
Citation: Li, X.; Li, Y.; Xiong, B.; Qiu,

S. Progress of Antimicrobial

Mechanisms of Stilbenoids.

Pharmaceutics 2024, 16, 663.

https://doi.org/10.3390/

pharmaceutics16050663

Academic Editor: Francisco Javier De

La Mata

Received: 5 April 2024

Revised: 13 May 2024

Accepted: 14 May 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Progress of Antimicrobial Mechanisms of Stilbenoids
Xiancai Li 1,*, Yongqing Li 2 , Binghong Xiong 1 and Shengxiang Qiu 1,*

1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden,
Chinese Academy of Sciences, Guangzhou 510650, China; xiongbh@scbg.ac.cn

2 Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China
Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; liyongqing@scbg.ac.cn

* Correspondence: lixiancai@scbg.ac.cn (X.L.); sxqiu@scbg.ac.cn (S.Q.)

Abstract: Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic
infections. However, the emergence of drug resistance continues to be a major threat to human
health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent.
With a deeper understanding of microbial habits and drug resistance mechanisms, various creative
strategies for the development of novel antibiotics have been proposed. Stilbenoids, characterized by
a C6–C2–C6 carbon skeleton, have recently been widely recognized for their flexible antimicrobial
roles. Here, we comprehensively summarize the mode of action of stilbenoids from the viewpoint of
their direct antimicrobial properties, antibiofilm and antivirulence activities and their role in reversing
drug resistance. This review will provide an important reference for the future development and
research into the mechanisms of stilbenoids as antimicrobial agents.

Keywords: stilbenoids; antimicrobial mechanisms; conventional targets; antibiofilm; antivirulence;
reversing drug resistance

1. Introduction

Microorganisms are life forms with the widest distribution, the most abundant species
and the largest biomass on earth. Some microorganisms, such as intestinal beneficial
microorganisms, industrial microbial strains and agricultural microbial agents, are widely
used in the human health industry and agricultural production and have greatly promoted
the development of the economy and society. Others, however, cause pathogenic diseases.
Bacterial infections were fatal until the 1940s, when penicillin was discovered. In the
years that followed, the discovery of antibiotics released people from the hegemony of
infection and improved our quality of life and life expectancy. However, with the abuse
of antimicrobial drugs, many new challenges in the treatment of pathogenic infections
have emerged recently. First of all, new pathogens continue to emerge, such as SARS-
CoV and SARS-CoV-2, and there is still a lack of effective drugs against these pathogens.
Second, the development of drug resistance makes it difficult to treat previously curable
infections. According to statistics, an estimated 4.95 million people died from bacterial
AMR in 2019, of which 1.27 million died directly [1]. Third, many existing antimicrobials
have defects. For example, the antifungal drugs azole, polyene and echinomycin can cause
a variety of side effects in the human body. Therefore, it is urgent to find more efficient and
safer antimicrobials.

Stilbenoid, characterized by a C6–C2–C6 carbon skeleton, possess a wide range of
pharmacological activities. For example, resveratrol has demonstrated anti-inflammatory,
antioxidant, hypolipidemic, hypoglycemic and anticancer activities [2–4]. It can also be
used as a supplement to prevent cardiovascular system diseases, nervous system diseases
and cancer [5]. In addition, the antimicrobial activity of stilbenoids is also of great concern
to phytochemists and pharmacologists. Plant-derived stilbenoids are a class of important
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phytoalexins produced by plants to protect against pathogen infections and toxins. Mat-
tio et al. summarized the sources, chemical structures and the antibacterial mechanism
of natural stilbenoids [6]. The role of stilbenoid-abundant extracts in the mitigation of
mycotoxins in food and feedstuffs has also attracted great interest [7]. However, there is
no review providing a comprehensive overview of the antimicrobial (antibacterial and
antifungal) mechanisms of stilbenoids from the perspective of their direct microbicidal
activity, antibiofilm activity and/or regulation of the pathogenicity of microbes. Here, this
review will emphasize recent achievements in these aspects of stilbenoids.

2. The Family of Stilbenoids

Resveratrol was the first stilbenoid to be discovered. It was originally isolated from the
root of Veratrum grandiflorum in 1939 by Takaoka [8]. Subsequently, with the introduction
of more accurate metabolite identification/isolation techniques and chemical synthesis,
more and more complex stilbenoids were identified. These stilbenoids can be divided into
three categories according to their chemical structure, including monomers and oligomers
(Figure 1).
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Monomeric stilbenes, such as resveratrol, piceatannol, pterostilbene and pinosylvin,
are characterized by two phenyl rings, joined by an ethylene bridge. Oligomeric stilbenes
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are a group of compounds polymerized from monomeric stilbene. Resveratrol oligomers,
which consist of two to eight or more resveratrol subunits, are the largest group of the
oligomeric stilbenes [9]. Hopeaphenol, a tetramer of resveratrol isolated from Hopea
odorata and Balanocarpus heimti, was the first oligomeric stilbenoid to be discovered in
1951 [10]. Subsequently, more and more oligomeric stilbenes from plants were identified.
Oligomers can be polymerized from either homogenous or heterogeneous monomeric
stilbenes. For example, hopeaphenol and ε-viniferin are polymerized from resveratrol
units, while Gnetuhianin Q is a mixed dimer that is polymerized from both isorhapotigenin
and resveratrol. Gnetuhainin K is the mixed dimer of gnetol and isorhapotigenin [11]. Those
oligomers can be divided into benzofuran oligomers and benzocyclopentane oligomers.

Bibenzyls (e.g., amorfrutin B and erianin, etc.) are comprised of two aromatic rings
linked by an ethyl bridge. Monomeric bibenzyls can be polymerized into bisbibenzyls.
However, no oligomers polymerized by more than three bibenzyl units have been found.

Phenanthrenoids include the phenanthrenes, 9,10-dihydrophenanthrenes and their
oligomers. More than one hundred dimers have been identified [12]. However, only three
triphenanthrenes have been reported [13–15].

3. Structural Diversity and Antimicrobial Activity of Stilbenoids

Simple monomeric stilbenes (including resveratrol, piceatannol and pinosylvin) or
bibenzyls (including 5-hydroxy-lunularic acid and 3,3′,5-trihydroxybibenzyl), synthesized
through the phenylpropanoid pathway, are the precursor of many other stilbenoids in
plants. It is generally believed that phenanthrenes and 9,10-dihydrophenanthrenes are
formed by the oxidative coupling of the aromatic rings of stilbene and bibenzyl precursors,
respectively [16,17]. However, other views on the biosynthesis of phenanthrenoids have
been discussed in another review [16]. Subsequently, the diversity of stilbenoids is greatly
increased via enzymatic modifications of side groups on the precursors, such as methylation,
prenylation, oligomerization, hydroxylation, glycosylation and isomerization. The chemical
diversity of stilbenoids provides them with a wide range of antimicrobial activities (Table 1),
especially drug-resistant microbes.

3.1. Methylation

Methylation is the most common modification in plants. Methylation alters the chemi-
cal properties of hydroxyl stilbenes and therefore affects their antimicrobial activity. For
example, rapid absorption and metabolism result in the limited oral bioavailability of
resveratrol, which restricts the application of this potentially valuable compound in clin-
ical trials [18,19]. However, pterostilbene, a dimethoxy derivative of resveratrol, shows
better bioavailability and stronger antifungal activity [20]. In addition, stilbenes such as
pinosylvin, piceatannol and pinostilbene, which contain a varied number of methylated
groups, also exhibit higher antimicrobial activity compared to resveratrol [21–24]. Li et al.
shows that the chemical affinity balance of substituent groups of stilbenes is key for their
antifungal activity [25].

3.2. Isomerization

Structurally, stilbenes can exist as cis (Z) and trans (E) isomers, based on the configura-
tion of the ethylene bridge, such as trans-resveratrol and cis-resveratrol. Generally, the two
isomers exhibit different chemical characteristics and thereby different biological activities.
The E-type configuration is more common in nature. This configuration is not sterically
hindered, being therefore more stable. For example, research showed that trans-resveratrol
exhibited stronger antibacterial effects compared to cis-resveratrol [26].

3.3. Prenylation

Prenyl groups can be attached to the skeleton at different positions and in different
configurations (e. g., chain or ring-closed prenylation). One isoprenyl (3,3-dimethylallyl)
moiety bound to the aromatic ring of stilbenes is the most common form in nature. In
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addition, prenyl patterns such as 3-methyl-but-1-enyl and geranyl are also often introduced
to various positions of the stilbene backbone, along with oxidation, methylation and cycliza-
tion moieties, increasing the structural diversity of stilbenoids. Prenylation of compounds
improves the binding affinity to receptors and is beneficial to membrane partitioning, con-
sequently enhancing bioactivity [27]. For example, prenylated stilbenoids generally exhibit
stronger antibacterial activity with MICs (minimal inhibitory concentration) in the µg/mL
range. Improved properties, such as hydrophobicity, charge or molecular geometry, may
contribute to their enhanced activity [28]. However, the rule is not absolute. For example,
isopentenylated longistylin C shows lower antifungal activity than pinosylvin monomethyl
ether (PME) [25]. This is closely related to their mechanism of action.

3.4. Oligomerization

Oligomeric stilbenoids are formed by oxidative coupling between homogenous or
heterogeneous monomeric stilbenoids. A series of oligomeric stilbenoids has been iden-
tified in recent years, of which some are superior in bioactivity, stability and selectivity
compared to the parental monomers [29,30]. For example, tapinarof is a stilbene drug iso-
lated from the gammaproteobacterial Photorhabdus genus [31]. Duotap-520, isolated from
Photorhabdus gammaproteobacteria, is the dimer of tapinarof and exhibits enhanced activity
against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus and vancomycin-
resistant Enterococcus faecalis), with no resistance development even after daily non-lethal
exposure for a duration of three months [31]. Interestingly, this metabolic dimer of tapinarof
has gained antibacterial activity but has lost its anti-inflammatory activity [31]. Another
dimer is dehydro-δ-viniferin, which shows enhanced antibacterial activity compared to
monomer resveratrol [32].

Table 1. Antimicrobial activities and mechanisms of stilbenoids.

Targets Compounds Details Determination
Methods Refs

Cell membrane Longistylin A MRSA, MIC = 1.56 µg/mL; disturbing
membrane potential and
increasing permeability.

Micro-well dilution. [33]

Toremifene P. gingivalis and S. mutans,
MICs = 12.5–25 µM; disrupting the
cell membrane.

Micro-well dilution. [34]

Dehydro-δ-viniferin L. monocytogenes, MIC = 2 µg/mL. Micro-well dilution. [35]

Pterostilbene F. nucleatum, MIC = 20 µg/mL utilizing
2-hydroxypropyl-β-cyclodextrin as a
solubilizer.

Micro-well dilution. [36]

Resveratrol S. aureus ATCC 25923,
MIC = 512 µg/mL; P. aeruginosa ATCC
27853, MIC > 512 µg/mL.

Micro-well dilution. [32]

Cajaninstilbene acid
derivative 5b

S. aureus ATCC25923, MIC = 4 µg/mL;
S. epidermidis ATCC12228,
MIC = 1 µg/mL; B. subtilis ATCC6633,
MIC = 0.5 µg/mL; interferring in PG
synthesis pathway by targeting PgsA.

Micro-well dilution. [37,38]

PME A. flavus, IC50 = 260 µg/mL; binding the
phospholipids of cell membrane.

Agar drug plate growth
assay.

[25]
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Table 1. Cont.

Targets Compounds Details Determination
Methods Refs

Cell wall Duotap-520 MRSAs, MICs = 4 µM; VRE,
MIC = 6 µM; binding to lipid II.

Micro-well dilution. [39]

GW458344X Inhibiting MurC activity, IC50 = 368 µM;
MurD, IC50 = 104 µM; MurE,
IC50 = 49 µM; MurF, IC50 = 59 µM.

Enzyme activity test. [40]

135C S. aureus, MICs = 0.12–0.5 µg/mL;
targeting cell wall teichoic acids.

Micro-well dilution. [41]

Plagiochin E Inhibiting the activity of chitin
synthases.

Enzyme activity test. [42]

Tamoxifen S. pombe, MIC = 32 µg/mL; inhibiting
Ccr1 NADPH-cytochrome P450
reductase activitie.

Micro-well dilution. [43]

DNA Resveratrol-trans-
dihydrodimer

B. cereus, MIC = 15.0 µM; L.
monocytogenes, MIC = 125 µM; S. aureus,
MIC = 62.0 µM; E. coli, MIC = 123 µM,
upon addition of the efflux pump
inhibitor; inhibiting DNA gyrase.

Micro-well dilution. [44]

Triazolyl-pterostilbene
derivative 4d

MRSAs, MICs = 1.2–2.4 µg/mL,
MBCs = 19.5–39 µg/mL; inhibiting the
activity of DNA polymerase.

Micro-well dilution. [45]

Oxyresveratrol C. albicans ATCC90028,
MIC = 5.0 µg/mL; C. parapsilosis
ATCC22019, MIC = 5 µg/mL; inflicting
cleavage on DNA.

Micro-well dilution. [46]

Resveratrol S. typhimurium, MIC = 5 µg/mL;
inducing DNA disruption.

Micro-well dilution. [47]

Mitochondria Resveratrol C. albicans ATCC 90028, MIC = 20 µM;
inducing mitochondria-dependent
apoptosis.

Micro-well dilution. [48]

Plagiochin E C. albicans CA2, MIC = 16 µg/mL;
inducing mitochondria-dependent
apoptosis.

- [49,50]

ATPase Resveratrol and
piceatannol

Inhibiting ATPase activity; piceatannol,
IC50 = 14 µM; resveratrol, IC50 = 94 µM.

Enzyme activity test. [51]

Cell-division Resveratrol E. coli, MIC = 456 µg/mL; preventing
Z-ring formation.

- [52]

PTS system Cajaninstilbene acid Sensitive Enterococcus strains and VRE
strains, MICs = 0.5–2 µg/mL; inhibiting
carbohydrate specific type II
transporters of PTS system.

Micro-well dilution;
proteomics; q-PCR.

[53]

Calmodulin–
calcineurin pathway

Tamoxifen S. pombe, MIC = 35 µg/mL; Candida spp.
and C. neoformans, MICs = 8–64 µg/mL;
directly binding to calmodulin.

Agar drug plate growth
assay; micro-well

dilution

[54–56]
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Table 1. Cont.

Targets Compounds Details Determination
Methods Refs

Virulence factors Erianin S. aureus ATCC25904,
MIC = 512 µg/mL; inhibiting the
activity of SrtA with a
IC50 = 20.91 ± 2.31 µg/mL.

Micro-well dilution. [57]

Resveratrol Reducing the secretion of α-hemolysin
by downregulating saeRS.

Red blood hemolysis
assay.

[58,59]

DIDS Inhibiting V. vulnificus toxicity to HeLa
cells at 10–300 µM with no influence on
host cell viability and bacterial growth;
reducing the expression of TolCV1.

- [60]

Raloxifene Enhancing the survival percentage of
C. elegans infected with P. aeruginosa
PA14 at 12.5–100 µg/mL; inhibiting
pyocyanin production by binding and
inhibiting PhzB2.

- [61]

(-)-Hopeaphenol Reducing cell entry and subsequent
intracellular growth of bacteria;
inhibiting the expression of YopE with a
IC50 = 8.8 µM; inhibiting the activity of
YopH with a IC50 = 2.9 µM.

A luminescent
reporter-gene assay

(YopE); an
enzyme-based YopH

assay.

[62,63]

Hopeaphenol,
isohopeaphenol,

kobophenol A and
ampelopsin A

Reducing the pathogenicity of
P. syringae pv. tomato DC3000 on leaves;
reducing the expression of hrpA, hrpL
and hopP1 genes without influence on
bacterial growth.

[64,65]

Biofilm Resveratrol Inhibiting swarming of P. mirabilis at
15 µg/mL, and completely inhibited
swarming at 60 µg/mL.

- [66]

S. typhimurium SL1344,
MIC > 512 µg/mL; inhibiting adhesion
of S. typhimurium to HeLa cells;
downregulating the expression of
flagella genes.

- [67]

P. gingivalis, MICs= 78.12–156.25 µg/mL;
reducing the expression fimbriae genes.

- [68]

V. cholerae, MIC = 60 µg/mL; antibiofilm
at 10–30 µg/mL; inhibiting the activity
of AphB.

Crystal violet assay;
confocal laser scanning

microscopy.

[69]

S. mutans, MIC = 800 µg/mL; inhibiting
biofilm formation at 50–400 µg/mL;
reducing the biosynthesis of
polysaccharide.

Growth curve assay;
crystal violet assay;

confocal laser scanning
microscopy.

[70,71]

Inhibiting pyocyanin production of
P. aeruginosa PAO1 by directly binding
LasR.

- [72]

Reducing MN production. - [73]

Resveratrol and
oxyresveratrol

Antibiofilm at 10 µg/mL and 100
µg/mL; reducing fimbriae production
and the swarming motility of UPEC.

Crystal violet assay;
confocal laser scanning

microscopy.

[74]
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Table 1. Cont.

Targets Compounds Details Determination
Methods Refs

Biofilm Trans-stilbene Reducing biofilm of S. aureus ATCC6538
at 50–200 µg/mL; decreasing the
expression of intercellular adhesion
locus.

Crystal violet assay;
confocal laser scanning

microscopy.

[58]

Piceatannol S. mutans, MIC50 = 564 ± 38 µM;
antibiofilm, IC50 = 52 ± 6 µM; inhibiting
the activity of GtfB and GtfC.

Crystal violet assay;
confocal laser scanning

microscopy.

[75]

Oxyresveratrol S. mutans, MIC = 500 µg/mL; reducing
biofilm formation at 62.5–250 µg/mL;
suppressing the expression of gtfB and
gtfC.

Micro-well dilution;
confocal laser scanning

microscopy.

[76]

Amorfrutin B Antibiofilm activity against P. aeruginosa
PAO1 with a biofilm inhibition ratio of
50.3 ± 2.7 at 50 µM; binding the
receptors of signal molecule.

Crystal violet assay. [77]

Cajaninstilbene acid
analogue 3o

Inhibiting biofilm formation of
P. aeruginosa with inhibition ratio of
49.50 ± 1.35% at 50 µM; suppressing
the expression of lasB and pqsA.

Crystal violet assay. [78]

Riccardin D Inhibiting biofilm formation at
16 µg/mL and 64 µg/mL using central
venous catheter (CVC)-associated
C. albicans biofilms in an infectious
rabbit model; reducing the expression of
hypha-specific genes.

XTT reduction assay;
scanning electron

microscopy; confocal
laser scanning

microscopy.

[79,80]

Pterostilbene Inhibiting the formation of C. albicans
biofilms in vitro at 1–32 µg/mL;
downregulating the expression of
filamentation-related genes.

XTT reduction assays;
confocal laser scanning
microscopy; scanning
electron microscopy.

[81]

Reversing antibiotic
resistance Resveratrol

Enhancing the efficacy of
aminoglycosides against Gram-positive
pathogens; inhibiting the activity of ATP
synthase.

- [82]

Increasing susceptibility of P. aeruginosa
PAO1 biofilm to aminoglycosides;
inhibiting the expression of signaling
molecule synthase genes lasI and rhlI.

- [83,84]

Pterostilbene Restoring the effectiveness of
meropenem against NDM-expressing
strains; inhibiting NDM-1 hydrolysis
activity at 4–32 µg/mL.

- [85]

Cajaninstilbene acid Restoring the susceptibility of
polymyxin B to mcr-1 positive
Gram-negative bacteria; inhibiting the
enzymatic activity of MCR-1.

- [86]

Resveratrol,
pterostilbene, and

pinosylvin

Increasing sensitivity of A. butzleri
strains to chloramphenicol,
erythromycin and ciprofloxacin by
acting as EPIs.

- [87–89]

Piceatannol Increasing sensitivity of S. aureus to
ciprofloxacin by decreasing PMF.

- [90]
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4. Antimicrobial Mechanisms of Stilbenoids

Stilbenoids exert antimicrobial activities via various modes (Figure 2). The antimi-
crobial mechanisms mainly include (I) acting on conventional targets, (II) acting on non-
conventional targets and (III) reversing antibiotic resistance. Firstly, stilbenoids can inhibit
conventional targets, such as the cell membrane, cell wall, DNA, the calmodulin–calcineurin
pathway, mitochondria, cell division and the phosphoenolpyruvate (PEP)-dependent phos-
photransferase system. Secondly, stilbenoids can function as antibiofilm or antivirulence
agents. Stilbenoids inhibit biofilm formation and assist in the eradication of preformed
biofilms. Moreover, stilbenoids can reverse drug resistance by inhibiting alternative targets,
target-modifying enzymes or antibiotic-modifying enzymes.
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4.1. Direct Antimicrobial Mechanisms of Stilbenoids
4.1.1. Targeting the Cell Membrane

The antimicrobial mechanism elucidates the membrane-disruption effects of stil-
benoids, resulting in the leakage of cell contents and subsequent cell death. For example,
the anti-MRSA (methicillin-resistant Staphylococcus aureus) activity of longistylin A, a stil-
bene isolated from the leaves of Cajanus cajan (L.) Millsp, is mediated by disturbing the
bacterial membrane potential and increasing permeability [33]. Li et al. showed that PME
exerted anti-Aspergillus flavus activity by binding the phospholipids, leading to decreased
fluidity and increased permeability of the cell membrane [25]. In addition, toremifene (an
FDA-approved anticancer agent synthesized in 1981), pterostilbene, dehydro-δ-viniferin (a
stilbene dimer chemically semi-synthesized from resveratrol), resveratrol and so on, are all
shown to exert antimicrobial activity by disrupting the cell membrane [32,34,36].

Membrane-associated protein PgsA catalyzes glycerolphosphate to replace cytidine
monophosphate to produce phosphatidylglycerol phosphate (PG-P). Subsequently, PG-P
is dephosphorylated by PgpP to yield phosphatidylglycerol (PG), a major component of
cell membrane [91]. Research has shown that a chemically synthesized cajaninstilbene
acid-derivative, 5b, interferes in the PG synthesis pathway by targeting PgsA [37].

4.1.2. Targeting the Cell Wall

The bacterial cell wall is a peptidoglycan polymer network that is composed of N-
acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), with a pentapeptide
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attached. Firstly, the UDP-MurNAc-pentapeptide is coupled with bactoprenyl-phosphate
(lipid I) on the cytosolic side of the cell membrane, followed by the coupling of the GlcNAc
sugar by the enzyme MurG to produce lipid II. Next, lipid II, containing the complete
peptidoglycan subunit, is translocated to the outside of the cell membrane. The subunits
are inserted into the cell wall by penicillin-binding proteins (PBPs) to make the cell wall
grow further. Finally, the lipid anchor is returned to the cell for the next round of synthe-
sis [92]. Duotap-520, a natural stilbene dimer isolated from Photorhabdus, can bind to lipid
II, preventing the role of lipid II [39]. Bacterial peptidoglycan biosynthesis is catalyzed
by a series of Mur ligases in the intracellular steps. Research has shown that chemically
synthesized aza-stilbene GW458344X is a competitive inhibitor of MurD, an enzyme cat-
alyzing the reaction from UDP-MurNAc-Ala to UDP-MurNAc-dipeptide [40]. Wall teichoic
acids (WTAs) are anionic glycopolymers anchored in the cell walls of Gram-positive bac-
teria and have critical functions in bacterial physiology. The first-committed step of WAT
biosynthesis is catalyzed by TagA, a membrane-associated glycosyltransferase [93]. The
two-component transporter TagGH is responsible for the exportation of WATs [94]. A
mutation in genes (tagH, tagA and tagG) has conferred drug resistance to S. aureus against
the chemically synthesized tris-stilbene 135C. Therefore, 135C showed promising activity
against Gram-positive bacteria, probably via targeting cell wall teichoic acids [41].

The fungal cell wall, a complex matrix with no mammalian counterpart, plays a role
in maintaining cell shape and integrity, and therefore presents an ideal drug target. The
cell wall consists of complex components, mainly polysaccharides (glucans, mannans and
chitins), proteins and lipids. Studies showed that the macrocyclic bis(bibenzyl) plagiochin
E caused damage in cell wall of C. albicans by inhibiting chitin synthetase activities [42].
The NADPH-cytochrome P450 reductase Ccr1 plays a role in the cell wall assembly of
budding yeast [95]. The deletion of Ccr1 could cause defects in yeast cell wall integrity.
Tamoxifen, an estrogen receptor antagonist used for treating breast cancer, has been found
to inhibit Ccr1 NADPH-cytochrome P450 reductase activities of fission yeast and C. albicans
in a dose-dependent manner, thereby causing defects in cell wall integrity [43].

4.1.3. Targeting the DNA

Stilbenoids can inhibit the synthesis of DNA. For example, resveratrol-trans-dihydr-
odimer, obtained by the oligomerization of resveratrol catalyzed by soybean peroxidase
in vitro, has been shown to inhibit DNA synthesis by reducing DNA gyrase activity via
blocking the ATP-binding site of the enzyme [44]. Another study demonstrated that the
chemically synthesized triazolyl-pterostilbene derivatives (4d, 7d and 7e) exhibited po-
tent anti-MRSA activity by inhibiting the activity of DNA polymerase [45]. Stilbenoids
can also damage DNA. For example, oxyresveratrol inflicted cleavage on DNA by di-
rectly binding to the DNA, which in turn led to mitochondria-mediated apoptosis in C.
albicans [46]. Resveratrol induces DNA disruption via pro-oxidant activity (including
increasing ROS and malondialdehyde accumulation and depleting glutathione) against
Salmonella typhimurium [47].

4.1.4. Targeting the Mitochondria

Mitochondria not only power life via their varied metabolic functions, but also play a
central role in apoptotic cell death. Mitochondrial membrane permeabilization upon stimu-
lation usually causes cytochrome c release from the mitochondria and subsequent metacas-
pase activation, and eventually commits a cell to die [96]. As such, targeting mitochondrial
membrane to manipulate cell death holds tremendous antimicrobial potential. Studies
have demonstrated that resveratrol caused the loss of mitochondrial membrane potential
(∆Ψm), leading to metacaspase activation, cytochrome c release and eventually apoptosis
of C. albicans [48]. Another study showed that plagiochin E could induce mitochondria-
dependent apoptosis in yeast, mainly including the activation of F(0)F(1)-ATPase, inhibition
of dehydrogenase and release of cytochrome c, leading to metacaspase activation [49,50].
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4.1.5. Actions on other Conventional Targets

The cell membrane and wall, the DNA and mitochondria mentioned above are all
conventional antimicrobial targets. In addition, stilbenoids can also act on other conven-
tional targets. For example, resveratrol and piceatannol inhibited both the ATPase activity
and ATP synthesis of Escherichia coli reversibly [51]. Resveratrol can also exert antibacterial
activity by downregulating FtsZ expression and preventing Z-ring formation. FtsZ can
polymerize to form a dynamic ring (Z-ring) to promote cell division in prokaryotes. The
Z-ring plays a role in recruiting division-related proteins and directing septal peptidoglycan
synthesis to initiate division [52,97].

The bacterial phosphoenolpyruvate (PEP)-dependent phosphotransferase system
(PTS) consists of the coupled carbohydrate-specific transporters (called “EIIs”) and two
general components, EI and HPr, encoded by ptsI and ptsH, respectively [98]. The PTS
catalyzes the coupled phosphorylation of carbohydrates and their transport into cells.
Firstly, the phosphoryl groups derived from PEP are transferred from the EI to an EII with
the mediation of HPr. Finally, the phosphoryl groups are transferred to a carbohydrate
substrate by its cognate EII [53]. Given that this system plays an important role in catalytic
transport and has extensive regulatory functions, it presents an important drug target
for the development of antibacterial agents [99]. Cajaninstilbene acid has been shown to
inhibit vancomycin-resistant Enterococcus by inhibiting the carbohydrate-specific type II
transporters of the PTS system, as confirmed by proteomics and fluorescence quantita-
tive PCR [53].

Tamoxifen is a known inhibitor of mammalian calmodulin. Recent studies have
found that tamoxifen could exert antifungal activity through targeting the calmodulin–
calcineurin pathway. Evidence suggests that tamoxifen could induce a consistent phenotype
in C. albicans, resembling yeasts that have lost the calmodulin function (e. g., disrupting
cell integrity, blocking new bud emergence, interfering with the polarization of the actin
cytoskeleton and inhibiting germ tube formation). Moreover, the increased expression of
calmodulin inhibited the antifungal activity of tamoxifen. The strains with mutations in
calmodulin are hypersensitive to tamoxifen [54,55]. MYO2 is a calmodulin-binding protein
involved in various cellular polarized growth processes [100]. Studies demonstrated that
tamoxifen can interfere with the interaction between Myo2p and calmodulin in yeast [55].
Another study also showed that toremifene and tamoxifen exert the anti-cryptococcal
activity by directly binding to calmodulin, leading to suppressed calmodulin-mediated
calcineurin activation and nuclear localization of the transcription factor Crz1/SP-1 [56,101].

4.2. Stilbenoids Targeting Virulence Factors

With the continuous emergence of multidrug-resistant microbes, conventional antibi-
otics are becoming increasingly ineffective at treating microbial infections. Virulence deter-
mines the pathogenicity of pathogens. Pathogens achieve host colonization, tissue damage
and immune evasion/modulation with the help of virulence factors. In recent years, there
has been a growing interest in disrupting the microbial virulence mechanisms that disarm
pathogenic microbes rather than killing them using anti-infective/anti-virulence drugs.
Anti-virulence agents aim to inhibit the virulence factors (adhesins, invasins, enzymes and
toxins) or other surface proteins that allow the pathogens to survive in adverse conditions,
which, in turn, slows the infection rate [102]. It has been greatly encouraged to research
and develop agents for clinical use that specifically target the production of virulence
factors, without inhibiting planktonic cell growth, to control infection in the resistance era.
Firstly, an anti-virulence treatment strategy places less selective pressure on microbes to
evolve novel antibiotic resistance mechanisms [103]. Secondly, anti-virulence agents can, in
theory, distinguish between the endogenous microbiome and infectious pathogens, which
is something that conventional antibiotics do not have.

Surface proteins can assist the bacteria to adhere to the surface of host organ tissues
and evade the host’s immune defense with the assistance of transpeptidase [104,105]. For
example, the deletion of sortase A (SrtA), an important transpeptidase in S. aureus, could
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downregulate the level of surface proteins and thereby relieve infection symptoms of
S. aureus in mouse models, without any influence on the bacterial growth [106]. Erianin, a
bibenzyl isolated from Dendrobium chrysotoxum [107], could inhibit the activity of SrtA at
subminimum inhibitory concentrations by binding to SrtA, leading to the reduced adhesion
of S. aureus to fibrinogen without influencing bacterial growth and thereby improving
survival in mice infected with S. aureus [57].

The toxins have been implicated in the pathogenesis, such as hemolysins, leukocidins,
superantigens and surface proteins. For example, α-hemolysin (Hla) is secreted by S. aureus
and can lyse erythrocyte by directly binding to the cell membrane, forming perforations.
Studies have shown that resveratrol and trans-stilbene can markedly inhibit the hemol-
ysis of S. aureus at subinhibitory concentrations by repressing the expression of the hla
gene, thereby attenuating S. aureus virulence in the nematode Caenorhabditis elegans [58].
The two-component system SaeRS plays a crucial role in the production of virulence fac-
tors [108]. Studies showed that resveratrol could reduce the secretion of α-hemolysin
by downregulating saeRS [59]. Moreover, the toxin RtxA1 of Vibrio vulnificus can cause
membrane permeabilization upon host contact. It has been shown that although 4,4′-
diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS) could not exert
antibacterial activity against V. vulnificus, it significantly inhibited the secretion of RtxA1
by reducing the expression of TolCV1 [60]. The outer membrane portal TolC (designated
TolCV1 and TolCV2 in V. vulnificus), coupled with tripartite efflux pumps, is crucial for the
export of RtxA1 [109].

Pyocyanin, produced by Pseudomonas aeruginosa, can assist bacteria in escaping the
host’s immune system and successfully establishing infection by preventing T-cells from
effectively responding against P. aeruginosa and by inhibiting the activity of monocytes
and macrophages, thus reducing the production of cytokines [110]. Therefore, pyocyanin
biosynthesis is an important target for novel antimicrobial drug discovery. Pyocyanin syn-
thesis is catalyzed by a series of enzymes encoded by the homologous phzA1B1C1D1E1F1G1
and phzA2B2C2D2E2F2G2 operons. The estrogen receptor modulator, raloxifene, was found
to inhibit pyocyanin production by binding and inhibiting PhzB2, and thereby attenuating
P. aeruginosa virulence in a Caenorhabditis elegans model [61].

The type III secretion system (T3SS) is a complex “molecular syringe” consisting
of a base embedded within the bacterial membrane, a needle filament that connects the
bacteria to the host cell, a tip that functions as a platform for the assembly of the translocon,
and a transposon that spans the host cell membrane [111]. The T3SS functions to inject
effectors of bacteria into host cells, leading to damaged cell structure and compromised
immune response and eventually assisting in bacterial infection. The T3SS is an attractive
drug target for developing novel antibacterial agents, since it is crucial in virulence and
evolutionarily conserved in Gram-negative pathogens. In addition, the endogenous gut
microflora lacks the T3SS and therefore is not likely to be affected by anti-T3SS agents.
(−)-Hopeaphenol, a natural tetramer of resveratrol, was found to reduce cell entry and
subsequent intracellular growth of bacteria by inhibiting the translocation of effector
protein YopE from Y. pseudotuberculosis and ExoS from P. aeruginosa into HeLa cells. (−)-
Hopeaphenol could inhibit the expression and secretion of the translocator protein YopD
of T3SS [62,63]. The type III secretion system (also called the Hrp secretion system) is
encoded by hrp (which stands for hypersensitive reaction and pathogenicity) genes in
plant pathogenic bacteria. HrpL can activate hrp and avr gene expression by recognizing
consensus motifs in the promotors of these genes [112]. HrpA encodes components of
the type III secretion system [113]. Research showed that resveratrol-derived oligomers
(hopeaphenol, isohopeaphenol, kobophenol A and ampelopsin A), isolated from grapevine
roots, could reduce the pathogenicity of Pseudomonas syringae pv. tomato DC3000 on tomato
leaves by reducing the expression of hrpA, hrpL and hopP1 genes without influencing
bacterial growth [64,65].
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4.3. Stilbenoids Targeting Biofilms

It is estimated that 40–80% of bacteria and archaea on earth reside in biofilms [114]. A
biofilm is a macrocolony of microorganisms that are attached to a surface, and a key factor that
cause chronic infections (e.g., cystic fibrosis, dental plaque, chronic wounds, urinary infection,
prosthetic joint infection, chronic otitis media, middle ear cholesteatoma, chronic adenoiditis,
chronic prostatitis and cardiac valve infection) [115,116]. According to the National Institutes
of Health (NIH), more than 80% of human microbial infections are related to biofilms [117].
Biofilms offer microorganisms strong competitive advantages under various environmental
challenges [118]. For example, it has been estimated that bacteria in biofilms are 10,000 times
more resistant to antibiotics than plankton bacteria [119,120]. Several reasons could account
for the antibiotic tolerance of biofilms. Firstly, it is difficult for antibiotics to invade into the
deeper layers of biofilm due to the protection of the extracellular polymeric substance (EPS)
matrix [121]. In addition, the biofilm increases the transfer rate of horizontal genes, which
are responsible for antibiotic resistance [122]. Moreover, the microbes in biofilm have a
relatively low rate of cell growth and reproduction. Reduced metabolic activity will lead
to decreased antibiotic effectiveness [123]. Moreover, biofilms can also colonize medical
devices (for example, catheters and implants). Thus, biofilm is an attractive target for the
development of new antibiotics to treat aggressive pathogenic infections.

Biofilm formation can be described in five progressive stages: initial reversible at-
tachment; irreversible attachment; the first layer formation; formation of mushroom- or
tower-like structures; and dispersion and reattachment [115]. Diverse studies have shown
that stilbenoids can target the major events in the formation processes to prevent biofilm
formation and induce mature biofilm clearance.

4.3.1. Prevention of Initial Attachment

It is essential to move close enough to a physical surface for the formation of microbial
biofilms. Studies have shown that flagella and fimbriae are crucial for bacterial attachment
to surfaces. Stilbenoids can inhibit microbial attachment by reducing these factors. For
example, flagella-mediated motility is essential for overcoming the electrostatic repulsion
of microbial cells and surfaces, while fimbriae-mediated twitching motility assists bacterial
cells to aggregate to form microcolonies [124–126]. Resveratrol inhibited flagellin produc-
tion and the swarming of Proteus mirabilis, thereby inhibiting their ability to invade human
urothelial cells [66]. Another study showed that resveratrol downregulated the expression
of flagella genes, leading to reduced swimming motility and, therefore, compromised
adhesion of Salmonella typhimurium to HeLa cells [67].

Fimbriae, encoded by the fimA gene, can be classified into six genotypes (type I, Ib,
II, III, IV and V). Studies have found that resveratrol could suppress the expression of
fimA and xadA (which encode an afimbrial adhesion), thereby reducing cell surface adhe-
sion of the Gram-negative bacterium Xylella fastidiosa, which can cause Pierce’s disease
in grapevines [127]. Resveratrol dose-dependently prevented the biofilm formation of
P. gingivalis by reducing the expression of genes which encode fimbriae (type II and IV) [68].
Resveratrol and oxyresveratrol reduced fimbriae production and the swarming motility of
uropathogenic Escherichia coli (UPEC), leading to reduced biofilm formation and hemag-
glutinating ability, reducing the defense of UPEC against human whole blood [74]. In
addition, type IV toxin-coregulated pilus (TCP) is an important attachment factor [128].
AphB controls the expression of TcpP. TcpP activates TCP by controlling the expression
of ToxT, a direct activator of TCP [129]. Resveratrol can suppress biofilm formation of
V. cholerae by inhibiting the activity of AphB [69].

The slime substance polysaccharide intercellular adhesin (PIA) is critical for adhesion
on hydrophilic surfaces. It can be synthesized by products of the intercellular adhesion
(ica) locus [130]. Studies showed that trans-stilbene could reduce the biofilm by decreasing
the expression of the intercellular adhesion locus (icaA and icaD) in S. aureus [58].
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4.3.2. Targeting Biofilm Maturation

After initial attachment and aggregation, the pathogens will further become embedded
and secured in the matrix. This process is called biofilm maturation. Biofilm maturation
includes cell–cell interaction, hyphal differentiation (fungi) and extracellular matrix pro-
duction [131]. The development of the microcolony into a mature biofilm is regulated by
various regulatory systems, such as the quorum-sensing (QS) system, the two-component
regulatory systems and the type III secretion system [132]. Stilbenoids can target extra-
cellular polymeric substance (EPS), signaling regulatory systems, as well as other surface
properties of pathogens that are required for the development of the biofilm.

Microbes in biofilms are wrapped in a self-produced EPS matrix. The components
of the EPS mainly include extracellular DNA, lipids, polysaccharides and proteins [133].
Among them, polysaccharides can provide a number of benefits to the cells in the biofilm,
such as assisting in intercellular adhesion and protection and providing structural sup-
port [134]. Studies found that resveratrol could inhibit the biofilm formation of Streptococcus
mutans by reducing the biosynthesis of polysaccharides [70,71]. Water-insoluble glucans
form the structural scaffold of biofilms. Extracellular glucosyltransferases GtfB and GtfC are
involved in the biosynthesis of water-insoluble glucans. Studies showed that piceatannol
could inhibit the activity of GtfB and GtfC, leading to the compromised biofilm forma-
tion of S. mutans in a dose-dependent manner, both in vitro and in vivo [75]. Another
study showed that oxyresveratrol reduced S. mutans biofilm formation by suppressing the
expression of gtfB and gtfC [76,135].

Acetic acid, as a signaling molecule, can stimulate bacterial biofilm formation [136].
Streptococcus mutans is a major inducer of dental caries. An effective way to treat this disease
is to replace S. mutans by Lactobacillus casei within the dental plaque. Studies have found
that oxyresveratrol could promote L. casei to produce acetic acid, which inhibited the biofilm
formation of S. mutans and therefore facilitated L. casei to compete with S. mutans [76,135].

Quorum sensing (QS) is a kind of communication between microbial cells. Bacteria can
secrete signaling molecules into their surroundings. Signaling molecules can be imported into
cells after the bacterial population density reaches a certain threshold, directly binding to the
receptor LasR to regulate biofilm formation or the production of virulence factors [83,137].
Pseudomonas aeruginosa has four QS systems: las, rhl, pqs and iqs. pqs QS regulates the
biosynthesis of pyocyanin [138]. Pyocyanin can facilitate extracellular electron transfer
in P. aeruginosa biofilms, therefore supporting the growth of biofilms [139,140]. Research
has found that amorfrutin B, a bibenzyl isolated from Amorpha fruticose [141], can reduce
the pyocyanin production and biofilm formation of P. aeruginosa by competitively binding
the receptors of the signal molecules ODdHL and PQS, thereby inhibiting the expression
of downstream genes such as lasB, rhlA and pqsA [77]. Cajaninstilbene acid analogue 3o
also inhibited the QS systems by suppressing the expression of lasB and pqsA, leading to
the inhibition of biofilm formation [78]. Moreover, resveratrol could inhibit the biofilm
formation and pyocyanin production of P. aeruginosa PAO1 by directly binding LasR [72].

Hyphal differentiation is required for robust biofilm formation. Research showed
that although mutants of hyphal formation can develop into biofilm, these biofilms are
loose, rather than stable, compared with wild-type biofilms [131]. The Ras/cAMP/Efg1
pathway plays a key role in fungal morphological transitions by regulating the expression
of hyphae-specific genes, such as HGC1 (functioning in the polarized growth of hyphae),
ALS3 (encoding a cell wall surface protein related to adhesion), HWP1 (encoding a cell wall
mannose protein, which is essential for the normal growth of the mycelium) and ECE1
(encoding a membrane protein, which is related to the extension of hyphal). Efg1 is a
transcription factor, regulating the expression of hyphae-specific genes [142]. Stilbenoids
can target the morphological transition of C. albicans, thereby inhibiting biofilm formation.
For example, the macrocyclic bisbibenzyl riccardin D has been reported to inhibit the
biofilm formation of C. albicans both in vitro and in vivo by reducing the expression of
hypha-specific genes (ALS1, ALS3, ECE1, EFG1, HWP1 and CDC35) and therefore hypha
formation [79,80]. Another study showed that pterostilbene could inhibit biofilm formation
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and destroy mature biofilms both in vitro and in vivo. Pterostilbene could downregulate
the expression of filamentation-related genes in the Ras/cyclic AMP (cAMP) pathway,
including ECE1, ALS3, HWP1, HGC1 and RAS1. The addition of exogenous cAMP reverted
the defect in pterostilbene-induced filamentous growth [81].

4.3.3. Disarming Pathogens within the Biofilm

It is clear that biofilms continuously release planktonic cells or small clusters of
pathogens by dispersal, seeding new sites of infection and ensuring further replication of
biofilms [143]. Stilbenoids can interfere with this process by targeting the enzymes involved
in it, thereby eradicating the preformed biofilms. For example, S. aureus could escape neu-
trophil extracellular traps by cleaving their DNA-backbone through secreting micrococcal
nuclease (MN). MN also inhibits biofilm development and adhesion by cleaving the extra-
cellular DNA. Reports have shown that resveratrol could reduce MN production, which
assists the host immune system to clear the biofilm of S. aureus in clinical situations [73].

4.4. Reversing Antibiotic Resistance

Antimicrobial resistance is a global health problem. Microbes use various mechanisms
to resist the action of antimicrobials [144]. Some are intrinsic mechanisms, by which bacteria
can use genes they already possess to avoid antibiotic exposure, and some are acquired
mechanisms, by which bacteria evolve new genetic materials under antibiotic exposure
in order to survive. Inhibiting resistance mechanisms is a potential approach to combat
drug resistance.

Studies have shown that ATP synthase is an intrinsic resistance factor of bacteria. For
example, the inactivation of genes encoding the subunits of ATP synthase could significantly
increase the efficacy of gentamicin against S. aureus [145]. Another study showed that the
deletion of the ATP synthase subunit atpG increased the efficacy of aminoglycosides against
E. coli [146]. Resveratrol could enhance the efficacy of aminoglycosides against various
Gram-positive pathogens. Mechanism research has revealed that resveratrol could inhibit
the activity of ATP synthase [82].

Biofilm reduces antibiotic permeability due to the protection of the EPS matrix. For
example, the minimum biofilm eradication concentrations of clinical Acinetobacter baumannii
isolates were 44, 407 and 364 times higher than the minimum bactericidal concentrations
for colistin, ciprofloxacin and imipenem, respectively [147]. Considering the roles of biofilm
in antimicrobial resistance, inhibiting the formation of biofilm theoretically enhances the
effect of antibiotics. P. aeruginosa infection is a serious disease in patients with cystic fibrosis
and is difficult to treat due to the persistence of biofilms. A study has shown that the
biofilms of P. aeruginosa PAO1 were more susceptible to aminoglycosides in the presence
of resveratrol. Mechanism research has revealed that resveratrol could function as a QS
inhibitor. QS deficiency leads to thin and less developed biofilms [83]. Resveratrol could
inhibit the expression of the signaling molecule synthase genes lasI and rhlI in P. aeruginosa
PAO1 biofilms [84].

Antimicrobial resistance can be conferred by drug-modifying enzymes. The enzymatic
degradation of antibiotics involves the hydrolysis of their functional groups, thereby
rendering them ineffective. For example, the New Delhi metallo-β-lactamase-1 (NDM-1)
can hydrolyze almost all β-lactam antibiotics. Liu et al. discovered that pterostilbene could
significantly inhibit the NDM-1 hydrolysis activity by binding to the catalytic pocket of
NDM-1, thereby preventing the substrate from binding to this protein, effectively restoring
the effectiveness of meropenem against NDM-expressing strains and protecting mice from
pneumonia caused by Klebsiella pneumoniae [85].

Bacteria can prevent antibiotics from reaching to corresponding target by enzymatic
modification of the target protein. For example, polymyxin disrupts membrane integrity
by binding to the lipid A moiety of lipopolysaccharides (LPS), ultimately causing cell
death. Polymyxin is the last line of defense against Gram-negative bacterial infections.
However, the plasmid-borne mobilized colistin resistance gene mcr-1 (encoding phos-
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phoethanolamine transferase) significantly decreases the efficiency of polymyxin against
Gram-negative bacteria. mcr-1 is widely spread throughout the world and significantly
threatens the usefulness of polymyxin. It can append phosphoethanolamine to a phosphate
on lipid A, reducing the electrostatic interaction between LPS and polymyxin, thereby
increasing bacteria resistance to polymyxin [148]. Recent studies have demonstrated that
Cajaninstilbene acid from Cajanus cajan (L.) Millsp can significantly restore the susceptibility
of polymyxin B to mcr-1 positive Gram-negative bacteria through inhibiting the enzymatic
activity of MCR-1 via binding the active center [86].

Active efflux is mediated by the upregulation of efflux pumps that extrude antibiotics
from bacteria to reduce drug concentrations in the cell to non-cytotoxic levels. Recently,
efflux pump inhibitors (EPIs) that can reverse antibiotic resistance have received great
attention. The AcrAB-TolC multidrug efflux pump, consisting of the inner membrane
protein AcrB and the outer membrane protein TolC, linked by AcrA, can transport various
toxic compounds out of bacteria, contributing to drug resistance [149,150]. Research has
shown that resveratrol could significantly inhibit tolC-promoter activity and decrease tolC
expression [87]. Moreover, stilbenes (resveratrol, pterostilbene and pinosylvin) enhance the
susceptibility of A. butzleri strains to chloramphenicol, erythromycin and ciprofloxacin by
acting as EPIs [88,89]. Proton motive force (PMF) is essential for efflux pumps to export
drugs [151]. Piceatannol could decrease PMF of S. aureus, particularly the ∆ψ component,
leading to increased sensitivity of bacteria to ciprofloxacin [90].

5. Conclusions

The heavy use of antibiotics to treat pathogenic infections in humans and animals,
as well as in agriculture has promoted the development of drug resistance in microbial
populations. Presently, we are entering an era of ever-increasing resistance, in which the
treatment of pathogen infection through the use of some conventional antibiotics can no
longer be taken for granted, and the need for new antibiotics has never been more ur-
gent [152]. The development of effective therapies against resistant microorganisms and
emerging pathogenic microorganisms is a public health priority. The chemical structure
of stilbenoids is new in the field of antimicrobial drugs and has received great attention.
Stilbenoids demonstrate a diverse range of functions, including direct microbicidal activity,
a wide range of effects on biofilms, virulence factors and the reversal of drug resistance,
highlighting the considerable possibility of developing stilbenoids as a potential antimi-
crobial agent. Drug repurposing has emerged as a novel paradigm to find antimicrobial
agents. Several stilbenoids with antimicrobial activities have been approved for clinical use,
such as toremifene, raloxifene and resveratrol, which are easier to obtain approval for in the
treatment of pathogenic infections. However, the practical application of stilbenoids needs
to consider challenges such as toxicity, solubility, stability or other factors in advance. Some
of these problems could be addressed by chemical modification or by developing delivery
devices such as nanocapsules, liposomes and nano-carrier systems [153]. We expect major
breakthroughs and revolutionary technologies in the research on stilbenoids. This will
serve as a new driving force for improving people’s health.
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