, easy to prepare, fast acting for bacteria, and can kill
spores. Hydrogen peroxide must be used cautiously because it is unstable in water, highly
allergenic, and loses potency if not stored properly.

2.3. Ozone

Ozone is also thought to have high antimicrobial activity and has a high level of
reactivity and penetrability [76]. Ozone generation/production has lower operating costs,
and it is GRAS. It was investigated how the microbial population and fresh-cut produce’s
qualitative features were affected by ozonated water at varying concentrations and contact
times [77]. Ozone breaks down into non-toxic compounds and does not produce any
dangerous disinfection byproducts. Aqueous ozone is less effective than gaseous ozone
against both pathogenic and non-pathogenic bacteria. However, gaseous ozone may be
harmful, poisonous, and reactive in this state [78–80].

2.4. Organic Acids

Fresh fruit has been sanitized using organic acids like citric acid, acetic acid, and lactic
acid as well as combinations with phosphoric acid and sulfuric acid. These substances
cannot stain or emit odors and are not corrosive to stainless steel, making them more
natural ingredients in food. On the negative side, yeasts, fungi, Gram-positive bacteria, and
others are not destroyed by organic acids. Although organic acids are deemed GRAS by
the FDA, their effectiveness against microorganisms is typically low and they are needed at
high concentrations for extended periods of time. Fresh and freshly cut vegetables have
been sanitized using organic acids and acid compound sanitizers. In order to maintain
the physical and chemical properties of many fresh-cut products, and to stop microbial
development, organic acids are crucial sanitizers. According to [81], decontaminating leaves
of some particular vegetables with 5% citric acid resulted in a noticeably lower microbial
count than washing them with water. The ideal form of organic acid had no negative effects
on flavor or taste, and it had no negative effects on the ecosystem. Fresh-cut fruit can have
their shelf life extended by citric acid because it prevents the food quality from deteriorating
and the spread of disease. However, using these acids at greater concentrations may lead
to a quality loss in some freshly cut leafy vegetables due to off-odors and texture damage.
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It has also been investigated how the order of citric acid and ethanol treatment affects the
quality and microbial reduction in organic vegetables. As a result, an organic acid-based
disinfectant has been developed using a combination of technologies in place of chlorine.

2.5. Chlorine Dioxide

Fresh fruit can be effectively protected from bacterial, fungal, and viral contamination
by using the oxidizing gas ClO2 [82,83]. ClO2 is effective across a wide pH range (pH 3–8)
and does not create any toxic byproducts or change the nutritive or olfactory qualities of
food products. However, using ClO2 to wash fresh products in gaseous and aqueous forms
has benefits and drawbacks, which are listed in Table 5.

Table 5. Chlorine dioxide (ClO2) application in the aqueous and gaseous form: advantages and
disadvantages.

Aqueous ClO2 [45]

Advantages Disadvantages

Easy to handle, inexpensive Produce surface properties can affect
ClO2 accessibility to microbes

It can be used in the form of a spray, by immersion or washing Cross-contamination of wash water

Concentration and contact can be maintained Water rinsing is required after the treatment

Easy to adopt in industrial washing lines Residual moisture after the water rinsing can promote
microbial growth

Not suitable for dried foods

Relatively less effective on microbial
internalization

Gaseous ClO2 [77]

Advantages Disadvantages

Higher antimicrobial activity Needs onsite generation

It can be applied as a batch treatment or a continuous treatment Needs technical knowledge

High accessibility to microbes, irrespective of surface barriers Laborious to perform and expensive

No water rinsing is required after the treatment Explosive at higher concentrations

It can impact microbial internalization Challenging to maintain concentration and contact time

No issue of cross-contamination of wash water Challenging to implement at the industry scale

2.6. Natural Plant Extracts

Natural goods are increasingly being looked into as alternatives to conventional
sanitizing agents in the washing processes for fresh produce. Essential oils (EOs) and
hydrosols from aromatic plants are examples of natural plant extracts that are generally
accepted as safe (GRAS) for use in the food industry and are also covered by EC Regulation
No. 1334/2008 on flavorings and certain food ingredients with flavoring properties for
use in and on foods [84,85]. Numerous EOs and other natural extracts, such as sage,
Greek oregano, eucalyptus, and rosemary, have been used to preserve fresh produce
and barely processed vegetables [86–89]. Furthermore, no variations in lowering E. coli
O157: H7 and total coliforms in lettuce and spinach were discovered after washing with
water and tannin solutions [90]. Washing spinach and lettuce samples in aqueous oregano
extract for two minutes reduced E. coli O157:H7 counts by 2.1 log CFU g−1 and 3.7–4.0 log
CFU g−1, respectively, when coupled with Citrox® (a product containing citric acid and
phenolic compounds) [91]. These findings suggested that plant extracts can successfully
decrease the pathogenic load in fresh vegetables. Edible coatings with natural antimicrobial
agents are becoming more popular as possible treatments to lessen the adverse effects
of processing fresh vegetables. However, using natural edible coatings for freshly cut
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vegetables has not attracted attention, and vegetable businesses have yet to wash or
preserve fresh-cut vegetables using a natural antimicrobial agent due to fewer side effects
than chemical sanitizers and non-economic efficiency. Plant extracts should also be kept
in the dark because they are typically volatile and light-sensitive. Vegetables may become
softer when plant extracts are used in greater concentrations (0.5%). The washing of fresh
organic produce offered at a higher price can be achieved with natural detergents. The
need for natural food preservation techniques, such as using natural antimicrobials and
their combination with other obstacles, without adverse effects on the consumer or the
environment, has been brought on by consumers’ increasing demand for fresh and freshly
cut produce [92]. Essential oils are natural antimicrobial agents; however, it is practically
difficult to use these oils because of their hydrophobic, volatile, and unstable nature [93].

2.7. Green Tea Extract

Green tea extract (GTE; 60%) was shown by [94] to exhibit a rise in antiviral activity
with increasing pH. The cytoplasmic membrane damage, nucleic acid synthesis suppres-
sion, cell wall component inhibition, and cell membrane damage could contribute to the
antibacterial activity [95,96]. Temperature, concentration, and contact time all impacted
GTE’s reaction. For lettuce and spinach, using 60% GTE also successfully lowered the
bacterial count by 1.5 logs after 30 min of exposure. A non-economic and occasionally
greater dosage of GTE may result in an unpleasant odor and soften the vegetables because it
requires longer times, less effectiveness, and a higher concentration than chemical sanitizers
(Table 6).

Table 6. Efficacy of non-chlorine-based sanitizers in reducing bacterial pathogens from fresh salad
vegetables’ surfaces.

Vegetables Non-Chlorine Sanitizers
(Conc. and Contact Time) Microorganisms

Maximum
Reduction

(log CFU/g)

Complete
Reduction/Number

of Samples
References

Lettuce

Peracetic acid (PAA)
(100 mg/L; 5 min at 65 rpm)

Escherichia coli O157:H7, 2.2 0/6

[89]

Salmonella typhimurium DT104 6.8 6/6

Listeria monocytogenes, 2.4 0/6

Lactic acid
(2%; 5 min at 65 rpm)

Escherichia coli O157:H7, 1.7 0/6

Listeria monocytogenes, 1.7 0/6

Calcinated calcium
(0.01% for 40–60 s) Escherichia coli 2.1 3/3 [48]

Hydrogen peroxide (H2O2)
(2% for 90 s)

Escherichia coli O157:H7 4.3 0/3
[97]

Salmonella enteritidis 4.3 0/3

Aqueous ozone (O3)
(3 ppm for 5 min)

Escherichia coli O157:H7, 5.9

0/5 [56]
Listeria monocytogenes 5.9

ClO2 (3 ppm, 5 min)
Escherichia coli O157:H7, 5.8

Listeria monocytogenes 6.0

Plant extract (grape stem extract,
25 mg/mL)

Escherichia coli O157:H7 0.7 0/5

[98]Salmonella enterica 1.0 0/5

Listeria monocytogenes 0.8 0/5
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Table 6. Cont.

Vegetables Non-Chlorine Sanitizers
(Conc. and Contact Time) Microorganisms

Maximum
Reduction

(log CFU/g)

Complete
Reduction/Number

of Samples
References

Tomato

PAA at 100 mg/L (5 min@65 rpm)
(laboratory scale)

Escherichia coli O157:H7, 5.5 3/6

[69]

Salmonella typhimurium DT104 6.8 6/6

Listeria monocytogenes 2.4 0/6

Lactic acid (2%) (5 min@65 rpm)

Escherichia coli O157:H7, 2.4 0/6

Salmonella typhimurium DT104 4.8 0/6

Listeria monocytogenes 2.3 0/6

ClO2 (5 mg/L, 60 s)
(commercial scale) Salmonella spp. 4.9 0/15 [77]

PAA (80 mg/L, 60 s)
(commercial scale) Salmonella spp. 5.5 15/15 [89]

Calcinated calcium (1 min, 0.01%)

Escherichia coli O157:H7 7.6

0/3 [48]Salmonella spp. 7.4

Listeria monocytogenes 7.5

H2O2 (5% for 2 min, 60 ◦C)

Salmonella spp. 2.6

0/3 [97]Escherichia coli 1.4

Listeria monocytogenes 2.5

Aqueous O3 (0.45 ppm for 10 min) Salmonella spp. 4.5 0/6 [99]

Green tea extract (60%; 5 min)
Escherichia coli 5.66 ± 0.1 3/3

[68]
Salmonella enteriditis 5.23 ± 0.12 0/3

Cucumber

Peracetic acid (PAA) (0.5%)
Salmonella typhimurium 2.66 ± 0.20

0/12 [74]
Listeria monocytogenes 1.28 ± 0.35

Lactic acid (2%)
Salmonella typhimurium 2.14 ± 0.26

Listeria monocytogenes 0.75 ± 0.43

Calcinated calcium
(0.01% for 1 min) Escherichia coli 3.62 ± 0.1 3/3 [48]

H2O2 (0.5% for 2 min)
Salmonella typhimurium 2.63 ± 0.19

0/12 [100]
Listeria monocytogenes 1.16 ± 0.40

Aqueous O3 (2% for 5 min) - - - -

ClO2 (100 ppm) Escherichia coli 2.61± 0.1 0/5 [101]

Green tea extract (60%; 5 min)
Salmonella enterica 2.0 ± 0.1 0/4

[52]
Listeria monocytogenes 2.07 ± 0.1
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Table 6. Cont.

Vegetables Non-Chlorine Sanitizers
(Conc. and Contact Time) Microorganisms

Maximum
Reduction

(log CFU/g)

Complete
Reduction/Number

of Samples
References

Carrot

Peracetic acid (PAA)
(40 ppm, 1 min)

Escherichia coli 0.5 0/4

[102]Salmonella spp. 1.5

Listeria monocytogenes 0.5

Lactic acid (0.1%; 5 min) Escherichia coli O157:H7 0.4 0/5 [103]

Calcinated calcium
(0.01% for 1 min)

Escherichia coli 0.5 3/3
[48]

Salmonella spp. 0.5 3/3

H2O2 (1.5% for 90 s) Escherichia coli 0.8 0/3 [104]

Aqueous O3 (16.5 mg/L) Escherichia coli O157:H7 1.85 0/3
[105,106]

ClO2 (20 mg/L) Escherichia coli O157:H7 3.0 0/3

Plant extract - - - -

Green chili

Peracetic acid (PAA) - - - -

Lactic acid - - - -

Calcinated calcium
(0.01% for 1 min)

Escherichia coli 0.5 0/3
[48]

Salmonella spp. 0.5 0/3

H2O2 (0.5% for 2 min)
Escherichia coli 0.5 0/3

[107]Salmonella spp. 0.5 0/3

Aqueous O3 - - -

ClO2 - - - -

Plant extract - - - -

Coriander
leaf

Peracetic acid (PAA) - - - -

Lactic acid - - - -

Calcinated calcium
(0.01% for 1 min) Escherichia coli 1.6 ± 0.1 3/3 [48]

H2O2 - - - -

Aqueous ozone (O3)
(6% for 30 min)

Escherichiacoli 2.5 0/3
[108]

Salmonella typhimurium 2.7 0/3

Aqueous ClO2 - - - -

Plant extract - - - -

3. Conclusions

The majority of research has found that irrigation or wash water poses the greatest
threat to vegetable food safety, followed by how the crop is treated during the postharvest
process. Microbial contamination is a major cause of postharvest losses in fresh vegetables
and washing them in water reduces the quantity of microbes on their surface by one or
two logs (one log reduction being a 10-fold reduction). The quantity of total dissolved
solids (such as soil, dirt, and debris) in the water, the water temperature, the quality of
the incoming water (such as pH and mineral content), the contact time with the produce,
and the texture of the produce are all variables that influence the effectiveness of the



Processes 2024, 12, 1011 12 of 16

sanitizer in vegetables (smooth or rough surface). As chlorine-based sanitizers pose risks
to human health, non-chlorine alternatives have emerged as viable options. Washing fresh
vegetables with non-chlorine sanitizers has shown significant reductions in resident aerobic
bacteria, total coliform bacteria, yeast, and mold populations. Moreover, these sanitizers
effectively reduce pathogenic bacterial populations to below detectable limits. Research
findings suggest that all non-chlorine sanitizers can enhance the safety and quality of fresh
vegetables. However, among them, 0.01% calcinated calcium emerges as the optimal and
safest choice due to its biodegradable nature, organic characteristics, and environmentally
friendly properties. Additionally, the majority of sanitizer effectiveness studies have only
been conducted in laboratories; it is crucial to validate sanitizers in actual workplace
settings. Furthermore, when determining the precise procedure (amount and mode of
sanitizer delivery) to handle the vegetables, appropriate sanitation should consider the
aforementioned factors.
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