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Abstract: A squaramide-based organocatalyst for asymmetric Michael reactions has been tested as a
chiral solvating agent (CSA) for 26 carboxylic acids and camphorsulfonic acid, encompassing amino
acid derivatives, mandelic acid, as well as some of its analogs, propionic acids like profens (ketoprofen
and ibuprofen), butanoic acids and others. In many cases remarkably high enantiodifferentiations
at 1H, 13C and 19F nuclei were observed. The interaction likely involves a proton transfer from the
acidic substrates to the tertiary amine sites of the organocatalyst, thus allowing for pre-solubilization
of the organocatalyst (when a chloroform solution of the substrate is employed) or the simultaneous
solubilization of both the catalyst and the substrate. DOSY experiments were employed to evaluate
whether the catalyst–substrate ionic adduct was a tight one or not. ROESY experiments were
employed to investigate the role of the squaramide unit in the adduct formation. A mechanism of
interaction was proposed in accordance with the literature data.

Keywords: squaramide; chiral analysis; chiral auxiliary; NMR; enantiodiscrimination; diffusion
coefficient; Overhauser effect

1. Introduction

The pursuit of new, efficient and versatile direct methods for enantiomer differen-
tiation remains a central focus of chemical researchers, with both enantioselective chro-
matography [1–3] and nuclear magnetic resonance (NMR) spectroscopy [4–8] playing a
preeminent role. NMR-based methods for chiral analysis rely on the use of chiral auxiliaries
devoted to remove inherent isochrony of enantiomers by converting them into intrinsically
anisochronous diastereomers. This is achieved through the use of chiral derivatizing agents
(CDAs) to produce covalently bonded diastereomeric derivatives, and chiral solvating
agents (CSAs) or chiral lanthanide shift reagents (CLSRs), diamagnetic and paramagnetic,
respectively, to differentiate enantiomers via noncovalent interactions occurring in solution.
CSAs emerge for practicality of use since, like CLSRs, they are simply mixed with the
chiral substrate in a suitable solvent directly in the NMR tube, and no significant line
broadening effects are observed in the corresponding NMR spectra, in contrast to what
typically observed with paramagnetic systems. The literature on CSAs is huge, spanning
from low-molecular weight systems to flexible structurally complex molecules able to
embrace differently sized chiral substrates, in favor of enantiodiscriminating versatility.
In addition, preorganized rigid CSAs, being highly responsive to stereoelectronic features
of stereoisomeric species, are endowed with enhanced enantiodiscriminating selectivity
and efficiency. Within the realm of chiral auxiliaries harnessing noncovalent interactions in
chiral discrimination processes, a foremost position is undoubtedly held by chiral liquid
crystals, distinguished for their versatility [9,10]. Among low-molecular weight CSAs,
amides represent historically [6,11] preeminent CSAs by virtue of their hydrogen bond
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donor-acceptor features. Subsequently, the development of CSAs with improved NH acid-
ity and, consequently, enhanced hydrogen bond donor propensity was achieved as seen in
ureas [12], and even more so in thioureas [13,14]. These functionalities have been embedded
in several kinds of chiral platforms, both synthetic and coming from natural sources [15].

The remarkable significance of chiral carboxylic acids as constituents of numerous
natural products and pharmaceutically relevant compounds has spurred the development
of CSAs for NMR spectroscopy, primarily aimed at enantiodiscrimination within this
compound class [4–7,16–30].

Squaramides are derivatives of squaric acid, in which the OH groups have been
substituted with an NHR (secondary squaramide) or an NRR’ group (tertiary squaramide).
They have proven to be applicable across various domains of chemical research, spanning
from organocatalysis to supramolecular chemistry [31–34].

In particular, squaramide-based chiral compounds, which have emerged as effi-
cient organocatalysts in several enantioselective reactions [31,33,34], are an unexplored
CSA platform.

The squaramide scaffold has gained a lot of attention as a H-bonding donor–acceptor
alternative to ureas and thioureas in organocatalysis [35]. Compared to the thiourea moi-
ety, the squaramide is slightly larger, with a distance between the NH protons of around
2.7 Å; the structure of the cyclobutenedione ring also induces a convergent orientation
of the NH groups by approximately 6 degrees [36]. Being endowed with two carbonyl
groups, squaramides can act as a H-bond acceptor. Secondary squaramides, on the other
hand, can also act as H-bond donors. It is recognized [37] that the donor/acceptor H-bond
interactions between the squaramide unit and the substrate lead to a resonance-stabilized
system [38,39]. Furthermore, the hydrogen bond donor features of the two NH groups, by
virtue of their enhanced acidity, are superior to those of ureas and thioureas. These latter
features (resonance stabilization and enhanced acidity) may lead to interaction energies
far higher than those observed for ureas [37]. The hydrogen bonding donor capabilities
of the squaramide units have been exploited for the synthesis of hydrogen bonding anion
receptors to tackle malfunctioning ion channels, as first reported by Busschaert et al. [40].
Squaramide systems have also been used to coordinate carboxylate anions via hydro-
gen bonding, showing association constants toward the anions similar to those of urea
systems [41].

Kucherenko et al. prepared the bifunctional amine-squaramide system I represented
in Figure 1 as an organocatalyst for enantioselective Michael reactions, together with other
C2 symmetric squaramide–amine derivatives [42].
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Figure 1. Chemical structure of organocatalyst I.

Although compound I is not the most efficient among the tested organocatalysts, it
represents an attractive system owing to the presence of the squaramide unit and the two
basic amine sites. Indeed, the electronic features of the squaramide unit make this moiety
an interesting system, while the two basic amine sites can be protonated by acidic systems
and work cooperatively with the two NH groups to form diastereomeric salts with chiral
carboxylic acids. Such a kind of stereo-electronic features suggested to us to explore the
potentialities of amine–squaramide I as a CSA for the NMR differentiation of polyfunctional
carboxylic acids, including hydroxy acids and amino acids (Figure 2). In this paper, the
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NMR enantiodifferentiation of several carboxyl acids will be described. Nonequivalence
(defined as ∆∆δ = |∆δR − ∆δS|, where ∆δR and ∆δS are the complexation shifts (δmixture
− δfree) for the R- and S-enantiomer, respectively) data on different nuclei (1H, 13C and
19F) will be presented along with DOSY (diffusion-ordered spectroscopy) and ROESY
(rotating-frame nuclear Overhauser enhancement spectroscopy) experiments that will
serve as evidence of the interaction between compound I and the investigated substrates.
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2. Results
2.1. Synthesis

Compound I was prepared according to Scheme 1, following the protocol of Kucherenko
and co-workers [42], which was modified as far as reaction and work-up solvents are concerned.
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Scheme 1. Synthesis of squaramide I.

The reaction, performed on a gram-scale, proceeded smoothly and the product, pre-
cipitated from the reaction mixture, was isolated into a chemically pure form by filtration.
Starting from 0.575 g of 3,4-diethoxycyclobut-3-ene-1,2-dione (3.38 mmol) and using a slight
excess of chiral diamine, 1.01 g of I (2.79 mmol, 82% yield) was obtained. Spectroscopic
data are reported in the Materials and Methods section.

2.2. Enantiodiscrimination Experiments on Amino Acid Derivatives

Because of their importance in nature as chiral building blocks for proteins and pep-
tides, the investigation of the enantiodiscriminating ability of compound I initially focused
on amino acid derivatives as substrates. Deuterated chloroform (CDCl3) has been used as
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the main solvent for this investigation, as CDCl3 is a solvent of choice in NMR enantiodis-
crimination experiments. Non-derivatized amino acids showed very low solubility even
in the presence of squaramide I that, in principle, should favor solubilization by virtue
of salification processes promoted by the basic N,N-dimethylamino moieties. Therefore,
more soluble amino acid derivatives were examined in enantiodiscrimination experiments.
Specifically, three kinds of N-derivatized amino acids were evaluated, containing a 3,5-
dinitrobenzoyl (DNB, compound 1), an acetyl (Ac, compound 2) or a trifluoroacetyl (TFA,
compounds 3–8) moiety. Each one of them affords a probe group that generates simple
(singlet for Ac and TFA) or well-recognized (high-frequency shifted triplet and doublet
for DNB) resonances in the NMR spectra, facilitating the potential quantification of enan-
tiomers. The TFA moiety also allows the detection of enantiomers in the 19F NMR spectra,
where any interference at all is not produced by CSA signals.

Moreover, it is important to emphasize that compound I did show only slight solubility
in CDCl3. In fact, the combination of a double H-bond acceptor and a double H-bond
donor makes this class of compounds in general less soluble than the already low-soluble
thioureas. Consequently, all enantiodiscrimination experiments were conducted either
by solubilizing squaramide I with a solution of the substrate in CDCl3, or by adding the
solvent to the CSA/substrate mixture.

As compound I is endowed with two groups capable of capturing the substrate via H-
bond/salification, the CSA/substrate stoichiometric ratios used for evaluating enantiomer
differentiation were 1:1 and 1:2. Molar excesses of the CSA could not be explored due to its
solubility issues.

Firstly, three leucine derivatives, N-DNB (1), N-Ac (2) and N-TFA (3), were tested
as potential substrates for squaramide I. The chiral auxiliary had rather singular effects
on the resonances of the two enantiomers of DNB derivative 1. Specifically, the para
protons of the DNB group, which produced narrow triplets, exhibited a minor enantiomeric
differentiation of 0.019 ppm, in comparison to a nonequivalence of 0.134 ppm measured for
the broad resonances produced by ortho protons (Figure 3a). However, we found that at a
1:1 stoichiometric ratio, complete solubilization was not obtained. Therefore, the addition
of an achiral tertiary amine was attempted as solubility promoter. DABCO was selected
since it has been already employed as solubilizing agent in the presence of different classes
of CSAs [14,25]. Complete solubilization was attained in the ternary equimolar mixture
containing the CSA I, the substrate 1 and DABCO, but nonequivalences for para and ortho
protons lowered to 0.014 ppm and 0.096 ppm, respectively. As an alternative to the use of a
third solubility-promoting component, another equivalent amount of substrate was added
to give a 2-to-1 molar ratio of 1/CSA. In this manner, solubilization was complete and, once
again, differentiation of the para protons lowered to 0.010 ppm. In contrast, enantiomeric
differentiation of ortho protons increased to 0.173 ppm (Figure 3b), and the linewidth
of the resonances of NH protons was so high that they became indistinguishable in the
baseline. This behavior clearly indicates that the amide moiety is extensively involved in
the interaction with squaramide, experiencing strong anisotropic effects likely originating
from the conjugated squaramide systems.

In order to go more deeply into the origin of the aforementioned nonequivalences,
we compared the diffusion coefficients obtained via DOSY experiments (see Materials and
Methods) [43] for components in equimolar mixtures of 1/CSA, both with and without
DABCO (Table 1). It is noteworthy that, in the presence of CSA, the diffusion coefficient
of substrate 1 remains quite unaffected by the presence of DABCO, suggesting a lower
efficacy of the achiral base in comparison with the CSA in the salification process of the
substrate. The diffusion coefficient of DABCO in the absence of other components is
(16.3 ± 0.3) × 10−10 m2/s and decreases to (9.0 ± 0.2) × 10−10 m2/s in the presence of
substrate 1, signifying its capacity to bind to the substrate, salifying its carboxylic function.
However, in the presence of the CSA in the ternary mixture 1/CSA/DABCO, the diffusion
coefficient of DABCO increases to (13.1 ± 0.2) × 10−10 m2/s. This suggests that the
carboxylic group of substrate 1 is no longer totally available for salification by DABCO,
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as it is extensively engaged in the interaction with the dimethylamino basic groups of
the CSA.
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Table 1. Diffusion coefficients (D, ×1010 m2/s) determined for DABCO (10 mM) and for its equimolar
binary (DABCO/1) and ternary (DABCO/1/CSA) mixtures and for equimolar 1/CSA (10 mM) mix-
ture. Configurational assignment of compound 1 is reported in Figure S1 in Supplementary Materials.

Sample
D (×1010 m2/s)

DDABCO DD-1 DL-1 DCSA

DABCO 16.3 ± 0.3
DABCO/1 9.0 ± 0.2 7.0 ± 0.1 7.0 ± 0.1

DABCO/1/CSA 13.1 ± 0.2 5.8 ± 0.1 6.6 ± 0.1 6.4 ± 0.1
1/CSA 5.4 ± 0.1 5.8 ± 0.1 6.5 ± 0.1

The decrease in nonequivalence in the presence of DABCO can be attributed to cop-
resence of binding processes leading to a fraction of substrate 1 bound to DABCO. This
somewhat compromises the substrate‘s ability to interact effectively with the CSA via salifi-
cation. As a matter of fact, an effective interaction necessitates the cooperation between
salification and H-bonding processes, involving both the dimethylamino groups and the
enaminic portion of the squaramide. Therefore, the addition of DABCO is responsible for in-
creasing the solubility of the substrate rather than intervening in the enantiodiscrimination
process as observed with thioureas [14,25–27].

Organocatalyst I was also able to differentiate the enantiomers of the racemic mixture
of substrate 2 (Table 2). Interestingly, at a 1:1 molar ratio the best differentiated protons
of substrate 2 were the NH with a nonequivalence of 0.158 ppm and the methine proton
bound to the stereogenic carbon (∆∆δ = 0.116 ppm). The acetyl moiety was differentiated
by 0.023 ppm. The addition of a further equivalent of substrate was detrimental since it led
to a significant loss of differentiation (Table 2).
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Table 2. 1H NMR (600 MHz, CDCl3, 25 ◦C) nonequivalences (∆∆δ, ppm) for the amide (NH),
the chiral methine (CH) and the acetyl (Ac) protons of the racemic mixture of substrate 2 in the
presence of the CSA (10 mM) in 1:1 and 1:2 CSA/2 mixtures. Enantioresolution quotients are reported
in parenthesis.

CSA/Substrate
∆∆δ (ppm)

NH CH Ac

1:1 0.158 (1.6) 0.116 (1.0) 0.023 (3.5)
1:2 0.012 (0.1) 0.064 (0.5) 0.014 (2.1)

In Table 2, the enantioresolution quotient (E) was also reported. Indeed, as observed
by Trujillo et al. [44], the parameter that better reflects the accuracy of the NMR quantitative
determination of the enantiomeric composition is E rather than the nonequivalence. In fact,
this parameter also takes into account the average linewidth of the signal (W) according to
Equation (1):

E = |∆∆δ|/(3W) (1)

Indeed, minor nonequivalence measured for a simple singlet signal, such as that
belonging to the acetyl protons, corresponds to an E that is significantly higher than 1.0.

Substrate 3 represented an attractive derivative, since N-TFA derivatives of amino
acids show higher solubility in deuterated chloroform than their N-Ac and N-DNB coun-
terparts. Figure 4 reports 1H NMR spectra of CSA/3 mixtures at different stoichiometric
ratios, along with nonequivalence data. The highest nonequivalence was obtained for
the 1:2 and 1:1.5 CSA/substrate stoichiometric ratios (Figure 4b,c), but significantly more
resolved signals are detected in the presence of two equivalents of substrate (Figure 4c).
Further addition of substrate (CSA/substrate 1:3) led to a reduction of nonequivalence
(Figure 4d).
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Figure 4. Spectral region of the 1H NMR (600 MHz, CDCl3, 25 ◦C) spectra including the NH resonance
of substrate 3 in CSA/3 mixtures ([CSA] = 10 mM) at different stoichiometric ratios: (a) 1:1; (b) 1:1.5;
(c) 1:2; (d) 1:3. Nonequivalence data are shown.

A valuable contribution to the study of enantiodiscrimination phenomena in the case
of N-TFA derivatives stems from the presence of the trifluoroacetyl probe group, which
can be observed in 19F NMR spectra, with well-resolved singlet signals. Therefore, the
range of analysis for such types of derivatives was expanded by considering compounds
4–8 (Figure 2). Enantiodiscrimination experiments were carried out at the stoichiometric
ratio of CSA/substrate 1:2 ([CSA] = 10 mM), which proved to be the best experimental
conditions for measuring the highest nonequivalence in the case of substrate 3. Table 3
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summarizes the results obtained for substrates 3–8 and Figure 5 shows the corresponding
1H and 19F NMR spectral regions.

Table 3. 1H NMR (600 MHz, CDCl3, 25 ◦C) and 19F NMR (564 MHz, CDCl3, 25 ◦C) nonequivalences
(∆∆δ, ppm) for the amide (NH) and the trifluoromethyl (CF3) nuclei of substrates 3–8 (20 mM) in 1:2
CSA/substrate mixtures. Enantioresolution quotients are reported in parenthesis.

Substrate
∆∆δ (ppm)

NH CF3

3 0.100 (1.5) 0.047 (3.1)
4 0.201 (3.0) 0.110 (9.2)
5 0.147 (2.6) 0.052 (3.8)
6 0.056 (1.0) 0.098 (7.6)
7 0.091 (1.4) 0.025 (1.5)
8 0.279 (3.9) 0.113 (8.8)
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Figure 5. Spectral regions of (left) 1H NMR (600 MHz, CDCl3, 25 ◦C) and (right) 19F NMR (564 MHz,
CDCl3, 25 ◦C) spectra involving amide and fluorine nuclei in 1:2 enantiomerically enriched mixtures
of substrates 3–8: (a) CSA/3; (b) CSA/4; (c) CSA/5; (d) CSA/6; (e) CSA/7; (f) CSA/8.

Among the N-TFA amino acid derivatives analyzed, the best enantiodifferentiated
substrate is the valine derivative, 8 (Table 3 and Figure 5). For all substrates, remarkably
high nonequivalences were measured both for the amide proton (0.056–0.279 ppm) and
19F nuclei (0.025–0.113 ppm). Although the nonequivalences measured on NH protons
are significantly higher than those measured on the 19F nuclei of CF3 groups, except for
substrate 6, the distinct spectral characteristics of the resonances of these two groups of
nuclei must nevertheless be taken into account.

Due to the simpler signal structure of the fluorine nuclei (singlets) compared to
the amide resonances (broad doublets), the calculated E factors (Table 3) highlighted
how a better enantioresolution is achieved for 19F nuclei. For substrate 6, with a better
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enantioseparation of fluorine signals compared to that measured on NH protons, the
enantioresolution quotient for fluorine became approximately 8 times higher than that
measured for the amide proton. In the case of the best enantiodifferentiated substrate 8, for
which the proton nonequivalence amply doubled the fluorine one, the value of E calculated
for the amide signals was 2.3 times lower than that obtained for the fluorine nuclei.

When considering substrates 3–8, the distinction between nonequivalence and enan-
tioresolution quotient is not crucial. This is due to the fact that enantiomeric differentiations
are notably high for both 1H and 19F nuclei. Additionally, the proton nuclei of the NH
groups remain unaffected by interference from other signals produced by CSA. To verify the
suitability of CSA for the quantitative determination of the enantiomeric composition, our
focus was on the 1H NMR analysis of enantiomerically enriched mixtures via integration
of the two NH signals produced by the enantiomers in the corresponding diastereomeric
adducts. As an example, Figure 6 shows the good correlation (R2 = 0.9999) between the
theoretical percentage of the L-8 enantiomer and that determined via NMR.

Figure 6. Correlation between the calculated percentage of L-8 enantiomer against the one determined
by integration via NMR.

Based on the best CSA/substrate molar ratio experimentally found, the effect of the
total concentration was also analyzed. Starting from a 1:2 CSA/3 mixture ([CSA] = 10 mM),
by diluting the solution and comparing the corresponding spectra (Figure 7), an increase of
nonequivalence was observed. This trend was observed not only in the 1H NMR spectra,
but also in the 19F NMR spectra (Figure 7). In all cases, baseline separation was detected.

However, a different dependance of nonequivalence on total concentration was ob-
served for the other substrates. For instance, the dilution of mixtures of CSA/4 or CSA/7
gave the same nonequivalence independent of the total concentration (Figures S2 and S3,
Supplementary Materials).

Another strength of CSA I is its capability to be utilized for configurational assignments
of N-TFA amino acid derivatives. As a matter of fact, in enantiomerically enriched mixtures
of substrates 3–8, a reproducible correlation was found between the relative positions of
enantiomeric signals and their absolute configuration. Specifically, for both the amide
doublet and the fluorine singlet, the resonances at higher chemical shifts can be assigned to
the L-enantiomer, while those at lower chemical shifts can be assigned to the D-enantiomer
(Figure 5). Every N-TFA derivative behaved in this way (Figure 5), making compound I a
reliable candidate for the configurational assignment of such compounds.
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2.3. Enantiodiscrimination Experiments on Mandelic Acid and Its Analogs

Compound I was capable of discriminating the enantiomers of substrates 9 and several
of its analogs (derivatives 10–14, Figure 2). Preliminary experiments for compounds 9–11
at different stoichiometric ratios were aimed at finding the highest possible nonequivalence
(Table 4 and Figures S4–S6, Supplementary Materials). As already stated for amino acid
derivatives, substrate/CSA molar ratios greater than 1:1 were investigated since they
guaranteed a complete solubilization of compound I in CDCl3. A 1:3 CSA/substrate ratio
yielded the highest nonequivalence (Table 4) for all 9–11 substrates. Therefore, substrates
12–14 were analyzed directly at this CSA/substrate molar ratio. Nevertheless, the very
low solubility of derivative 14 in deuterated chloroform, even in the presence of the CSA,
allowed a maximum CSA/substrate molar ratio of 1:1.5 to be reached.

Table 4. 1H NMR (600 MHz, CDCl3, 25 ◦C) nonequivalences (∆∆δ, ppm) for the chiral methine
proton of substrates 9–14 in the presence of CSA I (5 mM) at different molar ratios. Enantioresolution
quotients are reported in parenthesis.

Substrate CSA/Substrate ∆∆δ (ppm)

9
1:2 0.044 (4.1)
1:3 0.053 (4.8)
1:4 0.047 (4.1)

10
1:2 0.057 (5.2)
1:3 0.060; 0.258 * (5.6; 1.5 *)
1:4 0.050 (4.9)

11
1:2 0.046 (3.1)
1:3 0.061 (3.7)
1:4 0.056 (4.5)

12 1.3 0.078 (6.0)

13 1:3 0.079; 0.021 * (6.2; 1.6 *)

14 1:1.5 ** 0.009 (0.9)

* 19F (564 MHz, CDCl3, 25 ◦C) nonequivalence (∆∆δ, ppm). ** Stoichiometric ratio determined via integration.

Figure 8 shows the 1H NMR spectra of substrates 9–14 at the best CSA/substrate
molar ratio (1:3).

For substrate 9, the CH signal of one enantiomer broadened more than the other
(Figure S7, Supplementary Materials). Carrying out a 1H-DOSY experiment led to the
same value of the diffusion coefficient measured for the enantiomer resonating at a
higher frequency as for that resonating at lower frequency ((7.0 ± 0.1) × 10−10 m2/s and
(6.9 ± 0.1) × 10−10 m2/s, respectively). This demonstrates that the greater line broadening
observed for the lower-frequency-shifted enantiomer was due not to a different binding
strength to compound I but rather to different anisotropic effects at the CH protons caused
by both the protonated dimethylamino groups and the squaramide unit of the CSA.
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Figure 8. Spectral region of the 1H NMR (600 MHz, CDCl3, 25 ◦C) spectra, including the chiral
methine proton of substrates 9–14 in 1:3 CSA/substrate mixtures ([CSA] = 5 mM): (a) 9; (b) 10; (c) 11;
(d) 12; (e) 13; (f) 14.

Moreover, 13C NMR analysis was explored for substrate 9 at the best CSA/substrate
molar ratio (1:3). Outstanding nonequivalences, reported in Figure 9, were detected, with
the aliphatic skeleton being the best enantiodifferentiated, to confirm the involvement of
the polar moiety of the substrate in the H-bond/salification processes with the CSA.
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Figure 9. 13C NMR (150 MHz, CDCl3, 25 ◦C) spectral regions of carbons of substrate 9 (15 mM) in the
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For derivative 10, a partial separation of the aromatic proton signals was also observed
at the best molar ratio (CSA/substrate 1:3), together with an outstanding nonequivalence
(0.258 ppm) for the 19F nuclei (Figure 10).

Molecules 2024, 29, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 10. 19F NMR (564 MHz, CDCl3, 25 °C) spectrum of substrate 10 (15 mM) in the presence of 
the CSA (5 mM). 

2.4. Enantiodiscrimination Experiments on Other Acidic Systems 
Compound I was also capable of differentiating the enantiomers of several propionic 

acids 15–20, including profens like 19 and 20, butanoic acids 21–23 and other acidic sys-
tems 24–27 (Figure 2). 

Among propionic acids 15–20, systems containing a hydroxy group yielded higher 
nonequivalences (Table S1, Supplementary Materials). In particular, substrates 16 and 17 
were those providing baseline signal separation at the CSA/substrate stoichiometric ratio 
of 1:2 for at least one proton in the β-position with respect to the carboxylic function (chiral 
methine of substrate 16 and one of the two diastereotopic methylene protons of substrate 
17). The detected nonequivalences were 0.130 ppm (E = 1.7) and 0.076 ppm (E = 0.8) for 
substrates 16 and 17 (Figure S8 and Table S1, Supplementary Materials), respectively, 
which allowed a precise and accurate integration. Lactic acid (18) yielded controversial 
results due to the very low solubility of this acid, and also due to the presence of low-
exchanging species as shown in Figure S9 (Supplementary Materials), where various sig-
nals were detected for methine and methyl protons in mixtures at different stoichiometric 
ratios.  

For ibuprofen (19) and ketoprofen (20), quite low enantioseparation was observed for 
aliphatic protons at all molar ratios analyzed (Table S1, Supplementary Materials).  

Among the investigated chiral butanoic acids, 21–23 (Figure 2), acid 22 with a 4-
methylphenoxy moiety provided separation of some signals, with a baseline enan-
tiodifferentiation of the methine proton of the chiral center (Table S2 and Figure S10, Sup-
plementary Materials). 

For substrate 24, a C6 aliphatic carboxylic acid with a terminal alkynyl group, almost 
all protons were enantiodifferentiated with quite small nonequivalences independent of 
the CSA/substrate molar ratio (Table S2, Supplementary Materials). 

CSA I was well able to differentiate chiral substrate 25, as displayed in Figure 11. 

 

Figure 10. 19F NMR (564 MHz, CDCl3, 25 ◦C) spectrum of substrate 10 (15 mM) in the presence of
the CSA (5 mM).



Molecules 2024, 29, 2389 11 of 17

2.4. Enantiodiscrimination Experiments on Other Acidic Systems

Compound I was also capable of differentiating the enantiomers of several propionic
acids 15–20, including profens like 19 and 20, butanoic acids 21–23 and other acidic systems
24–27 (Figure 2).

Among propionic acids 15–20, systems containing a hydroxy group yielded higher
nonequivalences (Table S1, Supplementary Materials). In particular, substrates 16 and 17
were those providing baseline signal separation at the CSA/substrate stoichiometric ratio
of 1:2 for at least one proton in the β-position with respect to the carboxylic function (chiral
methine of substrate 16 and one of the two diastereotopic methylene protons of substrate
17). The detected nonequivalences were 0.130 ppm (E = 1.7) and 0.076 ppm (E = 0.8) for
substrates 16 and 17 (Figure S8 and Table S1, Supplementary Materials), respectively, which
allowed a precise and accurate integration. Lactic acid (18) yielded controversial results
due to the very low solubility of this acid, and also due to the presence of low-exchanging
species as shown in Figure S9 (Supplementary Materials), where various signals were
detected for methine and methyl protons in mixtures at different stoichiometric ratios.

For ibuprofen (19) and ketoprofen (20), quite low enantioseparation was observed for
aliphatic protons at all molar ratios analyzed (Table S1, Supplementary Materials).

Among the investigated chiral butanoic acids, 21–23 (Figure 2), acid 22 with a 4-
methylphenoxy moiety provided separation of some signals, with a baseline enantiodiffer-
entiation of the methine proton of the chiral center (Table S2 and Figure S10, Supplementary
Materials).

For substrate 24, a C6 aliphatic carboxylic acid with a terminal alkynyl group, almost
all protons were enantiodifferentiated with quite small nonequivalences independent of
the CSA/substrate molar ratio (Table S2, Supplementary Materials).

CSA I was well able to differentiate chiral substrate 25, as displayed in Figure 11.
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Figure 11. Methoxy spectral region of the 1H NMR (600 MHz, CDCl3, 25 ◦C) spectra of CSA (5 mM)
and substrate 25 at the following CSA/25 molar ratios: (a) 1:1; (b) 1:2.

Specifically, the 1:1 stoichiometric ratio provided an outstanding nonequivalence of
0.074 ppm (E = 13.4) for the methoxy protons. The 1:2 stoichiometric ratio caused the
nonequivalence to decrease to 0.039 ppm (E = 6.7).

Compound I was capable of providing enantiodifferentiation of substrates 26 and 27.
The tartaric acid derivative, 26 was endowed with two carboxylic groups and the stoichio-
metric ratio of 2:1 CSA/substrate was also investigated. Figure 12 shows that at this molar
ratio, the ortho protons of substrate 26 (5 mM) were separated at the baseline. Increasing
the relative content of the substrate led, however, to a reduction in the nonequivalence of
the aromatic protons but to a marked increase in the separation of the CH signals up to the
1:2 CSA/substrate molar ratio (Figure 12c).
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Substrate CSA/Substrate 
ΔΔδ (ppm) 

CH Ar-CHo Ar-CHp Ar-CHm 

26 

1:1 0.076 (1.5) 0.016 (0.2) 0.004 (n.d.) * 0.008 (0.1) 
1:2 0.081 (7.2) 0.012 (0.2) 0.013 (0.1) 0.008 (0.1) 
1:3 0.036 (4.2) 0.014 (0.2) 0.010 (0.1) 0.003 (n.d.) * 
1:4 0.017 (2.4) 0.014 (0.2) 0.008 (0.1) 0.003 (n.d.) * 

2:1 ** 0.030 (0.7) 0.040 (0.7) 0.020 (0.2) 0.025 (0.3) 

27 

 CHA *** CHB *** CH3 (hf) *** CH3 (lf) *** 
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Table 5 summarizes the results regarding the two resolving agents, 26 and 27, investi-
gated with squaramide I as the CSA.

Table 5. 1H NMR (600 MHz, CDCl3, 25 ◦C) nonequivalences (∆∆δ, ppm) for selected protons of
racemic mixtures of substrates 26 and 27 in the presence of the CSA (5 mM) in several CSA/substrate
mixtures. Enantioresolution quotients are reported in parenthesis.

Substrate CSA/Substrate
∆∆δ (ppm)

CH Ar-CHo Ar-CHp Ar-CHm

26

1:1 0.076 (1.5) 0.016 (0.2) 0.004 (n.d.) * 0.008 (0.1)
1:2 0.081 (7.2) 0.012 (0.2) 0.013 (0.1) 0.008 (0.1)
1:3 0.036 (4.2) 0.014 (0.2) 0.010 (0.1) 0.003 (n.d.) *
1:4 0.017 (2.4) 0.014 (0.2) 0.008 (0.1) 0.003 (n.d.) *

2:1 ** 0.030 (0.7) 0.040 (0.7) 0.020 (0.2) 0.025 (0.3)

27
CHA *** CHB *** CH3 (hf) *** CH3 (lf) ***

1:1 0.081 (1.0) 0.022 (0.3) 0.015 (1.6) 0.018 (1.9)
1:2 0.009 (0.1) 0.020 (0.2) 0.004 (0.4) 0.007 (0.8)

* n.d. = not determined ** [CSA] = 10 mM. *** CHA and CHB are the two protons of the methylene bound to the
sulfonic group; CH3 (hf) and CH3 (lf) are the methyl protons resonating at high and low frequency, respectively.

2.5. Interaction Mechanism

The role of salification processes in the mechanism of interaction between CSA I
and enantiomeric substrates has been fully confirmed through the analysis of mixtures
containing substrates 2-bromopropionate (28) and valine methyl ester hydrochloride (29)
(Figure 2). Both substrates 28 and 29, devoid of free carboxylic functions, did not dissolve
compound I. Hence, no discrimination of the two chiral substrates occurred in the presence
of CSA I, thereby highlighting the significance of salification in this interaction mechanism.

1D-ROESY experiments (Figure S11, Supplementary Materials) were carried out on
the 1:3 CSA/9 mixture ([CSA] = 5 mM). The most notable, i.e., intermolecular, ROE effects
were the ones between the CH proton of substrate 9 and the methyl protons of CSA I. Upon
selective inversion of the ortho protons, an intermolecular ROE effect is observed with the
methyl protons of compound I. Selective inversion of the methyl protons of squaramide I
also shows a slight ROE enhancement on the meta protons of substrate 9.

The interaction mechanism proposed herein is based on the well-recognized ability of
the squaramide unit to work as a molecular receptor for anions [32,41] including carboxylate
anions [45]. Essentially, it is plausible that the acid substrates protonate the two basic tertiary
amine sites (hence, the necessity for stoichiometric ratios greater than 1:1 observed for the
vast majority of the investigated substrates). The NH squaramide protons then act as a
proton donor for the carboxylate anion in the way proposed in Figure 13.
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3. Materials and Methods
3.1. Materials

Deuterated chloroform (CDCl3) used for the NMR experiments was purchased from
Deutero GmbH (Kastellaun, Germany). All the following substrates were used without
any further purification: substrates 1, 15, 18–21 and 26–27 (Sigma-Aldrich, Darmstadt,
Germany); 2 (Thermo Scientific, Waltham, MA, USA); and substrates 9–14 and 16–17 (Alfa
Aesar, Haverhill, MA, USA). Substrates 3–8 were synthesized according to reference [46].
Substrates 22–24 were available in our research laboratory. Substrate 25 was kindly pro-
vided by Prof. Alessandro Mandoli (University of Pisa, Italy).

3.2. NMR Methods
1H, 19F and 13C{1H} NMR measurements were carried out on a spectrometer operating

at 600 MHz, 564 MHz, and 150 MHz for 1H, 19F and 13C nuclei, respectively. 1H and
13C chemical shifts are referred to tetramethylsilane (TMS) as the secondary reference
standard, 19F chemical shifts are referred to trifluorotoluene as the external standard and
the temperature was controlled (±0.1 ◦C). The proton spectra were recorded by using a
π/2 pulse that was calibrated for each investigated system with a relaxation delay of 5 s.
For all the 2D NMR spectra employed for the characterization of the CSA, the spectral
width was the minimum required in both dimensions. The gCOSY (gradient correlation
spectroscopy) map was recorded by using a relaxation delay of 1 s, 128 increments of 4 scans,
each with 2000 data points. The 2D-ROESY (rotating-frame Overhauser enhancement
spectroscopy) map was recorded by using a relaxation delay of 1 s, 128 increments of
16 scans, each with 2000 data points and a mixing time of 400 ms. The gHSQC (gradient
heteronuclear single quantum coherence) and gHMBC (gradient heteronuclear multiple
bond correlation) experiments were recorded with a relaxation delay of 1.2 s, 128 and
200 increments, respectively, with 8–16 scans, each of 2000 data points. The gHMBC
experiments were optimized for a long-range coupling constant of 8 Hz. For the interaction
mechanism study, 1D-ROESY spectra were recorded using a selective inversion pulse with
scans ranging from 1024 to 6144, a relaxation delay of 1 s and a mixing time of 500 ms. DOSY
(diffusion-ordered spectroscopy) experiments were carried out by using a stimulated echo
sequence with self-compensating gradient schemes and with 64,000 data points. Typically, g
was varied in 15 steps (4–256 scans) and ∆ and δ were optimized to obtain an approximately
85–90% decrease in the resonance intensity at the largest gradient amplitude. The baselines
of all arrayed spectra were corrected prior to processing the data. After data acquisition,
each FID was apodized with a 1.0 Hz line broadening and Fourier-transformed. The data
were processed with the DOSY macro (involving the determination of the resonance heights
of all the signals above a pre-established threshold and the fitting of the decay curve for
each resonance to a Gaussian function) to obtain pseudo two-dimensional spectra with
NMR chemical shifts along one axis and calculated diffusion coefficients along the other.

The synthesis of 3,4-bis(((1R,2R)-2-(dimethylamino)cyclohexyl)amino)cyclobut-3-ene-
1,2-dione (I) was performed by slightly modifying the procedure reported in [42], to a
solution of (1R,2R)-N’,N’-dimethylcyclohexane-1,2-diamine (1.01 g, 1.12 mL, 7.1 mmol) in
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ethanol (10.0 mL), triethylamine (1.9 mL, 13.5 mmol) and 3,4-diethoxycyclobut-3-ene-1,2-
dione (0.575 g, 0.5 mL, 3.38 mmol) were added and the precipitation of a solid product was
observed. The reaction mixture was stirred at room temperature for 17 h, then was filtered
and the solid washed with ethanol (2 × 10mL) giving the pure product I as a solid (1.01 g,
2.79 mmol, 82% yield).

1H NMR (600 MHz, 40 mM, DMSO-d6 + 2 equiv of TFA, 25 ◦C), δ (ppm): 9.26 (br s,
2H, NHMe2

+), 8.45 (br s, 2H, H3), 4.16 (br s, 2H, H4), 3.30 (br s, 2H, H5), 2.80 (br s, 6H, Me),
2.69 (br s, 6H, Me), 2.07 (d, 2J8-” = 11.6 Hz, 2H, H6), 1.99 (d, 2J11-11′ = 13.1 Hz, 2H, H9), 1.78
(d, 2J10-1′’ = 10.2 Hz, 2H, H8), 1.68 (d, 2J9-9′ = 10.2 Hz, 2H, H7), 1.49 (m, 2H, H6′), 1.43 (m,
2H, H9′), 1.31 (m, 2H, H8′), 1.27 (m, 2H, H7′). 13C NMR (150 MHz, 40 mM, DMSO-d6 + 2
equiv of TFA, 25 ◦C), δ (ppm): 182.3 (C1), 168.4 (C2), 67.0 (C5), 52.1 (C4), 41.9 (Me), 36.6
(Me), 33.9 (C9), 23.6 (C7), 23.4 (C8), 22.3 (C6).

In Figures S12 and S13 (Supplementary Materials), the proton and carbon NMR
spectra of squaramide I, together with the numbering scheme and the signal assignment,
are reported.

4. Conclusions

This paper demonstrated that organocatalyst I is capable of differentiating the enan-
tiomers of several chiral carboxylic acids via NMR spectroscopy and, therefore, marks
an interesting example of a versatile CSA for carboxylic acids. The interaction mecha-
nism likely involves an acid–base reaction, with the tertiary amine sites of compound I
acting as the proton acceptors. Methyl 2-bromopropionate (28) and valine methyl ester
hydrochloride (29) were not discriminated by addition of squaramide I. This is likely
due to the fact that the former lacks any acid function, while the latter is not soluble in
CDCl3 and therefore unable to solubilize compound I and form diastereomeric adducts.
Two are the distinctive features of CSA I compared to others [25–27] proposed for the
enantiodiscrimination of carboxylic acid derivatives. Firstly, it inherently contains the
basic N,N-dimethylamino groups required to mediate the proton transfer from the enan-
tiomeric substrate to CSA itself. Secondly, and most notably, its remarkable versatility
sets it apart. N,N-dimethylamino groups can be protonated and act as attractive points
for acidic substrates. The attraction may stem from both the rapidity in which the proton
transfer reaction occurs and the electrostatic attraction between the two ionic products. The
second structural feature is the squaramide unit that can coordinate the carboxylate anion
and form a resonance-stabilized adduct. It is plausible to infer that both factors (i.e., the
electrostatic interaction and the resonance-stabilized adduct) may contribute to inducing
pronounced anisotropic effects on the enantiomers of chiral carboxylic acids. Such effects
contribute to the high enantiomeric differentiation.

The versatility of organocatalyst I in differentiating enantiomers of chiral carboxylic
acids suggests that the squaramide unit should be explored as a novel interacting moiety
in the field of NMR chiral analysis. Indeed, coupling the high capacity of the squaramide
unit of accepting/donating hydrogen bonds with aptly chosen chiral platforms may lead
to the synthesis of an entirely new class of squaramide-based CSAs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29102389/s1, Figure S1: Spectral region of the 1H NMR
(600 MHz, CDCl3, 25 ◦C) spectrum of compound 1 (10 mM) in equimolar CSA/1/DABCO mixture,
including DNB resonances. Enantiomeric composition is 40% L- and 60% D-1; Figure S2: Spectral
region of 1H NMR (600 MHz, CDCl3, 25 ◦C) spectra involving amide nuclei of substrate 4 in 1:2
mixtures of CSA/4 with: (a) [CSA] = 10 mM; (b) [CSA] = 0.7 mM; Figure S3: Spectral region of
1H NMR (600 MHz, CDCl3, 25 ◦C) spectra involving amide nuclei of substrate 7 in 1:2 mixtures
of CSA/7 with: (a) [CSA] = 10 mM; (b) [CSA] = 5 mM; (c) [CSA] = 2.5 mM; (d) [CSA] = 1.25 mM;
Figure S4: Spectral region of 1H NMR (600 MHz, CDCl3, 25 ◦C) spectra involving chiral methine
of substrate 9 in mixtures of CSA/9 ([CSA] = 5 mM) at the following CSA/substrate molar ratios:
(a) 1:2; (b) 1:3; (c) 1:4; Figure S5: Spectral region of 1H NMR (600 MHz, CDCl3, 25 ◦C) spectra
involving chiral methine of substrate 10 in mixtures of CSA/10 ([CSA] = 5 mM) at the following

https://www.mdpi.com/article/10.3390/molecules29102389/s1
https://www.mdpi.com/article/10.3390/molecules29102389/s1
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CSA/substrate molar ratios: (a) 1:2; (b) 1:3; (c) 1:4; Figure S6: Spectral region of 1H NMR (600 MHz,
CDCl3, 25 ◦C) spectra involving chiral methine of substrate 11 in mixtures of CSA/11 ([CSA] = 5 mM)
at the following CSA/substrate molar ratios: (a) 1:2; (b) 1:3; (c) 1:4; Figure S7: Spectral region of the
1H NMR (600 MHz, CDCl3, 25 ◦C) spectrum, including the chiral methine proton of substrate 9 in the
presence of CSA (5 mM) at the stoichiometric ratio CSA/9 1:3.; Table S1: 1H NMR (600 MHz, CDCl3,
25 ◦C) nonequivalences (∆∆δ, ppm) for selected resonances of racemic mixtures of substrates 15–20
in the presence of CSA I at different concentrations and molar ratios; Figure S8: Spectral region of the
1H NMR (600 MHz, CDCl3, 25 ◦C) spectra, including the chiral methine of substrate 16 (a) and one of
the two diastereotopic methylene protons of substrate 17 (b) in the presence of the CSA (5 mM) at
CSA/substrate stoichiometric ratio of 1:2; Figure S9: Spectral regions of 1H NMR (600 MHz, CDCl3,
25 ◦C) spectra, including the chiral methine (left) and methyl (right) protons of racemic mixtures
of substrate 18 in the presence of the CSA (5 mM) at the following CSA/substrate stoichiometric
ratios: (a) 1:1; (b) 1:2; (c) 1:3; (d) 1:4; Table S2: 1H NMR (600 MHz, CDCl3, 25 ◦C) nonequivalences
(∆∆δ, ppm) for selected resonances of racemic mixtures of substrates 21–24 in the presence of CSA I
at different concentrations and molar ratios; Figure S10: Spectral region of the 1H NMR (600 MHz,
CDCl3, 25 ◦C) spectrum including the chiral methine proton of substrate 22 in the presence of CSA
(5 mM) at equimolar ratio; Figure S11: 1H NMR (600 MHz, CDCl3, 25 ◦C) spectrum of 9/I mixture at
the composition of 1:3 ([CSA] = 5 mM) (a) and 1D ROESY (600 MHz, CDCl3, 25 ◦C, mixing time = 500
ms) spectra of the same mixture corresponding to: (b) ortho-CH of substrate 9; (c) CH of substrate 9;
(d) CH3 of squaramide I. Protons involved in intermolecular ROE effects are indicated in the spectra;
Figure S12: 1H NMR (600 MHz, 40 mM, DMSO-d6 + 2 equiv of TFA, 25 ◦C) spectrum of compound I;
Figure S13: 13C NMR (150 MHz, 40 mM, DMSO-d6 + 2 equiv of TFA, 25 ◦C) spectrum of compound I.
* Indicate resonances belonging to TFA.
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