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Abstract

:

This paper presents an improved pelican optimization algorithm (IPOA) to solve the economic load dispatch problem. The vertical crossover operator in the crisscross optimization algorithm is integrated to expand the diversity of the population in the local search phase. The optimal individual is also introduced to enhance its ability to guide the whole population and add disturbance factors to enhance its ability to jump out of the local optimal. The dimensional variation strategy is adopted to improve the optimal individual and speed up the algorithm’s convergence. The results of the IPOA showed that coal consumption was reduced by 0.0292%, 2.7273%, and 3.6739%, respectively, when tested on 10, 40, and 80-dimensional thermal power plant units compared to POA. The IPOA can significantly reduce the fuel cost of power plants.
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1. Introduction


The economic load dispatch (ELD) problem is a fundamental problem in power system control and operation [1]. The goal of ELD is to find the best feasible power generation plan with the lowest fuel cost to meet the generation constraints of the generator set [2]. The power generation system must also comply with various practical limitations due to the physical constraints associated with the system in addition to meeting the system’s power needs. These limitations result in the ELD problem being a non-convex, non-continuous, non-differentiable optimization problem with many equality and inequality constraints [3].



There is much literature on the ELD problem, proposing many methods. These algorithms can be mainly divided into two categories. One is traditional optimization methods, such as the gradient method [4], Lambda iterative method [5], and quadratic programming method [6]. These methods may not converge to a feasible solution in the solving process [7,8], and it is not easy to get a satisfactory solution in an adequate time [9]. The second category is intelligent optimization algorithms inspired by nature’s physical or biological behavior [10], which have the characteristics of flexible mechanisms, simple operation, and efficient solutions [11,12]. They have advantages in solving large-scale and highly complex optimization problems [13,14]. Many swarms’ intelligent optimization algorithms have recently been applied to solve the ELD problem [15]. Arman Goudarzi et al. [16] proposed a new algorithm, MGAIPSO, based on an improved genetic algorithm and a version of particle swarm optimization. Namrata Chopra et al. [17] proposed an improved particle swarm optimization algorithm using the simplex method. Seyedgarmroudi, S.D. et al. [18] proposed an improved pelican optimization algorithm, which benefited from three motion strategies, predefined knowledge-sharing factors, and a modified dimension learning-based hunting (DLH). Singh, N. et al. [19] utilized a new variant of particle swarm optimization. Lotfi, H. et al. [20] proposed an improved modified grasshopper optimization algorithm, based on the chaos mechanism. Ismaeel, A.A.K. et al. [21] used the osprey optimization algorithm. Said, M. et al. [22] utilized the walrus optimizer. Almalaq, A. et al. [23] introduced a new multi-objective optimization technique combining the differential evolution (DE) algorithm and chaos theory. Dey, B. et al. [24] proposed a new optimization algorithm combining the greedy JAYA algorithm with an algorithm based on a crow’s food-seeking approach. Acharya, S. et al. [25] proposed the multi-objective multi-verse optimization (MOMVO) algorithm. These algorithms have been applied to solve ELD problems and have achieved good results. However, there is still room for further improvement in the quality and applicability of these algorithms. Therefore, to solve the ELD problem more effectively, exploring the algorithm with better optimization ability, higher solution accuracy, and more stable solution results is necessary.



Many excellent meta-heuristics have been proposed in recent years, such as the liver cancer algorithm (LCA) [26], slime mould algorithm (SMA) [27], moth search algorithm (MSA) [28], parrot optimizer (PO) [29], rime optimization algorithm (RIME) [30], and pelican optimization algorithm (POA) [31]. The POA is a new meta-heuristic intelligence algorithm proposed by Pavel Trojovský et al. in 2022. The algorithm has the characteristics of simple theory, easy implementation, and good solving performance, and is suitable for solving large-scale complex optimization problems, including ELD problems [32]. Therefore, many scholars have conducted in-depth research and applied it to different fields [33]. For example, Song, H.M. et al. [34] proposed an improved POA based on chaotic interference factors and essential mathematical functions and applied it to four engineering design problems. Eluri, R.K. et al. [35] proposed a chaotic binary search gecko optimization algorithm. By converting the basic algorithm into binary and chaotic search and enhancing the POA’s exploration and development process, Li, J. et al. [36] used elite reverse learning, introduced Levy flight to improve the POA, and applied it to microgrid scheduling. Xiong, Q. et al. [37] improved the POA by introducing fractional order chaotic sequence and applied it to the memo chaotic system parameter identification. Tuerxun et al. [38] optimized the generalized learning system’s parameters by improving the POA. Abdelhamid, M. et al. [39] proposed an improved pelican optimization algorithm and applied it to the protection of distributed generators. Chen, X. et al. [40] used the pelican optimization algorithm (POA) to optimize the neural network prediction model, which significantly improved the model’s accuracy. Zhang, C. et al. [41] proposed a symmetric cross-entropy multilevel threshold image segmentation method (MSIPOA) with a multi-strategy improved pelican optimization algorithm for global optimization and image segmentation tasks.



The above improvements have enhanced the application capability of the POA in their respective fields. However, according to the NFL (no free lunch) [42] theorem, there is no single algorithm that can solve all optimization problems [43]. Therefore, there is still room for further enhancement of the stability of the POA and its suitability for large-scale complex applications [44].



This paper proposes an improved pelican optimization algorithm (IPOA) to solve the ELD problem and improve the POA’s search performance and quality. This IPOA utilizes the crisscross optimization algorithm and introduces disturbance factors and dimensional variation strategy. First, in the local search phase, the crisscross optimization algorithm is integrated to expand the diversity of the population. After that, the optimal individual is introduced to enhance the guiding ability, accelerate the convergence speed, and add a disturbance factor to enhance the ability to jump out of the local optimal. Thirdly, the dimensional variation strategy is adopted to improve the optimal individual and speed up the algorithm’s convergence. In this paper, the effectiveness of the IPOA is tested on eight CEC2017 test functions. The experimental results show that the optimization performance and quality of the IPOA are better than those of the other four algorithms. At the same time, the IPOA is used to solve the ELD problem. It is applied in different units of 10, 40, and 80 dimensions, respectively. The experimental results show that the IPOA has good optimization ability and reliability and can effectively solve the problem of the high operating costs of power systems.



The structure of this paper is as follows: Section 2 establishes the mathematical model of the ELD and introduces the pelican optimization algorithm, including its improved version (IPOA), which is subsequently tested on the CEC2017 test functions, with the results analyzed. In Section 3, the IPOA is applied to the ELD problem with 10, 40, and 80 units, and its ability to solve practical problems is tested. Section 4 then summarizes the findings.




2. Materials and Methods


2.1. Relationship Work


2.1.1. Electric Power Economic Load Dispatch (ELD)


The problem of electric power economic load dispatch (ELD) is an important power system optimization problem at present. Minimizing the cost is the objective under the premise of satisfying the equation and inequality constraints. The following objectives and constraints were considered in the formulation of this paper. The objective function in the ELD problem can be expressed as:


  M i n   ∑  i = 1   N      F   i     ( p   i   )    



(1)







In Equation (1), N is the total number of generator sets,     F   i     is the fuel cost function of the ith generator set, and     p   i     is the generation capacity of the ith generator set according to the generation plan. The generator’s cost function is derived from data points acquired during the “hot run” test. The opening of the steam intake valve changes discontinuously when the load is adjusted in the thermal generator set. It will cause the efficiency and cost of the unit to fluctuate. This phenomenon is known as the valve point effect, and it stops the cost curve from being smooth. Therefore, the valve point effect must be included in the cost model to represent the power generation cost curve more accurately. Therefore, the actual output power of the total fuel cost can be expressed as [45]:


  F     p   i     =   a   i     p   i   2   +   b   i     p   i   +   c   i   + |   e   i   ∗ s i n     f   i   ∗     (   p   i   m i n   −   p   i   )   |  



(2)







In Equation (2),     F   i       p   i       represents the fuel cost function of the ith unit, and     p   i     represents the generation capacity of the ith unit according to the generation plan. The parameters a, b, and c are constants determined by the physical characteristics of the unit, the parameters e and f are coefficients describing the valve point effect, and     p   i   m i n     represents the minimum power output of the ith unit.



The capacity constraints must be met to ensure the safe operation of thermal power units; the formula is as follows:


    p   i   m i n   ≤   p   i   ≤   p   i   m a x    



(3)







In Equation (3),     p   i   m i n     and     p   i   m a x     represent the minimum and maximum power output of the ith power unit, respectively. The sum of power of each unit needs to be consistent with the total load because power transmission loss is ignored in this paper, and the load balance constraint formula is as follows:


    ∑  i = 1   N      p   i   =   p   d      



(4)







In Equation (4),     p   d     represents the load demand.



This paper presents a penalty mechanism method to deal with the constraints in the ELD problem to balance the objective function and constraints and transform the constrained problem into an unconstrained problem. The solution in the optimization process is forced to meet all constraints by the introduction of a penalty term into the objective function. The objective function after the introduction of the penalty term can be described as:


  M i n (   ∑  i = 1   N      f   i     ( p   i   )   + ε ∗ |   ∑  i = 1   N      p   i     −   p   d   | )  



(5)







In Equation (5),      ∑  i = 1   N       p   i       represents the total generating capacity of all units according to the power generation plan, and ε is the penalty function coefficient.




2.1.2. Pelican Optimization Algorithm


The pelican optimization algorithm is a natural heuristic algorithm proposed by Pavel Trojovský et al. in 2022 [31]. The model simulates pelicans’ hunting behavior. It can be divided into two stages: approaching prey (exploration stage) and surface flight (development stage).



	
Population initialization






Before hunting, it is necessary to initialize the pelican population, where each member represents a candidate solution represented by a vector. The mathematical model is shown in Equation (6):


    X   i , j   =   l   j   + r a n d ∗     u   j   −   l   j     ,         i = 1,2 , … ,   N ,         j = 1,2 … , m  



(6)







In Equation (6),     X   i , j     represents the position of the ith pelican in the j dimension, N is the population number of pelicans, m is the dimension of the problem, and rand represents the random number [0, 1].     u   j     and     l   j     represent the upper and lower bounds of the Jth dimension of the problem, respectively.



	
Exploration phase






In the first stage, the prey positions are randomly generated within the search space, and the pelicans determine the prey positions. If the objective function value of the pelicans is less than that of the prey, they move towards the prey; otherwise, they move away from the prey. Its mathematical model is shown in Equation (7):


    X   i     P   1     =         X   i   + r a n d ∗ ( P − I ∗   X   i   ) ,       F   p   <   F   i           X   i   + r a n d ∗     X   i   − P             ,     e l s e        



(7)







In Equation (7),     X   i     P   1       represents the position of the ith pelican after the first stage update, I represent 1 or 2 random integers, P represents the position of the prey, rand represents the random number [0, 1],     F   p     represents the fitness value of the prey, and     F   i     represents the fitness value of the ith pelican.



The pelican updates its position if the fitness value of the new position is better than the previous position after the pelican moves toward the prey. Its mathematical model is shown in Equation (8):


    X   i   =         X   i   n e w   ,       F   i   n e w   <   F   i           X   i         ,     e l s e        



(8)







In Equation (8),     X   i   n e w     represents the updated position of the ith pelican, and     F   i   n e w     represents the fitness value of the updated new position.



	
Development phase






In the second stage, after the exploration stage is completed, the pelicans enter the exploitation stage. Upon reaching the water surface, the pelicans capture the prey. During this stage, the algorithm searches for points within the neighborhood of the pelican’s position to achieve better convergence. Its mathematical model is shown in Equation (9):


    X   i     P   2     =   X   i   + R ∗   1 −   t   T     ∗   2 ∗ r a n d − 1   ∗   X   i    



(9)







In Equation (9),     X   i     P   2       represents the position of the ith pelican after the second stage update, R is the constant 0.2, rand represents the random number [0, 1], and t and T represent the current and maximum iterations, respectively.



In the development phase, the location is updated if the fitness value of the new location is better than the location before the move after the pelican location is updated as in the exploration phase. If not, it is left in place.





2.2. Improved Pelican Optimization Algorithm


In this paper, three strategies were introduced to improve the accuracy, convergence speed, and robustness of the POA.



2.2.1. Fusion of Improved Crisscross Optimization Algorithm for Local Search


Crisscross optimization algorithm (CSO) [46] is a new search algorithm proposed by An-bo Meng et al. in 2014. The CSO uses vertical and horizontal crosses to update the position of individuals in a population, inspired by the cross operation in the Confucian mean and genetic algorithm. The horizontal crossing is the arithmetic crossing of all dimensions between two different individuals, whose calculation formula is:


    M S   h c     i , d   =   r   1   ∗ X   i , d   +   1 −   r   1     ∗ X ( j , d ) +   C   1   ∗ ( X ( i , d ) − X ( j , d ) )  



(10)






    M S   h c     j , d   =   r   2   ∗ X   j , d   +   1 −   r   2     ∗ X ( i , d ) +   C   2   ∗ ( X ( j , d ) − X ( i , d ) )  



(11)







In Equations (10) and (11),   X   i , d     and   X   j , d     represent the positions of the d dimension of the ith and j individuals, respectively;     r   1     and     r   2     represent the random numbers between 0 and 1; and     C   1     and     C   2     represent the random numbers between −1 and 1.     M S   h c     i , d     and     M S   h c     j , d     represent the offspring produced after horizontal crossing.



A vertical crossover is an arithmetic crossover that operates on all individuals between two different dimensions, calculated by:


    M S   v c     i , d 1   = r ∗ X   i ,   d   1     +   1 − r   ∗ X ( i ,   d   2   )  



(12)







In Equation (12),   X   i ,   d   1       and     X   i ,   d   2       represent the positions of the     d   1     and     d   2     dimensions of the ith individual respectively, r represents the random number between 0 and 1, and     M S   v c     i , d 1     represents the offspring produced after vertical crossing.



The POA easily falls into the local optimal because the pelican individual moves within a small range in the local search process. The CSO is integrated into the local search stage of the POA to enhance its ability to jump out of the local optimal because of strong global detection ability and local development ability. In the original POA, the current individual will be far away from the randomly generated individual when the fitness value of the randomly generated individual is less than that of the current individual. The randomly generated individuals are not fully utilized. In this paper, the horizontal crossover in the CSO is introduced to make full use of the random individuals, guide the pelican individuals to move to the target position, and enhance the local development ability of the algorithm and its ability to jump out of the local optimal. The improved formula is as follows:


    X   i     p   1     ( i , j ) =   r   1   ∗ X ( i , j ) +   1 −   r   1     ∗ P ( i , j ) +   sin  ⁡      r   2       ∗ ( X ( i , j ) − P ( i , j ) )  



(13)







In Equation (13),   X   i , j     represents the current individual;   P ( i , j )   represents the random individual, i.e., the prey;     r   1     represents the random number between 0 and 1; and     r   2     represents the random number between 0 and 2π.




2.2.2. Improved Global Search


The pelicans only use their current position to update their positions according to the POA principle in the global search stage. The position of the optimal individual is not fully utilized, which makes the development ability of the algorithm insufficient. This paper introduces the optimal individual in the global search stage of the POA to enhance the guidance ability of the overall optimization and increase the ability of the algorithm. At the same time, the adaptive disturbance factor G is introduced to avoid falling into local optimization, and the improved formula is as follows:


    X   i     P   2     =   Q F ∗ X   i   + ∗   2 ∗ r a n d − 1   ∗   (   X   b e s t   − X   i   ) + s i n ⁡ ( r ) ∗ G  



(14)






  Q F   t   =   2 ∗ r a n d − 1     t     ( 1 − T )   2        



(15)






  G = 2 ∗ ( 1 −   t   T   )  



(16)







In Equations (14), (15), and (16), QF represents the quality function of the balanced search strategy [47], r represents the random number from 0 to 2π, rand represents the random number [0, 1], and t and T represent the current and maximum iterations, respectively.




2.2.3. Dimensional Variation Strategy


Like other swarm intelligence algorithms, the POA is prone to local optimality and slow convergence. The analysis shows that the main reason is that the algorithm does not make full use of the guiding role of the optimal individual. Therefore, this paper improves the population diversity by mutating the optimal individual and guiding the population to evolve to the optimal position to improve its convergence speed. At the same time, the strategy of dimensional-by-dimension variation is adopted to update the optimal individual to avoid the problem of inter-dimensional interference in the case of high dimensions. The calculation formula is as follows:


    X   n e w   d   =   X   b e s t   d   +   T D ( t )   d   ∗ r a n d  



(17)







In Equation (17),     X   n e w   d     represents the position of the optimal individual in the D-dimension after updating,     X   b e s t   d     represents the position of the optimal individual in the D-dimension, and TD(t) represents the T-distribution with t degrees of freedom [48]. t is 25 in this paper.     T D ( t )   d     represents the random number generated by t-distribution in the D dimension. To improve the convergence speed, this paper uses the greedy principle to choose whether to use the new position instead of the original optimal position. The specific process is demonstrated in Algorithm 1.



	Algorithm 1. Mutates Dimensionally



	1: Generate d random numbers of T-distribution with 25 degrees of freedom parameter.

2: for i = 1: d

  3 :         The   new   solution   is   obtained   after   calculating   the   variation   according   to   Equation   ( 17 )     X   n e w   d    

4:       boundary condition procedure

5:       if fnew < fbest

  6 :         Replace   the   original     X   b e s t     d      with   the   new   position     X   n e w   d    

  7 :         Calculate   the   fitness   value   based   on   the   new   position   X   b e s t    

8:   end if

9: end for

10: Return the best fitness value and the best individual









2.2.4. IPOA Implementation Process


The specific implementation flowchart of the IPOA is shown in Figure 1, based on the description of the POA improvements in Section 2.1, Section 2.2, Section 2.3.





2.3. IPOA Algorithm Performance Test and Analysis


2.3.1. Experimental Environment and Test Function


Simulation environment: 64-bit Windows 10 operating system, processor Intel(R) Core (TM) i5-8265U, main frequency 1.80 GHz, memory 8 GB, programming software MATLAB R2023b. This paper uses CEC2017 test functions to verify the algorithm. The test functions are shown in Table 1, where     f   1     is a unimodal function,     f   2    –    f   4     are simple multimodal functions,     f   5     and     f   6     are mixed mode functions, and     f   7     a n d     f   8     are combined functions. The algorithm conducted 30 independent experiments on each test function to reduce the randomness and contingency of the algorithm.




2.3.2. Comparisons with POA, PSO, SSA, and WOA


Four algorithms were selected for comparison with the IPOA to validate its effectiveness. First is the particle swarm optimization algorithm (PSO) [49], which is a classic optimization method, serving as a cornerstone of optimization techniques, and has been widely applied across various domains since its inception. Its performance in both convergence speed and accuracy is exceptional. Additionally, the IPOA is compared with the original pelican optimization algorithm (POA), the sparrow search algorithm (SSA) [50], and the whale algorithm (WOA) [51]. The algorithm parameters were set to the same values as those in the original literature to ensure the fairness of the comparison. The population was 30, and the maximum number of iterations was 1000. The optimization performance of the five algorithms were compared in four respects: best value, worst value, average value, and standard deviation (see Table 2). The convergence curves of each algorithm on the test function are shown in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9.



The optimization results of the IPOA in eight different tests are superior to those of the POA, PSO, SSA, and WOA, according to the experimental results in Table 2. The IPOA can simultaneously find the theoretical optimal values of the functions     f   3    ,     f   4    , and     f   7    , respectively. It is very close to the theoretical optimal values when compared with the other algorithms. Among them,     f   1     is a unimodal function with no local minimum and only a global minimum. In comparison with other algorithms, the IPOA demonstrates significant advantages. As shown in Figure 2, both the SSA and the IPOA exhibit fast convergence speeds, but the IPOA achieves higher accuracy, indicating its strong global convergence capability.     f   2    ,     f   3    , and     f   4     are multi-modal functions with local minimums. The standard deviation of the IPOA is more stable, though the IPOA and the SSA can both find optimal values at     f   2    ,     f   3    , and     f   4     in Table 2. From Figure 4 and Figure 5, it can be observed that the IPOA not only can find the optimal solution but also has a faster convergence speed. From Figure 3, it can be seen that the convergence speed and accuracy of these algorithms are very close, but the IPOA has higher accuracy. This reflects the IPOA’s stronger ability to escape the local optimal compared to the other algorithms.     f   5     and     f   6     are mixed functions of random subfunctions. The hybrid function comprises three or more CEC2017 reference functions, rotated and shifted. Each subfunction is assigned a corresponding weight, which increases the difficulty of the algorithm in finding the optimal solution.     f   7     and     f   8     are composite functions consisting of at least three mixed functions or CEC2017 reference functions after rotation and shifting. Each subfunction has an additional deviation value and is then assigned a weight. These combined functions further increase the optimization difficulty of the algorithm. From Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, it can be seen that the IPOA converges significantly faster compared to the other four algorithms, and the accuracy of the solutions is also higher. Whether observed horizontally or vertically, the IPOA outperforms the other four algorithms, indicating its strong convergence performance and excellent exploration ability.



The improvements incorporated the crisscross optimization algorithm in the local search stage to improve the diversity of the population; at the same time, the optimal individual is introduced in the global search stage to enhance the guiding ability of the whole population, and the disturbance factor is added to increase the ability to jump out of the local optimal; finally, the optimal individual is adopted by the dimensional-by-dimension variation strategy to guide the evolution to the optimal position better, thereby improving the convergence speed of the algorithm, leading to better performance of the IPOA compared to the other algorithms.





2.4. IPOA Solves the Problem of Economic Dispatch


Firstly, the relevant parameters of the IPOA algorithm need to be adjusted in the process of solving the ELD problem. The population is randomly generated with the upper and lower limits of the power load as constraints, and the population represents the unit output. The objective function proposed after considering the penalty coefficient is taken as the fitness function, and the number of units is taken as the solution dimension. Secondly, the IPOA is used to update the population and find the individual that can minimize the fitness function. Then, Formula (1) is used to calculate the minimum cost. Finally, the optimal load distribution and coal consumption of each unit are outputted. The specific process is demonstrated in Algorithm 2.



	Algorithm 2. IPOA for ELD



	1: Input: Population size, Dimension, variable bounds Maximum failure count

2: Initialization: Initialize population X and Calculate fitness value using Equation (5)

3: for i = 1: Max_iterations

4:       for j = 1: N

5:         Randomly select an individual

6:         if fit(p) < fit(j)

7:       Update positions by Equation (7)

8:         else

9:       Update positions by Equation (13)

10:        end if

11:        Update positions by Equation (14)

12:        Use algorithm1 update the global optimum solution

13:        Handling boundary conditions

14:        Calculating individual fitness values using Equation (5)

15:        Update the global optimum solution

16:   end for

17: end for

18: Calculate fuel cost using Equation (1)

19: Output: Optimal cost, Unit’s output










3. Experimental Results and Discussion


In this paper, 10 small power plants and 40 medium power plants were selected to evaluate the effectiveness of the IPOA algorithm. The test results of the IPOA were compared with those of the POA, the Harris hawk’s optimization (HHO) [52], the SSA, and the WOA to verify the solving ability of the IPOA more comprehensively. The parameters of the algorithm were set to the same values as in their respective original literature in order to ensure the fairness of comparison, and the number of runs, population size, spatial dimension, and maximum number of iterations were made consistent. That is, the population was 30, the maximum number of iterations was 1000, and the algorithm was run independently 30 times.



3.1. 10 Units


In this case study, the ELD system was composed of 10 generator sets; the coal consumption characteristic parameters of the unit and the upper and lower limits of the unit load [53] are shown in Table 3. Unit data for the 10 generating units power system with VPE. The total load demand was 2700 MW.



Different algorithms cannot generate feasible solutions meeting the constraint conditions simultaneously because of the same penalty function coefficient. Different penalty function coefficients were applied to the different algorithms based on the experimental results. For the IPOA it was 0.500, for the SSA, WOA, HHO it was 0.531, and for the POA it was 0.610. After 30 independent experiments of each algorithm, the optimal output of each unit is shown in Table 4. The total fuel cost of the IPOA was the lowest at 651.8784 ($/h), as seen in Table 5. Compared with the traditional POA algorithm, the coal consumption was reduced by 0.1903 ($/h), a decrease of 0.0292%. Compared with the whale algorithm (WOA), the coal consumption was reduced by 1.6003 ($/h), a decrease of 0.2455%. And it can be seen from Figure 10 that the IPOA demonstrated faster convergence speed and better convergence results. Reducing total fuel cost can improve the efficiency of a power plant and reduce its economic costs. Compared with the other four algorithms, the standard deviation of the IPOA was the smallest, which indicates that the improved pelican optimization algorithm has good development ability and strong stability in dealing with ELD problems.




3.2. 40 Units


In this section, a medium-sized power plant of 40 units is taken as an example, with a load demand of 10,500 MW. The coal consumption characteristic parameters of the unit and the upper and lower limits of the unit load [54] are shown in Table 6. The penalty function coefficients of the IPOA, WOA and SSA were 17.5, HHO was 16, and POA was 21.5. The optimal output of each unit is shown in Table 7 after 30 independent experiments.



The total fuel cost of the IPOA was the lowest at 121,591.3068 ($/h), as shown in Table 8. The coal consumption was reduced by 3316.1208 ($/h) compared with the traditional POA algorithm, a decrease of 2.7273%, and the effect was more significant than that of the WOA. The coal consumption decreased by 4288.7396 ($/h), or 3.5272%. The standard deviation of the IPOA was the smallest among the five algorithms, the convergence speed of the IPOA in the early stage was second only to the SSA, as seen in Figure 11, and the convergence speed in the later stage was the fastest, all of which indicate that the IPOA has faster convergence speed and better convergence results. This is mainly because the IPOA adopts a dimensional-by-dimension variation strategy to avoid the problem of inter-dimensional interference in the case of high dimensions, which allows it to perform well in practical problems in high dimensions. The longitudinal crossover strategy was introduced to improve the diversity of the population and the stability of the algorithm. In the local development stage, the optimal individual and disturbance factor were introduced to improve the convergence ability of the algorithm.




3.3. 80 Units


In this section, the system was built by repeating the 40-unit system twice, with a load requirement of 21,000 MW, by taking a large power plant with 80 units as an example. The local minima of the solutions increase as the number of solutions increases. Therefore, the solution algorithm needs a stronger global search ability to overcome the precocious convergence problem. The penalty function coefficients of each algorithm were as follows: 17.5 for the IPOA, HHO, WOA and SSA, and 20.5 for the POA. Each algorithm underwent 30 independent experiments.



The total fuel cost of the IPOA was 244,105.2816 ($/h), as shown in Table 9; the coal consumption was reduced by 8968.1651 ($/h) compared with the traditional POA algorithm, a reduction of 3.6739%, and by 2427.0296 ($/h) compared with the second-best sparrow algorithm (SSA), a decrease of 0.9943%. The application results of the IPOA in large units were better than those in small and medium-sized units, indicating that IPOA has significant advantages in dealing with high-dimensional problems.





4. Conclusions


This paper proposes an improved pelican optimization algorithm (IPOA) to optimize the original POA by using longitudinal crossover and dimensional variation strategies and introducing optimal individuals and disturbance factors in the global phase. In this paper, the IPOA was tested on eight CEC2017 test functions, and the test results show that the algorithm can jump out of the local area. Secondly, the IPOA was applied to the economic scheduling problem of thermal power units with multiple practical constraints, and its effectiveness was verified with 10 units, 40 units, and 80 units, respectively. In the case of low-dimension 10 units, the coal consumption was reduced by 0.0292% compared with the original POA. In the case of 40 units, it was reduced by 2.7273% compared with the original POA. In the case of high-dimension 80 units, it was reduced by 3.6739% compared with the POA; from Figure 12, it can be observed that compared to the cases with 10 units and 40 units, the IPOA exhibited a more significant advantage in both convergence speed and convergence accuracy, indicating that it has a significant advantage in solving high-dimensional problems. The IPOA showed that the improved method has good performance in solving the complex non-convex ELD problem, which can significantly reduce coal consumption and improve the economic benefit of power plants. The algorithm is promising and can be applied to other complex practical problems. In the follow-up study, we will apply the IPOA to the economic scheduling problem of multi-fuel and multi-constrained thermal power units to better verify the algorithm’s performance.
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Figure 1. Flowchart of the IPOA. 
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Figure 2.     f   1     iteration diagram. 
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Figure 3.     f   2     iteration diagram. 
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Figure 4.     f   3     iteration diagram. 
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Figure 5.     f   4     iteration diagram. 
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Figure 6.     f   5     iteration diagram. 
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Figure 7.     f   6     iteration diagram. 






Figure 7.     f   6     iteration diagram.



[image: Biomimetics 09 00277 g007]







[image: Biomimetics 09 00277 g008] 





Figure 8.     f   7     iteration diagram. 
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Figure 9.     f   8     iteration diagram. 
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Figure 10. Convergence curve of unit 10. 






Figure 10. Convergence curve of unit 10.



[image: Biomimetics 09 00277 g010]







[image: Biomimetics 09 00277 g011] 





Figure 11. Convergence curve of unit 40. 
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Figure 12. Convergence curve of unit 80. 






Figure 12. Convergence curve of unit 80.
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Table 1. Test functions.
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Functions

	
Best Value

	
Types






	
    f 1    

	
Shifted and Rotated Bent Cigar

	
100

	
Unimodal




	
     f   2     

	
Shifted and Rotated Rastrigin’s

	
400

	
Simple Multimodal




	
     f   3     

	
Shifted and Rotate Lunacek Bi_Rastrigin

	
600




	
     f   4     

	
Shifted and Rotated Schwefel’s

	
900




	
     f   5     

	
Hybrid Function 2 (N = 3)

	
1100

	
Hybrid




	
     f   6     

	
Hybrid Function 6 (N = 5)

	
1600




	
     f   7     

	
Composition Function 1 (N = 3)

	
2000

	
Composition




	
     f   8     

	
Composition Function 7 (N = 6)

	
2600











 





Table 2. Evaluation results of test functions.






Table 2. Evaluation results of test functions.





	
Function

	
Index

	
Algorithm




	
IPOA

	
POA

	
PSO

	
WOA

	
SSA






	
     f   1     

	
Best

	
100.7108

	
6097

	
57,929,542

	
592,934.6706

	
133.5179




	
Worst

	
1226.4633

	
1,944,227,684

	
2,850,258,819

	
74,471,522.3021

	
12,381.7875




	
Mean

	
4768.0518

	
219,781,765

	
792,680,137

	
9,361,246.7600

	
4438.0798




	
Std

	
1560.1471

	
495,103,154

	
831,763,818

	
15,616,489.4653

	
3567.2322




	
     f   2     

	
Best

	
400.0002

	
400.7755

	
411.1083

	
400.6303

	
400.1664




	
Worst

	
473.2955

	
496.9909

	
825.9439

	
563.8685

	
472.0999




	
Mean

	
404.1049

	
418.4436

	
505.0500

	
440.8641

	
404.6719




	
Std

	
13.1237

	
21.6410

	
102.3337

	
47.2803

	
12.7660




	
     f   3     

	
Best

	
600.0000

	
607.4886

	
608.6856

	
610.2782

	
600.0000




	
Worst

	
601.4796

	
638.7122

	
635.2207

	
657.3534

	
613.0539




	
Mean

	
600.1154

	
621.6511

	
618.6479

	
634.4335

	
602.8292




	
Std

	
0.33723

	
9.2482

	
6.2520

	
11.8559

	
3.8600




	
     f   4     

	
Best

	
900.0000

	
906.0017

	
931.4729

	
921.8618

	
900.0000




	
Worst

	
929.6692

	
1387.7745

	
1293.9060

	
3566.0554

	
1829.3862




	
Mean

	
903.8361

	
1092.0306

	
1008.2076

	
1612.5818

	
1116.2890




	
Std

	
7.1136

	
141.2868

	
65.9039

	
643.7356

	
308.2101




	
     f   5     

	
Best

	
1100.0366

	
1109.0200

	
1171.9598

	
1123.9527

	
1103.0719




	
Worst

	
1137.6526

	
1315.8967

	
1903.2485

	
1568.3389

	
1258.4352




	
Mean

	
1116.7835

	
1171.1777

	
1345.1482

	
1208.2003

	
1145.7665




	
Std

	
10.4314

	
49.0942

	
165.8870

	
90.6109

	
41.5469




	
     f   6     

	
Best

	
1600.7438

	
1607.6178

	
1636.0000

	
1622.9391

	
1601.4464




	
Worst

	
1960.8268

	
1938.6274

	
2246.0736

	
2304.1432

	
2139.5167




	
Mean

	
1689.9921

	
1763.1663

	
1804.9491

	
1913.4186

	
1832.8280




	
Std

	
115.7566

	
106.2803

	
157.1715

	
187.8456

	
138.5551




	
     f   7     

	
Best

	
2000.0000

	
2024.1393

	
2057.8897

	
2043.5482

	
2005.5991




	
Worst

	
2140.3403

	
2162.7398

	
2244.1384

	
2450.8169

	
2278.7248




	
Mean

	
2037.2731

	
2083.7765

	
2127.0903

	
2191.1716

	
2088.4404




	
Std

	
26.1220

	
40.1675

	
58.2918

	
88.8603

	
67.2939




	
     f   8     

	
Best

	
2600.0043

	
2608.7520

	
2967.3881

	
2628.1123

	
2800.0000




	
Worst

	
3165.7513

	
3904.5444

	
4257.0824

	
4786.9540

	
3395.5483




	
Mean

	
2966.1859

	
3023.9175

	
3329.9615

	
3585.4080

	
4483.6695




	
Std

	
134.8942

	
241.6267

	
450.6247

	
574.6367

	
532.1813











 





Table 3. Unit data for the 10 generating units power system with VPE.
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	Units
	Pmin
	Pmax
	a
	b
	c
	e
	f





	1
	100
	250
	0.002176
	−0.3975
	26.97
	0.02697
	−3.975



	2
	50
	230
	0.004194
	−1.269
	118.4
	0.1184
	−12.69



	3
	200
	500
	0.00001176
	0.4864
	−95.14
	−0.05914
	4.864



	4
	99
	265
	0.005935
	−2.338
	266.8
	0.2668
	−23.38



	5
	190
	490
	0.0001498
	0.4462
	−53.99
	−0.05399
	4.462



	6
	85
	265
	0.005935
	−2.338
	266.8
	0.2668
	−23.38



	7
	200
	500
	0.0002454
	0.3559
	−43.35
	−0.04335
	3.559



	8
	99
	265
	0.005935
	−2.338
	266.8
	0.2668
	−23.38



	9
	130
	440
	0.0006121
	−0.0182
	14.23
	0.01423
	−0.1817



	10
	200
	490
	0.0000416
	0.5084
	−61.13
	−0.06113
	5.084










 





Table 4. Optimal dispatch for the 10 generating units power system.
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Units

	
Algorithms




	
IPOA

	
POA

	
HHO

	
SSA

	
WOA






	
     P   1     

	
203.5350

	
202.8740

	
211.5970

	
202.7439

	
220.4145




	
     P   2     

	
210.4219

	
210.4247

	
215.8357

	
210.9169

	
207.4651




	
     P   3     

	
200.6466

	
200.0152

	
206.2645

	
200.0000

	
224.0729




	
     P   4     

	
238.8801

	
237.3994

	
238.8798

	
239.5520

	
242.8912




	
     P   5     

	
185.0712

	
194.4705

	
215.2235

	
190.0000

	
200.0707




	
     P   6     

	
236.0326

	
238.9872

	
238.5807

	
238.3172

	
235.6278




	
     P   7     

	
273.2652

	
269.0280

	
267.1062

	
282.0928

	
226.3169




	
     P   8     

	
238.3423

	
238.6122

	
245.7352

	
237.8052

	
239.6864




	
     P   9     

	
423.9302

	
418.0496

	
405.2114

	
408.7595

	
413.4965




	
     P   10     

	
489.8126

	
489.9749

	
454.6139

	
489.8125

	
489.9581











 





Table 5. Fuel cost ($/h) for the 10 generating unit power system.
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Algorithms

	
Statistics




	
Min Cost

	
Max Cost

	
Mean Cost

	
SD






	
IPOA

	
651.8784

	
655.5161

	
652.6444

	
1.0014




	
POA

	
652.0687

	
654.4392

	
659.458

	
1.7685




	
HHO

	
653.4787

	
662.7219

	
679.2167

	
6.3263




	
SSA

	
651.9516

	
653.2228

	
656.5612

	
1.614




	
WOA

	
653.7402

	
672.8395

	
699.5087

	
12.5738











 





Table 6. Unit data for the 40 generating units power system with VPE.






Table 6. Unit data for the 40 generating units power system with VPE.





	Units
	Pmin
	Pmax
	a
	b
	c
	e
	f





	1
	36
	114
	0.00690
	6.73
	94.705
	100
	0.084



	2
	36
	114
	0.00690
	6.73
	94.705
	100
	0.084



	3
	60
	120
	0.02028
	7.07
	309.540
	100
	0.084



	4
	80
	190
	0.00942
	8.18
	369.030
	150
	0.063



	5
	47
	97
	0.01140
	5.35
	148.890
	120
	0.077



	6
	68
	140
	0.01142
	8.05
	222.330
	100
	0.084



	7
	110
	300
	0.00357
	8.03
	287.710
	200
	0.042



	8
	135
	300
	0.00492
	6.99
	391.980
	200
	0.042



	9
	135
	300
	0.00573
	6.60
	455.760
	200
	0.042



	10
	130
	300
	0.00605
	12.90
	722.820
	200
	0.042



	11
	94
	375
	0.00515
	12.90
	635.200
	200
	0.042



	12
	94
	375
	0.00569
	12.80
	654.690
	200
	0.042



	13
	125
	500
	0.00421
	12.50
	913.400
	300
	0.035



	14
	125
	500
	0.00752
	8.84
	1760.400
	300
	0.035



	15
	125
	500
	0.00708
	9.15
	1728.300
	300
	0.035



	16
	125
	500
	0.00708
	9.15
	1728.300
	300
	0.035



	17
	220
	500
	0.00313
	7.97
	647.850
	300
	0.035



	18
	220
	500
	0.00313
	7.95
	649.690
	300
	0.035



	19
	242
	550
	0.00313
	7.97
	647.830
	300
	0.035



	20
	242
	550
	0.00313
	7.97
	647.810
	300
	0.035



	21
	254
	550
	0.00298
	6.63
	785.960
	300
	0.035



	22
	254
	550
	0.00298
	6.63
	785.960
	300
	0.035



	23
	254
	550
	0.00284
	6.66
	794.530
	300
	0.035



	24
	254
	550
	0.00284
	6.66
	794.530
	300
	0.035



	25
	254
	550
	0.00277
	7.10
	801.320
	300
	0.035



	26
	254
	550
	0.00277
	7.10
	801.320
	300
	0.035



	27
	10
	150
	0.52124
	3.33
	1055.100
	120
	0.077



	28
	10
	150
	0.52124
	3.33
	1055.100
	120
	0.077



	29
	10
	150
	0.52124
	3.33
	1055.100
	120
	0.077



	30
	47
	97
	0.01140
	5.35
	148.890
	120
	0.077



	31
	60
	190
	0.00160
	6.43
	222.920
	150
	0.063



	32
	60
	190
	0.00160
	6.43
	222.920
	150
	0.063



	33
	60
	190
	0.00160
	6.43
	222.920
	150
	0.063



	34
	90
	200
	0.00010
	8.95
	107.870
	200
	0.042



	35
	90
	200
	0.00010
	8.62
	116.580
	200
	0.042



	36
	90
	200
	0.00010
	8.62
	116.580
	200
	0.042



	37
	25
	110
	0.01610
	5.88
	307.450
	80
	0.098



	38
	25
	110
	0.01610
	5.88
	307.450
	80
	0.098



	39
	25
	110
	0.01610
	5.88
	307.450
	80
	0.098



	40
	242
	550
	0.00313
	7.97
	647.830
	300
	0.035










 





Table 7. Optimal dispatch of IPOA for the 40 generating units power system.






Table 7. Optimal dispatch of IPOA for the 40 generating units power system.





	Units
	Outputs
	Unit
	Outputs
	Unit
	Outputs
	Unit
	Outputs





	     P   1     
	113.1496
	     P   11     
	243.6059
	     P   21     
	523.2740
	     P   31     
	190.0000



	     P   2     
	114.0000
	     P   12     
	94.00949
	     P   22     
	523.2890
	     P   32     
	190.0000



	     P   3     
	97.40526
	     P   13     
	304.5174
	     P   23     
	523.2808
	     P   33     
	190.0000



	     P   4     
	179.7357
	     P   14     
	304.5203
	     P   24     
	523.2905
	     P   34     
	200.0000



	     P   5     
	94.50869
	     P   15     
	304.5219
	     P   25     
	523.2831
	     P   35     
	167.4762



	     P   6     
	140.0000
	     P   16     
	304.5212
	     P   26     
	523.2792
	     P   36     
	200.0000



	     P   7     
	259.6008
	     P   17     
	489.2985
	     P   27     
	10.00649
	     P   37     
	110.0000



	     P   8     
	284.6023
	     P   18     
	489.2820
	     P   28     
	10.00295
	     P   38     
	110.0000



	     P   9     
	284.6312
	     P   19     
	511.2877
	     P   29     
	10.00000
	     P   39     
	110.0000



	     P   10     
	130.0066
	     P   20     
	511.2906
	     P   30     
	97.00000
	     P   40     
	511.2834










 





Table 8. Fuel cost ($/h) for the 40 generating unit power system.
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Algorithms

	
Statistics




	
Min Cost

	
Max Cost

	
Mean Cost

	
SD






	
IPOA

	
121,591.3068

	
123,933.37

	
122,659.9709

	
654.9886




	
POA

	
124,907.4276

	
129,260.1887

	
126,473.6095

	
937.3753




	
HHO

	
123,387.6705

	
128,381.2468

	
125,532.5618

	
1075.9279




	
SSA

	
122,693.0062

	
127,500.1279

	
124,321.0393

	
1124.6677




	
WOA

	
125,880.0464

	
134,779.6761

	
129,308.2354

	
1817.6021











 





Table 9. Fuel cost ($/h) for the 80 generating unit power system.






Table 9. Fuel cost ($/h) for the 80 generating unit power system.





	
Algorithms

	
Statistics




	
Min Cost

	
Max Cost

	
Mean Cost

	
SD






	
IPOA

	
244,105.2816

	
249,955.5348

	
247,043.7003

	
1493.4631




	
POA

	
253,073.4467

	
258,114.9399

	
255,577.6569

	
1279.7300




	
HHO

	
249,554.8627

	
257,240.0592

	
252,846.8087

	
1948.0503




	
SSA

	
246,532.3112

	
251,589.9268

	
248,650.6662

	
1167.5877




	
WOA

	
258,734.1637

	
271,925.7694

	
263,327.7722

	
3230.8254
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