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Abstract: Recent decades in the Lancang River Basin have witnessed extensive construction of
hydropower dams, profoundly impacting the local environment. Utilizing high-precision satellite
data, we conducted a comprehensive analysis of vegetation cover and carbon emissions, integrating
data-driven time series and spatial analysis models to capture both temporal and spatial dynamics.
Our findings reveal that hydropower dam construction in the Lancang River Basin has significantly
promoted vegetation restoration and growth, concurrently facilitating a reduction in regional carbon
emissions. Employing deep learning models for time-series prediction, we observed a substantial
increase in the sum of the local normalized difference vegetation index (NDVI) post-construction,
with an average rise of from 16.15% to a maximum of 20.12% during the pivotal hydropower dams’
operational phase. Between 2001 and 2020, the construction of hydropower dams in the basin
corresponded to notable changes in ecological and carbon metrics. Specifically, vegetation cover
expansion intensity (VCEI) reversed from a negative mean of −0.009 to a positive mean of 0.008.
Additionally, the carbon emission intensity (CEI) around these dams drastically reduced, shifting
from an average of 0.877 to 0.052. Importantly, the Global Moran’s I for VCEI significantly increased
from 0.288 pre-2016 to 0.679 post-2015, reflecting a stronger spatial autocorrelation in vegetation
patterns. Accordingly, these findings illustrate the complex interplay between hydropower dams and
environmental outcomes, underscoring the critical role of pivotal hydropower dam construction in
ecological improvement. The research results have improved and complemented those of previous
studies on the environmental impact of hydraulic engineering, providing valuable insights for the
construction management and policy formulation of hydropower dams in other similar river basins
around the world.

Keywords: Lancang River Basin; hydropower dams; data-driven time series; spatial analysis models;
vegetation recovery; carbon mitigation

1. Introduction

The Lancang River Basin, traversing diverse ecological landscapes from the Tibetan
Plateau to Southeast Asia, serves as a critical hub of environmental and socioeconomic vi-
tality [1,2]. A notable change in energy engineering in the basin, primarily characterized by
the construction of numerous hydropower dams, has been instituted to meet the escalating
demand for clean energy [3]. Dam construction can alter the local climate by modifying
land surface properties and water distribution, thereby influencing regional temperature
and precipitation patterns, resulting in substantial environmental modifications [4–7].
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At the dawn of the 21st century, the Chinese government launched a comprehensive
initiative to harness the hydroelectric potential of the Lancang River Basin, spanning the
Yunnan and Tibet provinces. This ambitious undertaking segmented the river into three
distinct engineering zones with a total of 16 hydropower dams, including three pivotal
hydropower dams for systematic engineering development.

However, several empirical studies have provided evidence that the hydropower
infrastructure of the basin has spurred significant economic growth [8,9] but also caused
damage to the environment [10,11]. This dual nature of dam construction boosts energy
production while also disrupting ecosystems [12,13] and reducing carbon storage. For
example, in their inquiry into sustainable development within the Lancang River Basin, Fan
et al. found that the construction of dams has precipitated a reduction in both monsoonal
floodwater volume and annual sediment discharge within China. As a consequence, this
decline has facilitated the deterioration of reservoir water quality [14]. The use of NDVI
analysis in a study by Yigzaw and Hossain further revealed a downward trend in vegetation
health, with a mean annual NDVI decrease between 2000 and 2012 in multiple large dam
cities in the US [15].The research of Liu et al. on the NDVI within regions both upstream
and downstream of the Danjiangkou reservoir from 1982 to 2018, revealed a substantial
reduction in the NDVI downstream of the dam and within the proximate central city
regions [16]. Li et al. used canonical correspondence analysis (CCA) to provide conclusive
evidence that cascade dam construction developments have significantly exacerbated
ecological damage within the basin. One of the most pronounced effects observed is the
reduction in vegetation complexity and distribution [17]. The research of Long and Zhou
indicates that although dam construction has increased local carbon storage in the long run,
the development of hydropower facilities and the subsequent rise in reservoir water levels
have led to a significant amount of land inundation. This dynamic has, in turn, precipitated
a considerable loss of carbon storage within the reservoir areas [18].

In light of China’s commitment to ‘carbon neutrality’ and its ‘carbon peak’ objec-
tives [19], alongside stringent environmental protection laws that preclude compromising
environmental integrity for economic development [20,21], the continued emphasis on dam
construction in the Lancang River Basin presents an obvious paradox. This phenomenon
raises critical questions about the congruence of such infrastructural developments with
the China’s environmental and carbon mitigation strategies.

Our research posits that the proliferation of hydropower dams in this region may not
be antithetical to environmental conservation and carbon neutrality goals. We believe that,
since the early 21st century, the hydropower dams in the Lancang River Basin appear to
have contributed to not only regional economic advancement [22–24] but also to ecological
benefits, including the rehabilitation and expansion of local vegetation, potentially acting as
a significant factor in the reduction of carbon emissions. More importantly, the construction
of hydropower dams in this region represents a critical shift towards renewable energy
sources intended to support both national energy security and global sustainability targets,
including those outlined in the United Nations Sustainable Development Goals (UNSDGs),
such as Affordable and Clean Energy (Goal 7) and Climate Action (Goal 13).

Our study, therefore, aims to rigorously evaluate the environmental impacts of hy-
dropower dam construction in the basin over this period. Our inquiry spans two decades
from 2001 to 2020, a period marked by significant hydroelectric infrastructure development,
including the completion and near-completion of hydropower dams. To validate our hy-
pothesis, we conducted a robust evaluation of the hydropower dams of the Lancang River
Basin. Our methodology integrated advanced spatial and time-series analytical models,
supported by a comprehensive multivariate data approach. Utilizing a fusion of remote
sensing satellite data, we meticulously analysed the spatiotemporal variation in vegetation
coverage and carbon emissions.

We leveraged the predictive capabilities of the NeuralProphet model, which adeptly
incorporates seasonal variations, to enhance the accuracy of NDVI index forecasts across
the Lancang River Basin. By treating the pre-dam construction phase as a baseline, the
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model adeptly projected potential vegetation cover trajectories in the absence of dam
interventions. The subsequent juxtaposition of these projections against the actual post-
construction vegetation dynamics revealed a distinct positive feedback loop, wherein dam
construction bolstered vegetation health. Meanwhile, our analysis employed a spatiotem-
poral geographically weighted regression (GTWR) model, a sophisticated approach to
unravelling the complex interplay of factors driving regional carbon emissions. Moreover,
on the premise of introducing economic and demographic variables, through detailed
analysis of the model’s fitting coefficients, we were able to disaggregate and quantify
the relative impacts of demographic, economic, and vegetation coverage variables on the
carbon emission profile of the basin. Finally, we utilized Global Moran’s I to examine the
spatial clustering of VCEI, assessing the effects of dam construction on the spatial patterns
of vegetation cover expansion.

Our findings highlight the pivotal role of hydropower dams in advancing regional
environmental restoration and development, while complementing the findings of previous
studies in the related fields of dam construction and environmental impact. As global
energy demand escalates, this comprehensive evaluation underscores the transformative
effects of dam construction on the Lancang River Basin and offers critical insights into
the environmental implications of hydropower projects across comparable river systems
worldwide. This analysis bolsters the development of hydropower and other renewable
energy sources, contributing to the achievement of the UNSDGs.

2. Study Area

The Lancang River Basin spans approximately 167,400 square kilometers, with the
main river extending over 2161 km, positioned in the southwestern region of China proxi-
mate to the border, and exhibits unique environmental characteristics of low population
density and limited influence from official environmental policies due to inherent envi-
ronmental constraints [25]. In contrast, the influence of natural environmental factors,
particularly on local vegetation, assumes greater significance.

The basin’s hydrology is predominantly influenced by precipitation, supplemented by
groundwater and snowmelt inputs [26]. Climatic conditions in the basin vary significantly
from the Tibetan stretch to the mid-lower Yunnan stretch. The Tibetan stretch is charac-
terized by a temperate plateau climate with an average annual temperature of 10 ◦C and
precipitation ranging from 400 to 800 mm. In the upper Yunnan reach, a subtropical climate
prevails, with temperatures of 12–15 ◦C and precipitation between 1000 and 2500 mm,
mainly in mountainous areas. The mid-lower Yunnan stretch experiences a subtropical to
tropical climate, with temperatures of 15–22 ◦C and annual rainfall of 1000 to 3000 mm. The
region is dominated by a monsoon climate, featuring a wet season from May to October
and a dry season from November to April, with 85% of rainfall occurring in the wet season
and 60% of that concentrated between June and August [27]. Recent climatological analyses
reveal a pronounced warming trend in the Lancang River Basin, with temperatures rising
by approximately 3 ◦C in recent years. This increase in temperature is concurrent with
changes in precipitation patterns, characterized by a marked intensification during the
monsoon period from June to October [28]. At the same time, the soil landscape in the
basin is predominantly shaped by natural erosion processes [27].

Among the various factors shaping the environment, the construction of reservoirs
stands out as a primary driver of environmental change. Reservoir construction directly
alters environmental parameters such as precipitation patterns [29], temperature levels [30],
and soil quality [31], which in turn affect vegetation dynamics. Considering the overarching
influence of hydropower dams on the environmental dynamics of the Lancang River Basin,
other factors affecting vegetation can be deemed relatively insignificant. Consequently, while
acknowledging the complex interplay of various environmental elements, the direct impact of
hydropower dams on vegetation warrants focused attention in environmental assessments.

Our research meticulously delineates the geographical scope to counties within the
Lancang River Basin directly affected by hydropower dams and those in the periphery
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impacted by these hydrological developments. As shown in Figure 1a, The study com-
prehensively covers 50 county-level regions, strategically segmented into nine counties in
the Tibetan stretch, sixteen in the upper Yunnan stretch, and twenty-five in the mid-lower
Yunnan stretch. Meanwhile, the identification of nine counties as primary dam sites (dam
counties) is informed by administrative jurisdictional boundaries, considering that several
hydropower dams straddle the interface of distinct regions. This delineation is instrumental
to understanding the socioeconomic dynamics, as the fiscal revenues and operational main-
tenance of hydropower dams are closely tied to their administrative regions. In parallel,
by focusing our research on specific administrative divisions, we can more effectively
align with the policy needs of local governments, thereby ensuring that our findings exert
a direct influence on policy formulation and environmental management. Additionally,
the inherent geographical and socioeconomic uniformity within administrative regions
facilitates a systematic analysis and understanding of the specific environmental impacts of
dam construction.

1 

 

 

Figure 1. (a) The distribution of hydropower dams within the Lancang River Basin is depicted,
where triangles represent auxiliary hydropower dams and pentagons denote the primary control
hydropower dams. (b) In the Tibetan stretch, there are nine counties in total. (c) In the upper Yunnan
stretch, there are 16 counties in total. (d) In the mid-lower Yunnan stretch of the basin, there are
25 counties in total.
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Table 1 lists key information on dams in the Lancang River Basin. The Tibetan stretch
is dedicated to the “One Reservoir, Eight-Level” scheme, featuring eight hydropower
dams, inclusive of a pivotal dam (RuMei, RM), targeting a collective installed capacity
of 6.38 million kilowatts. Descending to the upper Yunnan reach, the “One Reservoir,
Seven-Level” project is designed to achieve an 8.83 million kilowatt installed capacity,
inclusive of a pivotal dam (GuShui, GS), with five hydropower dams currently functional.
Further downstream, the mid-lower Yunnan stretch is progressing through the “Two Reser-
voirs, Eight-Level” blueprint, aiming for a 16.52-million-kilowatt cumulative capacity. The
XiaoWan (XW) and NuoZhaDu (NZD) hydropower dams, completed in 2011 and 2014,
respectively, are pivotal dams in the region.

Table 1. Dam construction in the Lancang River Basin.

Dam Engineering Time Storage Dam Engineering Time Storage

Ce Ge Under design / Huang Deng 2008–2019 15.00 BCM
Yu Long 2015–Now 19.70 BCM Da HuaQiao 2010–2019 3.15 BCM
Ka Gong Under design / Miao Wei 2012–2017 6.60 BCM
Ban Da 2019–2021 13.19 BCM Gong Guoqiao 2009–2012 3.15 BCM
Ru Mei

(Pivotal dam) 2013–Now 24.33 BCM XiaoWan
(Pivotal dam) 2002–2010 150.00 BCM

Bang Duo Under design / Man Wan 1987–1993 9.20 BCM
Gu Xue 2012–2021 26.84 BCM Da ChaoShan 1992–2003 9.40 BCM

QuZiKa 1982–1987 405.00 BCM Nuo ZhaDu
(Pivotal dam) 2012–2014 237.03 BCM

Gu Shui Under design / Jin Hong 2003–2008 11.39 BCM
Wu NongLong 2010–2021 2.84 BCM Gan LanBa Under design /

LiDi 2009–2019 0.75 BCM Men Song Under design /
Tuo Ba 2018–Now 10.39 BCM

The BCM unit in the table is Billion Cubic Meters.

3. Data and Methods
3.1. Source of Data

All data time periods used in our study were from 2001 to 2020. We utilized ArcPy
together with the GDAL open-source library for transforming raster spatial data. Initially,
this approach allowed us to correct various remote sensing raster datasets and perform
a primary batch-cropping based on vector data of the study region. We then applied
ArcPy’s raster calculation tools to derive total raster values for the area, which facilitated
the analysis of trends in statistical elements from 2001 to 2020. Following this, we conducted
a secondary batch-cropping tailored to the vector outlines of individual counties.

1. NDVI Data: We utilized MODIS satellite NDVI data obtained from the Earth Science
Data and Information System (ESDIS) project under NASA’s Earthdata platform
(http://search.earthdata.nasa.gov, accessed on 20 September 2023). The dataset spans
from 2001 to 2020, with NDVI values updated every 16 days. The spatial resolution of
these data is 0.5 km × 0.5 km. As outlined in Table 2, we categorized the NDVI index
into five distinct classes for comprehensive analysis.

2. Carbon Emission Data: We used the Open-source Data Inventory for Anthropogenic
CO2 (ODIAC) dataset, specifically the ODIAC2022 version, produced and released
by the National Institute for Environmental Studies, Japan. The dataset can be ac-
cessed at the ODIAC Fossil Fuel Emission Dataset (https://db.cger.nies.go.jp/dataset/
ODIAC/DL_odiac2022.html, accessed on 20 September 2023) and offers a resolution
of 1 km × 1 km, providing a detailed account of global fossil fuel combustion-related
CO2 emissions.

http://search.earthdata.nasa.gov
https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2022.html
https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2022.html
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Table 2. NDVI classification.

Classification Vegetation Coverage Range of Value Vegetation Type

Category 5 High 0.8> AND ≤0.2 Dense forests,
High-density jungle.

Category4 Medium to high 0.6> AND ≤0.8 robust shrublands,
General jungle.

Category 3 median 0.4> AND ≤0.6 shrublands,
harvested fields.

Category 2 Medium low 0.2> AND ≤0.4
Mixed vegetation,

grasslands.
Agricultural land

Category 1 Low 0.0> AND ≤0.2 Sparse vegetation,
overgrazed lands.

3. Nighttime Light Data: We utilized processed NPP-VIIRS-like nighttime light data,
referencing the methodological approach of Chen et al. [32]. This study rectified
and aligned NPP-VIIRS with DMSP-OLS light data. The publication provided a
continuous global light dataset from 2000 to 2018, using a computational method
which we applied to derive light data for 2019 and 2020. The data resolution is
1 km × 1 km. In this study, we use lighting data to evaluate and replace local gross
domestic product (GDP) [33].

4. Population Data: Our population data were sourced from the WorldPop global
population dataset, an integration of adjusted data from Afripop, AsiaPop, and
AmeriPop, compiled by the University of Southampton. The link is the WorldPop
(https://hub.worldpop.org/project/categories?id=18, accessed on 25 October 2023)
Project and offers a spatial resolution of 1 km × 1 km.

5. Land Use Data: We utilized the land use data for China segmented at 30 m × 30 m
data resolution [34]. This work involved the creation of an annual Chinese Land
Cover Dataset (CLCD) based on Landsat imagery on the Google Earth Engine (GEE)
platform. The dataset encompasses annual land cover classifications for China from
1990 to 2019 and documents the dynamic changes in these classifications over time.
At present, the author has expanded the data range to 1985 to 2022.

6. Dam Information: We used the Global Georeferenced Database of Dams (GOODD)
and the Future Hydropower Reservoirs and Dams (FHReD) database. GOODD is a
comprehensive repository encompassing the geospatial coordinates of all hydropower
dams visible on Google Earth satellite imagery, currently documenting 38,660 hy-
dropower dams globally. FHReD, on the other hand, provides detailed mapping of
about 3700 hydropower dams that are either under construction or in the advanced
stages of planning.

3.2. NeuralProphet Prediction Model Based on Parameter Optimization

NeuralProphet (NP) represents a sophisticated evolution of the widely recognized
Prophet model, harnessing the capabilities of machine learning for predictive analysis. As
an enhancement of its predecessor, NP integrates neural network algorithms to capture
more complex patterns within time-series data [35]. This advanced modeling approach is
adept at adapting to nonlinear trends in time-series data, making it particularly effective
for handling vegetation data characterized by strong seasonal fluctuations [36,37]. The
implementation of NP allows for a nuanced understanding of temporal patterns, providing
an innovative tool for analyzing and forecasting environmental data with high variability
and intricate seasonal dynamics.

In our research, we have advanced the capabilities of the NP model by incorporating
a random search methodology for the optimization of model parameters. This refined
approach to NP utilizes an adaptive parameter optimization strategy, involving the careful
definition of a hyperparameter space and the establishment of logical parameter range

https://hub.worldpop.org/project/categories?id=18
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boundaries. For example, the learning rate was set within a spectrum of 0.001 to 0.1, while
the model lag length varied from 10 to 365 in increments of 10. Additionally, the range for
model hidden layers was established at between 10 and 50, with increments of 10, and the
batch size was configured to span from 32 to 256.

To rigorously evaluate the model’s efficacy, we employed mean squared error (MSE)
and root mean squared error (RMSE) as our primary performance metrics, alongside a
four-fold cross-validation method to bolster the model’s generalizability. A meticulous
random search was conducted across varying parameter combinations, guiding the training
and evaluation of the NP model to ascertain the most effective parameter set within the
defined search domain. We explored multiple search ranges for optimal model fitting;
currently, for each set of hyperparameters, 15 distinct search ranges have been tested. This
quasi-grid search optimization technique, despite its intensive computational demands,
ensures the exhaustive and robust parameter optimization of the NP model, enhancing the
precision and reliability of our time-series analysis. Our study delineates the vegetation
cover changes attributable to dam construction through the following steps:

1. We divided the dataset into two segments using the dam’s completion date as the
demarcation point: pre-completion data for model training and post-completion data
for predictive analysis.

2. The optimal parameters for the vegetation cover change prediction model were
derived from the training set, which represents the period before the dam’s completion.
During this phase, the dam’s hydroelectric facilities were either not operational or
only partially functional, thereby reflecting vegetation cover changes unaffected by
the dam.

3. Utilizing this model, we predicted vegetation cover changes for the period post-dam
completion. This data-driven approach enabled the projection of vegetation trends
under a hypothetical scenario where the dam was not constructed.

4. By comparing the model-predicted vegetation trends with actual observed changes,
we quantified the impact of dam construction on local vegetation. The difference
between these two datasets provides a measure of the dam’s influence.

3.3. Geographically and Temporally Weighted Regression (GTWR)

The GTWR model represents a sophisticated statistical analysis methodology that
synergizes spatial and temporal factors [38]. Meanwhile, this model amalgamates the prin-
ciples of geographically weighted regression (GWR) with those of time-series analysis [39].
GTWR is particularly designed to analyze how data evolve over time and exhibit spatial
variability, thereby acknowledging spatial heterogeneity while incorporating the temporal
dimension [39]. Therefore, this approach is instrumental in uncovering localized the spatial
and temporal characteristics of datasets [40].

In the GTWR model, each county within our study is represented by its centroid
coordinates, allowing a single sample point to represent each county area. The fundamental
formula for GTWR is as follows:

Yi = β0(µi, vi, ti) + ∑k βk(µi, vi, ti)Xit + di

where (µi, vi, ti) denote the spatiotemporal coordinates of ith county. µi, vi, and ti are the
longitude, latitude, and time, respectively. β0(µi, vi, ti) is the regression constant for the
ith sample point, while βk(µi, vi, ti) denotes the Kth regression parameter. Xit is the value
of the Kth independent variable at point i, and di is the residual error. The estimation of
βk(µ0, v0, t0) is conducted using the following formula:

β̂(µi, vi, ti)Xit =
[

XTW(µi, vi, ti)X
]−1

XTW(µi, vi, ti)Y

β̂(µi, vi, ti) represents the estimated value of βk(µi, vi, ti), X is the matrix of indepen-
dent variables, and Y is the matrix of dependent variables. W(µi, vi, ti) is the spatiotemporal
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weight matrix based on Euclidean distances and the Gaussian kernel function. The calcula-
tion formula for the spatiotemporal weight matrix is as follows:

W(µi, vi, ti) = Wtime(µi, vi, ti)× Wspace(µi, vi, ti)

Wtime(µi, vi, ti) = exp(−
d2

ij

h2
time

)

Wspace(µi, vi, ti) = exp(−
D2

ij

h2
space

)

dij =
√(

ti − tj
)2

Dij =

√
(µi − µi)

2 + (vi − vi)
2

In this formula, Wtime(µi, vi, ti) and Wspace(µi, vi, ti) represent the time and space
weight matrices, respectively. htime and hspace are the bandwidths for time and space
weights, while dij and Dij denote the temporal and spatial distances between sample point
i and point j.

We employed the GTWR model to dissect the complex array of factors contributing to
total carbon emissions in various counties. Within our model framework, we identified
county-level total carbon emissions as the dependent variable and integrated key predictors
including total GDP, population, and NDVI values for each sample point as independent
variables. To ensure analytical consistency and comparability, a thorough standardization
process was applied to all variables, followed by rigorous multicollinearity testing, a pre-
requisite step before incorporating these variables into the GTWR model. Our analysis was
segmented into three time intervals: 2001–2006, 2007–2014 (which marks the phase of con-
centrated dam construction), and 2015–2020. By scrutinizing the coefficients’ magnitude for
each interval, we could quantify the relative impact of each driver on total carbon emissions.
Moreover, comparing the variations in coefficients across these time periods enabled us to
unravel the dynamic shifts in carbon emission drivers, thereby illuminating the evolving
temporal patterns and trends that shape the landscape of carbon emission determinants.

3.4. Spatial Correlation Analysis of Expansion Intensity

We assessed the average intensities of vegetation cover and carbon emission expansion
across three distinct time periods (the GTWR research period) within the Lancang River
Basin counties. To mitigate the influence of seasonal variability on vegetation cover growth
and carbon emissions, we utilized the annual cumulative NDVI indices and total carbon
emissions for our calculations. This approach allowed us to quantify the relative changes
in the vegetation cover index and total carbon emissions within each specific timeframe.

The formulas for calculating the average intensities of vegetation expansion and
carbon emission expansion are as follows:

∆T = TEnd_year − TSta_year

Ui =
∑∆T

i=1 USta_year+i − USta_year

∆T × USta_year
× 100%

where TEnd_year and TSta_year represent the calculation data at the beginning and end of each
period, and ∆T is the duration of the calculation period expressed in years. Ui signifies the
average intensity of calculation data over the defined time period. USta_year corresponds to
the calculation data at the beginning of the calculation period.
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3.5. Global Moran Index (Global Moran’s I)

We use the Global Moran Index to measure the spatial clustering of vegetation cover
expansion intensity (VCEI) and diminished carbon emission intensity (CEI). Moran’s I, a
global measure of spatial autocorrelation, serves as a fundamental tool in analyzing spatial
patterns and similarities in variable distributions. Introduced by Patrick Moran in 1950,
this statistical method evaluates whether spatial data exhibit randomness or discernible
patterns such as clustering, dispersion, or regular spatial distribution [41]. The formula for
calculating Global Moran’s I is as follows:

I =
n
So

×
∑n

i=1 ∑n
j=1 wi,jzizj

∑n
i=1 z2

i

So = ∑n
i=1 ∑n

j=1 wi,jzizj

where zi is the deviation between the attribute of element i and its average value
(

xi − X
)
,

wi,j is the spatial weight between elements i and j, n represents the total number of elements,
and So is the aggregation of all spatial weights.

Global Moran’s I, as measured by the Pearson correlation coefficient values, reflects
the degree of spatial clustering. Values of I approaching +1 or −1 indicate strong spatial
clustering, with +1 suggesting that entities share similar attributes and −1 indicating that
entities are dissimilar. Conversely, values of I close to 0 signify weak spatial clustering.

4. Results
4.1. Changes in Total Vegetation Coverage in the Lancang River Basin
4.1.1. Comparison of NDVI Vegetation Cover Classification

We classified the NDVI index into five categories of vegetation cover, as shown in
Table 2. We distinguished between dam counties and non-dam counties, calculating the
proportion of each NDVI category in both types of counties. As shown in Figure 2a,b, after
comparing the vegetation cover in dam and non-dam counties, we found that the first
category of vegetation cover in dam counties was significantly lower than that in non-dam
counties, while the second and third categories were noticeably higher. The decrease in the
first category and increase in the second and third categories of vegetation cover suggest
a gradual transition from wasteland to grassland and shrubland in the area, indicating
an increase in vegetation restoration efforts. The fourth category of vegetation cover in
dam counties was lower than in non-dam counties. However, between 2001 and 2020,
the proportion of the fourth category of vegetation cover gradually increased at a faster
rate than in non-dam counties. After the completion of numerous hydroelectric dams in
2015, the fourth category of vegetation cover in dam and non-dam counties became nearly
identical each year. The vegetation restoration efforts in dam counties outpaced those in
non-dam counties. As illustrated in Figure 2c, when comparing the average NDVI values
per square kilometer between dam counties and non-dam counties over the years, we
observed that from 2001 to 2020, dam counties consistently exhibited higher NDVI values
than non-dam counties. This indicates that the vegetation cover in dam counties is superior
to that in non-dam counties.
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4.1.2. Quantitative Analysis of the Impact of Dam Construction on Vegetation Cover

In the construction of the cascade dam system within the Lancang River Basin, both
pivotal and auxiliary hydropower dams are included. Due to their massive scale, pivotal
hydropower dams have a more significant and widespread environmental impact. These
pivotal hydropower dams are often prioritized as regional key hydraulic projects, attracting
substantial construction investments and consequently exerting profound influences on
local economies and policy formulations [42].

Therefore, our study primarily focuses on the pivotal hydropower dams in the basin.
Among these, there are three pivotal hydropower dams: the RM, XW, and NZD. Given
that the RM dam is not yet fully operational, and the XW dam only commenced full-scale
power generation in 2010, the data-span from 2001 to 2010 is too limited for effective
model training, adversely affecting the model’s accuracy. In contrast, the NZD dam was
completed in 2014, allowing for the utilization of data from 2001 to 2014 as the training set,
which constitutes 70% of the total data volume. Therefore, we have selected the NZD dam
as the focus of our study. Utilizing the adaptive parameter optimization capabilities of the
NP model, we perform a quantitative analysis of the impact on vegetation cover caused by
the construction of the NZD dam.

As illustrated in Figure 3, the NZD dam is located at the junction of counties No. 37
and No. 30, which are directly impacted by the dam. In accordance with the First Law
of Geography, which states that everything is related and things closer together are more
closely related, we selected counties No. 27, No. 28, No. 32, No. 35, No. 36, and No. 39
as our model training dataset to minimize the influence of other geographical factors.
These counties are not directly affected by the NZD dam construction. To align with the
operational period of the NZD dam, we used data from 2001 to 2014 for model training,
with the data from 2010 to 2014 serving as the validation set, and data from 2014 to 2020
as the prediction set. The training results, as shown in Figure 3, reveal that the model
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accurately captures the cyclical trends in vegetation cover. The model’s fitted curves exhibit
high congruence with the actual vegetation cycle, demonstrating the model’s efficacy in
predicting periodic vegetation changes.
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The model prediction error results are shown in Figure 4a. Comparing the model
predictions with the actual values, we found that county No. 27 had the best model fit,
with an annual average error rate of 7.79%. In contrast, county No. 32 had the poorest fit,
with an annual average error rate of 12.44%. The average annual error rate for all training
counties was 10.96%. As illustrated in Figure 4b, which compares the error between the
model’s validation set and the training set, except for county No. 32, the error rates for the
validation and test sets in the other counties were similar. This indicates that the model
has good generalization capabilities on unseen data. Across multiple counties, the model
demonstrated similar and high predictive accuracy, reflecting its robustness.
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Figure 4. (a) The error statistics for the training set of the time-series prediction model. (b) Comparison
of the errors between the validation set and the training set. As indicated in the legend, we divided
the model error data into ten categories, calculating the average annual error for each county (all
errors in the figure are taken as absolute values).

However, while the vegetation data generally fluctuate annually, there is variability
within each cycle in individual years, including some extreme values. Due to its time-
series characteristics, the model was unable to predict these extreme values within the
vegetation cycles. Therefore, the overall model prediction error was relatively high in 2018.
As observed in Figure 3, the vegetation cover change curve for the training counties in 2018
had extreme values, which impacted the model’s training accuracy. Combining the results
from Figures 3 and 4, although the within-cycle variability slightly reduced the model’s
training accuracy, the model exhibited excellent predictive capabilities for vegetation cover
data with high periodicity over larger time scales. The predictions closely mirrored the
data’s cyclicity, with low error rates between the predicted and actual values.

For the target counties No. 30 and No. 37, we utilized the period from 2001 to
2014, before the NZD dam became fully operational, as our training set, and the years
from 2014 to 2020 as our prediction set. During the training period, as the dam was
not yet operational, its impact on vegetation was minimal. Therefore, this period can be
approximated as showing a natural growth state of vegetation without dam influence.

By using these data as the training set, the model developed can effectively predict
the vegetation growth in the region from 2014 to 2020 under a scenario without the dam’s
influence. By comparing the model’s predictions with the actual data from 2014 to 2020,
we can quantitatively assess the impact of dam construction on local vegetation cover.

As shown in Figure 5, given that we selected vegetation cover data at 16-day intervals
for area calculation, we adopted a limited approach, dividing the area into 16-day segments.
By calculating the difference between the actual data and the calculated results, and
summing them up, we approximated the area values to represent the increase in local
NDVI. For county No. 30, the area of the real area contained in the green line segment is
160,8701.67 and the area of the yellow region is calculated to be 138,770.33 between the
green and blue lines. For county No. 37, the real area is 324,8267.42 and the area of the
yellow region is 201,232.03.

Considering the error comparison in Figure 4b, where the error in the validation set
is approximately equal to that in the prediction set, we adjusted the prediction results by
subtracting the error impact to approximate the actual values. The error for the validation
set in county No. 30 is −9.76%, and for county No. 37 it is −5.22%. Further correction calcu-
lations reveal that the adjusted area of the yellow region for county No. 30 is 269,478.51, and
for county No. 37 it is 352,396.49. Consequently, we conclude that due to the construction of
the NZD dam, the total increase in the vegetation cover index for county No. 30 is 20.12%,
with a specific NDVI total value increase of 269,478.51. For county No. 37, the total increase
is 12.17%, with a specific NDVI total value increase of 352,396.49. The average growth rate
in both regions is 16.15%. According to the calculation results, the vegetation coverage of
the two areas affected by the NZD dam has significantly improved.
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Figure 5. Results of the application of the target county time-series prediction model. The training
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y axis represents the total NDVI in the target area, and the x axis represents the time).

4.2. Analysis of the Driving Mechanism of Total Carbon Emissions

We utilized the GTWR model, integrating satellite-derived nocturnal lighting data
as a surrogate for local GDP. Additionally, total population size and a cumulative index
of normalized vegetation cover were incorporated as explanatory variables. Initially, a
standardization process was applied to all explanatory variables to ensure uniformity. The
coefficients of these variables within the model were then used to quantify their respective
impacts on regional carbon emissions. To address potential issues of spurious regression, a
rigorous multicollinearity assessment was conducted for all explanatory variables. Table 3
presents the GTWR regression results, highlighting high model fitting across three distinct
time periods, with Pearson correlation coefficients consistently exceeding 0.9.

Table 3. Related parameters of GTWR.

Year Bandwidth Residual Squares Sigma AICc R2 Adjusted R2

2001–2006 0.11 0.16 0.02 −1330.95 0.94 0.94
2007–2014 0.11 0.49 0.04 −1441.96 0.96 0.96
2015–2020 0.11 0.37 0.03 −1068.39 0.97 0.97

Based on the spatiotemporal distribution of regression coefficients for the driving
factors of total carbon emissions in the Lancang River Basin, the primary driving forces are
determined by the extent of each factor’s impact on carbon emissions in different counties
(i.e., the comparison of the absolute values of regression coefficients across different periods).
The influence of various drivers on the total carbon emissions of each county shows spatial
heterogeneity over time.

By comparing the spatial changes in vegetation, we found that the overall vegetation
cover has a minor and fluctuating impact on the region’s total carbon emissions. As
illustrated in Figure 6(a1), from 2001 to 2006, the contribution of total vegetation cover
to high-value areas in carbon emissions shows a distinct division across the study area,
with coefficient values progressively increasing from the Tibetan stretch to the mid-lower
Yunnan stretch. Figure 6(a2) shows that during 2007–2014, the high-value areas positively
influenced by total vegetation cover shifted in the upper Yunnan stretch, indicating that
vegetation cover in this region promotes local carbon emissions. The high negative value
areas were mainly concentrated in the Tibetan stretch counties. Figure 6(a3), covering the
period from 2015 to 2020, shows that the high positive value areas influenced by total
vegetation cover were located in the upper Yunnan stretch, while the high negative value
areas were mostly along the Chinese border, with significant expansion in the mid-lower
Yunnan stretch, particularly in counties No. 31, No. 32, No. 33, No. 38, and No. 39.



Forests 2024, 15, 872 14 of 24

By comparing the spatial changes of GDP, we found that the influence of total regional
GDP on carbon emissions remained consistently high throughout the study period, with a
stable spatial distribution across all three periods. As depicted in Figure 6(b1), during the
period from 2001 to 2006, the coefficient values for GDP showed a stepwise increase from
the Tibetan stretch to the mid-lower Yunnan stretch, with high positive value areas mainly
concentrated in the mid-lower Yunnan stretch. Figure 6(b2,b3) demonstrates that from 2007
to 2020, these high positive value areas continued to be focused in the mid-lower Yunnan
stretch, gradually extending towards the upper Yunnan stretch.

By comparing the spatial changes of population, we found that the impact of regional
population totals on carbon emissions showed more variability. As shown in Figure 6(c1),
from 2001 to 2006, the high positive value areas for the population’s impact on total carbon
emissions were mainly concentrated in the Tibetan stretch and the upper Yunnan stretch.
Figure 6(c2) reveals that between 2007 and 2014, the high value areas in the mid-lower
Yunnan stretch gradually converged towards the upper area, with an increase in the number
of low-value counties in the mid-lower stretch. As illustrated in Figure 6(c3), for the period
from 2015 to 2020, the high negative value areas for population impact were primarily
located in the Tibetan stretch, indicating a negative influence of population totals on carbon
emissions in this region. Meanwhile, during the entire study period from 2001 to 2020,
the upper Yunnan stretch consistently exhibited high positive value areas for population
impact, suggesting that the total population in this region contributed to an increase in
carbon emissions.

Figure 6d displays the distribution of coefficient changes for each explanatory variable
across three time periods. By comparing the distributions of these three variables, it
becomes apparent that over the years the impact of the total vegetation cover on carbon
emissions has been less than that of GDP and population. However, from 2015 to 2020,
when most hydropower dams began operation, the mitigating effect of vegetation cover
on total carbon emissions gradually increased. The influence of GDP on total carbon
emissions has consistently been at a higher level across the entire study area, with high-
GDP regions often associated with higher total carbon emissions. The impact of GDP
on carbon emissions significantly intensified from the 2001–2006 period to the 2007–2014
period, remaining at a high level.
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4.3. Spatial Analysis of Vegetation Cover Expansion and Carbon Emission Intensity

We used the Global Moran Index to measure spatial clustering. In our spatial cluster
analysis of vegetation cover expansion intensity (VCEI) and carbon emissions intensity
(CEI) in the Lancang River Basin, we found a clear spatial clustering in VCEI. However,
CEI, influenced by multiple factors, did not exhibit a pronounced spatial clustering pattern.

As indicated in Table 4, the Global Moran Index for VCEI from 2001 to 2020 was
consistently positive and significant at the 5% level. Global Moran’s I exhibited a stepwise
increasing trend, indicating that during the three periods of dams in the basin the degree of
spatial clustering in VCEI within the basin is continuously intensifying, with a pronounced
trend towards concentrated distribution.

Table 4. Global Spatial Autocorrelation of VCEI.

Year Moran’s I Z P

2001 → 2006 0.288 3.473 0.001
2007 → 2014 0.560 6.296 0.001
2015 → 2020 0.679 7.998 0.001

As shown in Figure 7a–c, during 2001 to 2020, the VCEI in the basin showed a continual
growth trend, characterized by significant spatial clustering and alternation effects. From
2001 to 2006, areas with positive expansion intensity were primarily concentrated in the
mid-lower Yunnan stretch. In contrast, the upper Yunnan stretch and the Tibetan stretch
exhibited negative values, corresponding to a period prior to dam construction in these
regions. The average VCEI in the study area during this period was −0.009. During the
period from 2007 to 2014, with the advancement of large-scale dam construction projects
in the Yunnan stretch, the positive expansion intensity areas gradually extended from the
mid-lower to the upper regions. The average VCEI in the study area during this period was
0.006. Between 2015 and 2020, a clear pattern of spatial clustering in VCEI emerged. The
average VCEI in the study area during this period was 0.008 (county No. 41 is an outlier, so
it was not considered in the calculation).

Through Figure 7g, we found that data from 2001 to 2020 elucidate a distinct spatial
pattern in the basin’s vegetation dynamics, closely aligned with dam construction activities.
In the Yunnan stretch, there was a significant concentration of areas exhibiting high positive
VCEI. These regions are identified as the most vigorously active zones for hydropower
dam development, suggesting a strong link between dam construction and enhanced
vegetation cover growth. Contrastingly, in the Tibetan stretch, which is characterized by its
high-altitude terrain, the prevailing climatic conditions exert a more dominant influence
on vegetation cover growth than hydropower dam activities. Consequently, this stretch
predominantly displayed negative VCEI values, underscoring the varying impacts of
environmental factors across different segments of the basin.

As shown in Figure 7d–f, from 2001 to 2006, the spatial distribution of CEI in the
Tibetan stretch of the basin exhibited significant fluctuations. In the upper and mid-lower
areas of the Yunnan stretch, the spatial distribution of CEI was relatively stable, with 75.6%
of the counties falling within the 0.00 to 1.333 range. The average CEI in the study area
during this period was 0.877. Between 2007 and 2014, the CEI within the overall study area
of the basin exhibited lower spatial resilience and significant spatial variability compared
to the period before 2006. In contrast, the mid-lower Yunnan stretch was identified as high
negative value area in terms of CEI. The average CEI in the study area during this period
was 0.639. From 2015 to 2020, the overall spatial distribution of CEI in the basin stabilized,
with minimal disparity between high positive and low positive value areas, and overall low
intensity levels across all counties. The average CEI in the study area during this period
was 0.052.
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As shown in Figure 7h, an analysis of CEI trends in the basin from 2001 to 2020 reveals
a pronounced decline aligned with the various phases of hydropower dam construction.
The trend in CEI from 2001 to 2020 demonstrates a notable decrease across the three
dam construction periods, with an increasingly concentrated distribution of CEI among
the counties. Notably, this period witnessed a significant reconfiguration in the spatial
distribution of CEI among the counties, reflecting a dynamic shift in carbon emission
patterns concurrent with the dam construction timeline. The period of 2015–2020, when
the majority of hydropower dams reached full operational capacity, marks the epoch of
the lowest CEI in the basin. This era is characterized by a more uniform and equitable
distribution of carbon emissions across the entire basin, underscoring the influential role of
dam completion and operation in driving these trends.

By integrating the increased vegetation growth intensity shown in Figure 7g and the
sustained increase in local population (where anthropogenic factors have been excluded
from the Section 5), we can infer that local practices such as vegetation logging and stone
quarrying have decreased over the years. Consequently, this suggests that the clean energy
economic model, driven by hydropower and other renewable sources, has to some extent
replaced the high carbon emission economic model predominantly based on vegetation
logging and stone quarrying. So, the clear downward trajectory in CEI during the period of
2015–2020 highlights the positive environmental impact of dam infrastructure in facilitating
a reduction in regional carbon emissions.

5. Discussion

Spanning multiple counties, our findings reveal that the average vegetation cover per
square kilometer in dam counties notably exceeds that in non-dam areas, as illustrated
in Figure 2. By applying data-driven time-series prediction models, we showed this
substantial vegetation increase to be directly linked to dam construction. Notably, counties
with hydropower dams exhibited pronounced enhancements in vegetation cover, with the
NZD dam in county No. 30 showing a greater vegetative increase than that in county No. 37
(Figure 5). This disparity is partly attributed to the economic benefits to county No. 30
from hydropower-generated GDP, a sustainable and clean energy source that has replaced
environmentally costly economic activities, such as tree cutting and stone mining, which
were once the backbone of local economic development. So, enhanced climatic conditions
and the shift towards clean energy utilization have collectively catalyzed the growth in
vegetation cover in county No. 30, leading to a 7.95% higher increase in NDVI compared to
county No. 37 (Figure 5). These findings underscore the key role of pivotal dam construction
in both ecological restoration and the transition towards a low-carbon economy.

Our comprehensive analysis of carbon emissions in the Lancang River Basin reveals
trends mirroring those observed in its changes. Figure 8a highlights that the average carbon
emissions per square kilometer in dam counties are notably lower compared to those
in non-dam counties. This disparity underscores the integral role of vegetation volume,
economic development, and population dynamics in shaping the basin’s overall carbon
emissions profile. This is particularly evident in areas characterized by high expansion
intensity, where significant shifts in carbon emission drivers are observed. The complex
interplay of these factors highlights the multifaceted nature of carbon emission dynamics in
the context of large-scale environmental and infrastructural changes. In fact, compared to
numerous current studies, we have found that the impact of dam construction on vegetation
is recognized as a complex interplay of both positive and negative effects. Corresponding
to the scale of our research, Fu et al. (2023) reported that within sub-catchment scales there
was a significant long-term increase in the average NDVI from upstream to downstream.
This enhancement in vegetation health and coverage in downstream areas could be directly
attributed to dam construction [43]. In our focused investigation into the effects of pivotal
dams on vegetation, we observed that such dams often promote local vegetation recovery.
This finding aligns with similar research conducted by Yi et al., which not only reported
significant vegetation increases noted in the XW pivotal dam area between elevations of
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200 and 400 m, but also highlighted that the effects of dam construction on vegetation can
be both positive and negative, varying with location and altitude [44].
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Figure 8b illustrates that hydropower dam construction in the Lancang River Basin has
been a catalyst for significant GDP growth, particularly in the upper Yunnan stretch from
2015 and 2020. This growth is also specifically exemplified in the study by Shi et al., which
highlights the critical role of dam construction in promoting economic growth, particularly
the significant impact of large dams on GDP [45]. As shown in Figure 6(b1–b3), this period
saw GDP high-impact areas expand from the mid-lower to upstream regions of the basin,
reflecting the economic influence of these projects over three distinct study periods from
2001 to 2020. During this time, GDP emerged as the primary driver of increased carbon
emissions. From 2001 to 2014, amid evolving environmental policies and the region’s
relatively underdeveloped economy, economic growth was predominantly fueled by high
carbon emission activities. However, the post-2015 era marked a paradigm shift. Dam
construction has facilitated local development by upgrading fisheries, agriculture, and
plantation industries, thereby improving the local economic revenue models [46]. Therefore,
the completion of hydropower projects in the Lancang River Basin, coupled with advances
in China’s environmental policies, has accelerated the region’s shift towards clean energy,
predominantly hydropower. This shift is transforming the traditional fossil fuel-based
economic system of the basin into a more sustainable, hydropower-centric, clean energy
economic model.

Furthermore, the construction and operational phases of hydropower dams in the
region have led to significant population influxes, particularly enhancing population
mobility between 2007 and 2020, as compared to the period from 2001 to 2006. Similar
to how the Belo Monte Dam in northern Brazil has increased local employment [47], the
years 2007 to 2014 saw the construction of major hydropower projects in the Lancang River
Basin which also created substantial employment opportunities, thereby stimulating local
population growth and enhancing regional mobility. As illustrated in Figure 9a, the total
population in the Lancang River Basin rose steadily from 14,941,354 in 2001 to 16,828,030
in 2020. Analysis of the data presented in Figure 9b reveals that, over these two decades,
counties with dams experienced higher population growth rates than those without. This
differential growth highlights the role of dam construction in influencing population
dynamics. Concurrently, these population increases intensified resource demand, leading
to significant carbon emissions. However, the completion of numerous hydropower dams
and a transition towards cleaner energy sources from 2015 onwards contributed to a
reduction in the overall carbon emissions from the population.
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Moreover, we found that the VCEI in the Lancang River Basin showed an increas-
ing trend from 2001 to 2020, with spatial clustering progressively intensifying and high-
intensity vegetation expansion areas gradually shifting the mid-lower Yunnan stretch. As
illustrated in Figure 10, by integrating the agricultural land growth rates in the Lancang
River Basin from 2001 to 2020, we observed a negative growth rate in agricultural land
after 2014. However, as indicated in Figure 7g, the vegetation expansion intensity post-2014
was higher than that before 2014, coinciding with the completion and full operation of
several major dams in the basin in 2014. Therefore, the increase in VCEI, calculated based
on NDVI data, can be attributed not to anthropogenic factors such as the planting of crops,
but to the characteristics of natural vegetation recovery. In agreement with the findings
shown in Figure 10, during the dam construction period of 2011 to 2014 an increase in the
rate of farmland growth was observed. The dam construction facilitated water retention
in streambeds and enhanced the storage of seasonal water bodies, which spurred local
agricultural development [48]. However, the rapid increase in cultivated land area often
resulted in a decline in the land’s agricultural carrying capacity, leading to a reduction in
the total amount of farmland post-2014.
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As shown in Figure 11, the construction of hydroelectric dams has driven the local
economy, reduced the consumption of fossil fuels, and provided a large number of job
opportunities for the local population, reducing the original energy dependent economic
structure, jointly promoting local vegetation restoration, and increasing local carbon sinks.
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6. Conclusions

Dam construction has been linked with negative environmental impacts in many pre-
vious studies [14–18], such as reduced vegetation [49], ecological invasion [50], destruction
of original vegetation [51], and so on. The diminution in vegetation adversely affects the
basin’s carbon sequestration abilities, lowering its effectiveness as a carbon sink.

Accordingly, our research does not completely contradict earlier studies. While earlier
studies have highlighted the detrimental effects of dams, such as soil erosion and habitat
degradation in nearby areas due to reservoir-induced water level rises, these findings
predominantly stem from investigations conducted in regions proximal to dams. Moreover,
the temporal scope of these studies may have been limited, capturing only short-term
impacts. In contrast, in the long term, our findings, through meticulous analysis, reveal
predominantly positive impacts of hydropower dam construction on the environment. Our
research underscores the importance of considering broader geographical and contextual
factors when assessing the environmental implications of large-scale hydropower dam
construction. So, despite stringent environmental regulations in China, the government’s
continued investment in hydropower dams underscores the recognition of its positive
environmental contributions.

This study provides a comprehensive evaluation of the hypothesis that the construc-
tion of hydropower dams in the Lancang River Basin acts as a pivotal catalyst for enhancing
vegetation restoration and advancing progress towards carbon neutrality goals. Utilizing
advanced remote sensing techniques, we documented a significant increase in the local
normalized difference vegetation index (NDVI) following the construction and operational
onset of key hydropower dams. Specifically, during the operational phase of these dams,
we observed an average NDVI increase of 16.15%, reaching a maximum of 20.12%. Over
the two decades from 2001 to 2020, the commissioning of these dams has been linked to
substantial alterations in ecological and carbon dynamics within the basin. Noteworthy is
the shift in vegetation cover expansion intensity (VCEI) from a negative average of −0.009
to a positive mean of 0.008, reflecting a reversal from vegetation loss to significant regrowth.
Concurrently, carbon emission intensity (CEI) in the vicinity of these dams has seen a
dramatic reduction, plummeting from an average of 0.877 to just 0.052, indicating a major
stride towards environmental sustainability. Furthermore, the increase in Global Moran’s I
for VCEI from 0.288 pre-2016 to 0.679 post-2015 underscores a stronger spatial autocorrela-



Forests 2024, 15, 872 22 of 24

tion in vegetation patterns, suggesting more cohesive and widespread ecological recovery
across the basin.

Our comprehensive investigation into the basin has revealed that hydropower dams
since the early 21st century have been instrumental in catalyzing vegetation restoration
and development. This has notably amplified the region’s carbon sequestration capacity,
marking a significant stride towards environmental sustainability. Importantly, the clean
energy harnessed from these hydropower dams has been pivotal in meeting local energy
needs while fostering a transition from a traditional, environmentally intensive economic
model to a sustainable, low-carbon economy. Our findings contribute valuable insights
into the multifaceted impacts of hydropower dams, underscoring their role in ecological
restoration and sustainable energy transition. From a more macro perspective, this evo-
lution towards peak carbon and carbon neutrality aligns closely with the United Nations
Sustainable Development Goals, presenting an exemplary model for global river basins
considering similar infrastructural developments.
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