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Abstract: This paper addresses the problem of weak maneuvering target detection in the space-based
bistatic radar system through long-time coherent integration (LTCI). The space-based bistatic radar is
vulnerable to the high-order range migration (RM) and Doppler frequency migration (DFM), since
the target, the receiver and the transmitter all can play fast movement independently. To correct high-
order RM and DFM, this usually involves joint high-dimensional parameter searching, incurring
a large computational burden. In our previous work, a dual-scale (DS) decomposition of motion
parameters was proposed, in which the optimal GRFT is conditionally decoupled into two cascade
procedures called the modified generalized inverse Fourier transform (GIFT) and generalized Fourier
transform (GFT), resulting in the DS-GRFT detector. However, even if the DS-GRFT detector preserves
the superior performance and dramatically decreases the complexity, high-dimensional searching
is still required. In this paper, by analyzing the structure of the DS-GRFT detector, we further
designed a conditioned cubic phase function (CCPF) tailored to the range–slow-time signal after
GIFT, breaking the joint high-dimensional searching into independent one-dimensional searching.
Then, by connecting the proposed CCPF with the GIFT, we achieved a new LTCI detector called the
DS-GIFT-CCPF detector, which obtained a significant computational cost reduction with acceptable
performance loss, as demonstrated in numerical experiments.

Keywords: long-time coherent integration; space-based bistatic radar; high-order range migration;
high-order Doppler frequency migration; generalized Radon–Fourier transform (GRFT); dual-scale
decomposition

1. Introduction

The bistatic radar [1–5] has many merits, such as destruction resistance and great anti-
jamming and antistealth performance, taking advantage of the feature that its receiver does
not emit any radiation, but capitalizes on the signals already emitted into the environment.
A recent improvement of the bistatic radar is the space-based bistatic radar [2,5] which can
provide wide coverage and long surveillance distance despite the curvature of the earth
and airspace restrictions.

For radar early warning, an effective method is long-time coherent integration (LTCI).
However, for maneuvering targets, energy defocusing, which means targets’ energy is
accumulated effectively, can occur due to range migration (RM) and Doppler frequency
migration. Hence, to achieve stable detection performance, it is required to correct RM
and DFM accurately. Different from the monostatic radar, the receiver of the bistatic
radar is separated from the transmitter, thus the delay of the received signal not only
depends on the relative movement of the target and the transmitter, but also on the relative
movement of the target and the receiver. Especially for the space-based bistatic radar, in
addition to the high maneuvering of targets, the transmitter and receiver also play a fast
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motion, making the received signal even more complicated in the sense that the high-order
RM and DFM, e.g., the cubic range curvature and the cubic DFM, become significant.
As such, the demand for LTCI algorithms considering high-order RM and DFM correction
is becoming increasingly prominent.

A type of feasible method is to correct the RM and DFM simultaneously. The represen-
tative method is the generalized Radon–Fourier transform (GRFT), which was introduced
in [6] and proved to be an optimal detector based on multidimensional search procedures.
The GRFT detector belongs to the Radon-based methods [7–11], which are one of the
broadest families of LTCI methods. Although the GRFT method is considered to have
theoretically optimal coherent accumulation and parameter estimation performance, its
computational complexity is so huge that it is practically prohibitive. Another promising
solution is the keystone transform matched filtering processing (KT-MFP) [12] method,
in which KT is applied to eliminate RM caused by the baseband velocity, then MFP is
performed to remove residual RM and DFM simultaneously. Additionally, the KT-MFP
detector for maneuvering targets with second-order and first-order motion were described
in [13,14], respectively. Later, in [15], the authors further observed that the MFP proce-
dure in the KT-MFP detector has the same form as the GRFT detector in the frequency
domain. The KT-MFP detector yields similar performance as the GRFT detector, but its
computation burden is alleviated a lot. However, it still involves joint high-dimensional
searching for high-order RM and DFM correction, i.e., joint searching of ambiguous velocity,
acceleration, jerk, etc.

To avoid joint high-dimensional searching, several methods [5,16–18] have been pro-
posed to correct RM and DFM in the way of cascade processing under some specific
assumptions. In most cases, this kind of methods achieve improvements in computational
efficiency, but have to compromise on detection performance. Specifically, under the as-
sumption that the jerk motion will not lead to RM, ref. [16] first utilized the second-order
KT (SKT) to eliminate RM caused by acceleration, then performed the Hough transform
to detect the linear RM caused by the velocity. Nevertheless, this essentially belongs to
noncoherent integration methods, hence it suffers from severe SNR loss because useful
phase information is abandoned. What is more, the cubic range curvature could happen in
cases of large jerk or high range resolution. In [5], it is assumed that the space-based bistatic
radar emits a narrow-band chirp signal while the pulse repetition frequency is relative
low; thus, both the third-order RM and linear RM caused by the baseband velocity are
neglected. As a result, this method only needs to complete the quadratic range curvature
and linear RM caused by blind velocity with the pre-estimation of the folding factor using
the generalized SKT (GSKT). As for the DFM correction, this method utilizes the multiple
product cubic phase function (MPCPF) method to estimate the target third-order motion
parameters in independent one-dimensional search spaces, thus greatly improving compu-
tational efficiency. In [17,18], the authors proposed the adjacent cross correlation function
(ACCF)-based LTCI method, which achieved cheep computational cost by reducing the
order of DFM. However, the ACCF-based method is only suitable for the high-SNR case,
due to the high-order nonlinear operation and the error propagation effect. To summarize,
the performance degradation of the aforementioned methods arise from two aspects: one
is the incomplete RM correction, and the other is the nonlinear transform used in the
RM/DFM correction. Actually, it is really a tough task to balance the computational load
and the detection performance.

Our previous analysis showed that, since RM and DFM share the same motion param-
eters, the RM and DFM correction procedures of most LTCI detection methods are coupled,
referred to as the coupling effect of parameter search spaces. Affected by this effect, LTCI
methods employed on the coupled parameter search space not only suffer from redundant
computation, but also from lack of freedom in the sense that RM and DFM have to be
jointly corrected. To this end, refs. [15,19] proposed a flexible dual-scale (DS) decomposition
framework, based on which the standard GRFT family is factorized into a generalized
inverse Fourier transform (GIFT) process in the range domain and GFT processes in the
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Doppler domain conditioned on the coarse motion parameter, referred to as the DS-GRFT
detector family, including DS-GRFT, second-order DS-KT-MFP, and third-order DS-KT-
MFP algorithms. Compared to the standard GRFT detector family, the DS-GRFT detector
family can provide comparable performance while providing significant improvement in
computational efficiency. However, they still need joint high-dimensional searching on the
fine parameter space when performing the DFM compensation, restricting its application
in the spaced-based bistatic radar system.

Notably, the DS decomposition framework also provides another potential benefit
which, due to the conditional decoupling of RM and DFM correction, is the possibility to
adopt different algorithms in place of GIFT or GFT, considering practical requirements
such as detection performance, computational efficiency, etc. Motivated by this, the LTCI
algorithm of this paper is still formulated within the DS decomposition framework. The ba-
sic idea was to design a suitable CPF according to the characteristic of the range–slow-time
signal after the GIFT, breaking the joint high-dimensional searching of the fine motion
parameter space into independent one-dimensional searching. Specifically, the GIFT is first
performed to complete the RM correction and a pre-compensation of DFM, and then, to
correct the DFM caused by the fine motion parameters, the second-order and third-order
motion parameters are estimated by resorting to the suitably designed conditioned CPF
(CCPF), and finally, GFT is performed utilizing the estimated DFM compensation coef-
ficients. As such, the resulting LTCI algorithm is called the DS-GIFT-CCPF detector. In
general, the advantages of the proposed detector are two-fold:

• It inherits the advantage of the DS decomposition framework in that the RM can be
fully corrected using the GIFT procedure on the coarse motion parameter space.

• It inherits the advantage of CPF such that joint three-dimensional searching is not
required, but instead independent one-dimensional searching takes place.

• The proposed CCPF is designed in a much smaller space, i.e., the fine motion parameter
space, conditioned on each coarse motion parameter. With this structure, multiple
targets are grouped naturally according to coarse motion parameters, leading to an
advantage of suppressing false peaks caused by cross-terms of the CPF.

Simulation results under the bistatic radar considering both single target and multiple
targets highlight the performance of the proposed DS-GIFT-CCPF detector in terms of both
superior detection ability and computational efficiency.

2. Background
2.1. Signal Model

We consider a T–R-type space-based bistatic radar for which the transmitter and the
receiver are spatially separated. Particularly, in different applications, the transmitter and
the receiver are placed on different types of platforms. We suppose that both the transmitter
and the receiver can be put on an aircraft (including missile, satellite and so on), and a high-
speed, high-maneuvering target is observed. Figure 1 shows the geometric relationship
between the spaced-based bistatic radar system and the target, where the transmitter is
located at point T and the receiver is located at point R; the velocity vector of the transmitter
and the receiver are denoted by −→v T and −→v R, respectively, while the acceleration vector of
the transmitter and the receiver are denoted by −→a T and −→a R, respectively; the target is at
P initially, and the velocity vector and the acceleration vector are denoted by −→v and −→a ,
respectively; the vector from the transmitter and the receiver to the point P are denoted as
−→
R Tp and

−→
R Rp , respectively. When the target is moving, both

−→
R Tp and

−→
R Rp change with

time. At the initial time,
−→
R Tp and

−→
R Rp are denoted as

−→
R Tp0 and

−→
R Rp0 .
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Figure 1. Geometric relationship between the spaced-based bistatic radar system and the target.

We suppose that the PC is performed in the frequency domain. According to the
stationary phase principle [20], after the received baseband signal is multiplied by the
reference signal in the range frequency-pulse domain, the signal model can be expressed as

y( fk, tm)=A1exp
[
−j

2π

c
( fk + fc)R(tm)

]
+w( fk, tm) (1)

where A1 denotes the target complex attenuation in the frequency domain; tm is the slow
time (inter-pulse sampling time), satisfying tm = m · PRT for m = 1, · · · , M, with M
being the number of pulses; PRT is the pulse repetition time and its corresponding pulse
repetition frequency (PRF) is PRF = 1

PRT ; fc is the carrier frequency; c is the velocity of
light, i.e., c = 3 × 108 m/s; w( fk, tm) is the Gaussian-distributed noise in the frequency
domain with zero-mean and variance σ2; R(tm) is the instantaneous slant range between
the receiver and the transmitter. It should be noted that the noise w( fk, tm) is omitted for
easy analysis hereafter.

Combining the geometric relationship given in Figure 1, R(tm) can be computed by [3]:

R(tm) = c0 + c1tm + c2t2
m + c3t3

m (2)

where c0 denotes the slant range from the transmitter to the receiver at tm = 0; [c1, c2, c3]
represents the vector consisting of the radial components of, respectively, target initial
velocity, acceleration and jerk, i.e.,

c0 =RTp0 + RRp0 , c1 = vTp + vRp , (3)

c2 =
aTp + aRp

2
+

(−→v −−→v T)
2 − v2

Tp

2RTp0

+
(−→v −−→v R)

2 − v2
Rp

2RRp0

, (4)

c3 =
(−→a −−→a T) · (−→v −−→v T)− aTp vTp

2RTp0

+
(−→a −−→a R) · (−→v −−→v R)− aRp vRp

2RRp0

+ (5)

v3
Tp

− vTp(
−→v −−→v T)

2

2R2
Tp0

+
v3

Rp
− vRp(

−→v −−→v R)
2

2R2
Rp0
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with

vTp =
−→
R Tp0(

−→v −−→v T)/RTp0 (6)

vRp =
−→
R Rp0(

−→v −−→v R)/RRp0 (7)

aTp =
−→
R Tp0(

−→a −−→a T)/RTp0 (8)

aRp =
−→
R Rp0(

−→a −−→a R)/RRp0 (9)

and RTp0 and RRp0 denote the initial distance between the transmitter T and the receiver R
to the target P, respectively.

Then, we perform IFFT on the range dimension for the signal in (1); we have

y(τn, tm) = A2asinc[Br(τn− R(tm)/c)]exp{−jπBr(τn−R(tm)/c)} exp
{
−j

2π

λ
R(tm)

}
, (10)

where: A2 denotes the target complex attenuation in the time domain; τn the fast time
(intra-pulse sampling time), which is a multiple of the sampling interval Ts, i.e., τn = nTs
and Ts = 1/ fs; λ is the wave length, i.e., λ = c/ fc; asinc(·) is the aliased sinc (asinc)
function [21,22] (also called Dirichlet [23] or periodic sinc function), i.e.,

asinc(Brτn) =
sin(πBrτn)

Kvalid sin(π∆ f τn)
, (11)

with ∆ f being the interval of frequency bins, Kvalid the valid number of frequency bins
and Br the signal bandwidth, i.e., Br = Kvalid ∆ f .

2.2. RM and DFM Effects

Substituting (2) into (10) yields

y(τn, tm) = A′
2 exp

{
−jπBr

(
τn−(c0 + ∑3

p=1cptp
m)/c)

)}
× exp

{
−j

2π

λ

(
c1 + ∑3

p=2cptp
m

)}
asinc[Br(τn − (c0 + ∑3

p=1cptp
m)/c)],

(12)

where A′
2 = A2 exp

{
−j 2πc0

λ

}
.

It is seen from (12) that the terms cptp
m/c (p = 1, · · · , 3) may result in the RM effect.

Specifically, the tm-, t2
m- and t3

m- terms may cause linear range walk and quadratic range
curvature, cubic range curvature and high-order DFM, respectively. Additionally, each
term cptp

m/λ (p ≥ 2) may lead to p-order DFM. Both RM and DFM effects are major
factors leading to target energy dispersion if the corresponding motion parameters are not
effectively compensated.

3. Dual-Scale GIFT-CCPF Detector

In this paper, we followed the DS decomposition framework [15,19] to study weak
maneuvering target detection for the bistatic radar. In this section, we first provide the DS
decomposition of motion parameters for the bistatic radar, on the basis of which the DS-
GRFT detector (considered to be equivalent to the optimal GRFT detector [6]) is reviewed
briefly for subsequent development. As we analyze later, even if the overall computational
burden has been largely reduced utilizing the DS decomposition, high-dimensional joint
searching (on the fine parameter space) is still required, especially when the DFM caused
by the high-order motion parameters cannot be neglected in the bistatic radar. On the
other hand, the CPF [5,24–27] has been proved to be an effective method to decrease
the dimension of parameter searching, but has an acceptable performance. Inspired by
this, a new LTCI method is proposed by combining the GIFT and a suitably designed
conditioned CPF in the DS decomposition framework in this section.
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3.1. Dual-Scale Decomposition of Motion Parameters for the Bistatics Radar

For the purpose of decoupling motion parameters and enhancing the flexibility of RM
and DFM compensation, a DS decomposition of the motion parameters was proposed
in [15]. This paper further provides the counterpart of the bistatic radar as follows:

c̃p = c̃p,c + c̃p, f , p = 1, 2, 3. (13)

where c̃p,c is the coarse motion parameter of c̃p corresponding to the RM correction and
c̃p, f is the residual part of cp, called the fine motion parameter, corresponding to the
DFM correction.

According to (49), in [15], to avoid RM, the coarse motion parameter should be set as

c̃p,c = round
(

cp − cp,min

∆cp,c

)
∆cp,c,+cp,min, (14)

where ∆cp,c = ∆RM,p, i.e.,

∆RM,p ≜αpc/( fsTp), p = 1, 2, 3. (15)

with 0 ≤ αp ≤ 1, p = 1, 2, 3, satisfying ∑3
p=1 αp = 1.

On the other hand, according to (50), in [15], to avoid DFM, the fine motion parameter
should be set as

c̃p, f =round

(
cp − c̃p,c + ∆cp,c/2

∆cp, f

)
∆cp, f −

∆cp,c

2
, (16)

where ∆cp, f = ∆DRM,p, i.e.,

∆DFM,p ≜αpc/( fcTp), p = 1, 2, 3. (17)

Correspondingly, the search spaces of the coarse part of target motion parameters are
defined as

Cp,c ≜ [cp,min : ∆cp,c : cp,max], p = 1, 2, 3. (18)

while the search spaces Cp, f of the fine part are defined as

Cp, f ≜ [−∆cp,c/2 : ∆cp, f : ∆cp,c/2], p = 1, 2, 3. (19)

3.2. Dual-Scale GRFT Detector for the Bistatics Radar

According [15], under the condition fc/ fs
M ≤ 1, by utilizing the dual-scale decompo-

sition (13), the range Doppler joint GRFT can be factorized into a GIFT process in the
range domain and GFT processes in the Doppler domain conditioned on the coarse motion
parameter. As such, the joint correction of RM and DFM effects is decoupled into a cascade
procedure, i.e.,

GRFTy( fk ,tm)(c̃) ≈ GFTmGIFTy( fk ,tm)(c̃c)(c̃
′
f ), (20)

where: c̃ = [c̃0, c̃1, · · · , c̃P]; c̃c = [c̃0, c̃1,c, · · · , c̃P,c]; c̃ f = [c̃1, f , · · · , c̃P, f ]; c̃′f = [κc̃1, f , · · · , κc̃P, f ];

κ ≜ 1 − Br
2 fc

; mGIFT and GFT denote the generalized IFFT and FFT operations [15],
respectively, i.e.,

mGIFTy( fk ,tm)(c̃c) ≜∑K
k=1y( fk, tm)HRM( fk, tm; c̃c) exp

[
j
2π

c
fk c̃0

]
=IFFT

{
y( fk, tm) HRM( fk, tm; c̃c)

}
Hpre-DFM(tm; c̃c),

(21)
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GFTy(τn ,tm ;c̃c)(c̃
′
f ) ≜

P

∑
p=1

y(τn, tm; c̃c)HDFM(tm; c̃′f ) exp
[

j
2π

λ
c̃′1, f tm

]
=FFT

{
y(τn, tm; c̃c)HDFM(tm; c̃′f )

} (22)

with

HRM( fk, tm; c̃c) ≜ exp
[

j
2π

c
fk

(
∑P

p=1 c̃p,ctp
m

)]
, (23)

Hpre-DFM(tm; c̃c) ≜ exp

[
j
2π

λ

P

∑
p=1

c̃p,ctp
m

]
, (24)

HDFM(tm; c̃′f ) ≜ exp
[

j
2π

λ

(
∑P

p=2 c̃′p, f tp
m

)]
. (25)

Let y(τn, tm; c̃c) denote the range–slow time signals after RM correction by mGIFT on
coarse search space, i.e.,

y(τn, tm; c̃c) = mGIFTy( fk ,tm)(c̃c). (26)

When |c̃c − cc| → 0, (26) yields

y(τn, tm; c̃c) = A3 exp
[
−j

2π

λ
(c′1, f tm + c′2, f t2

m + c′3, f t3
m)

]
, (27)

where A3 ≜ A′
2 exp{−jπBr(τn − c0/c)}.

According to the cascade procedure of the DS-GRFT detector, the following DFM
correction on the fine search space is given by

|GFTy(τn ,tm ;c̃c)(c̃ f )|
H0
≶
H1

γLRT, c̃ f ∈ C f , (28)

where: γLRT is a suitable threshold and C f = C1, f × C2, f × C3, f . Observing (28), this
DFM procedure still involves three-dimensional searching, having cubical computational
complexity with respect to the size of fine parameter space, which is still generally not
cheap in practice.

3.3. Conditional CPF

The idea of this paper is to reduce the dimension of parameter searching for the DFM
correction procedure in (28) by means of the CPF-based transformation [5,24–27]. As we
mentioned in the Introduction, the existing LTCI detectors utilizing the CPF [5] mainly
assume that a part of motion parameters will not lead to RM, i.e., second or third motion
parameters. However, in the application of the bistatic radar, if the RM caused by the
second and third motion parameters is neglected, the energy loss may exist after integration,
decreasing the estimation accuracy of the MPCPF. To avoid this problem, in this paper,
we constructed a conditioned CPF (CCPF) to estimate the fine acceleration c2, f and jerk
c3, f of the target (conditioned on each coarse motion parameter) through two rounds of
one-dimensional searches on the constructed parameter space. Notably, two rounds of
searching were adopted to obtain respective unique solutions for the acceleration and
jerk parameters. Then, the GFT, considering the DFM compensation function using the
estimated acceleration and jerk parameters, was applied to decide all the final estimates of
the coarse and fine motion parameters.

According to (20) and (21), the mGIFT completes the RM correction with the compensa-
tion coefficient HRM( fk, tm; c̃c). Furthermore, the mGIFT also includes a pre-compensation
for the DFM with respect to the coarse motion parameter, i.e., Hpre-DFM(tm; c̃c). As such,
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after the mGIFT, we achieve the range–slow-time signals conditioned on each given coarse
motion parameter c̃c, i.e., y(τn, tm; c̃c).

Borrowing the idea of [5], we constructed a CPF with the conditioned signal y(τn, tm; c̃c)
called the CCPF, i.e.,

CCPFy(τn ,tm ;c̃c)(tρ; Ω) =
M/2

∑
ι=1

y(τn, tρ + tι; c̃c)y(τn, tρ − tι; c̃c)

× y∗(τn, tρ; c̃c)y∗(τn, tρ; c̃c) exp
[

j
2π

λ
Ωt2

ι

]
,

(29)

where tι = ι · PRT; ρ = M/2 and Ω denotes the constructed instantaneous frequency rate.
Then, we obtained the peak position for Ω according to the following maximization:

Ω̂ = arg max
Ω∈CΩ

|CCPFy(τn ,tm ;c̃c)(tρ; Ω)|, (30)

where CΩ denotes the search space of Ω.
Substituting the specific expression after mGIFT (27) into (29) and re-arranging yields

CCPFy(τn ,tm ;c̃c)(tρ; Ω) =
M/2

∑
ι=1

exp
[

j
2π

λ
(Ω − 2c′2, f − 6c′3, f tρ)t2

ι

]
. (31)

Accordingly, the peak of the above function is located at

Ω̂ = 2c′2, f + 6c′3, f tρ. (32)

It is worthy noting that, due to the DS decomposition, the fine motion parameters
c′p, f , p = 2, 3 have been limited to a small region C′

p, f =
[
−κ∆p,c/2, κ∆p,c/2

]
. Accordingly,

the search space of CΩ can be constructed by

CΩ = {Ω = 2c′2, f + 6c′3, f tρ : (c′2, f , c′3, f ) ∈ κ2C2, f ×C3, f }. (33)

Clearly, CΩ given in (33) is not a heterogeneous search space. To traverse CΩ, it is required
to search the two-dimensional space C2, f ×C3, f . As such, the original three-dimensional
searching problem on C f is reduced to a two-dimensional searching problem on space
C2, f ×C3, f .

What is more, it is possible to further exploit dimension reduction of the search space
by homogenizing the space CΩ. Specifically, we first determine the scope of the space CΩ,
and then discretize this scope by a uniform step size ∆Ω, i.e.,

CΩ = [−(2∆c2,c + 6∆c3,ctρ)κ/2 : ∆Ω : (2∆c2,c + 6∆c3,ctρ)κ/2]. (34)

In this way, the two-dimensional searching problem can be further reduced to two instances
of one-dimensional searching problems. However, since the homogeneous space CΩ
is different from CΩ, it may lead to estimation deviation for c2, f and c3, f , resulting in
performance loss. Even if searching with a sufficiently small step size ∆Ω can alleviate
this problem, the computational burden will increase accordingly. Our experiment result
suggests that when the size of CΩ is comparable with the size of the fine motion parameters,
i.e., |C f | =

fc
fs

, the performance loss caused by homogenizing the search space can be

controlled within 1 dB at Pd = 0.9. A such, ∆Ω =
(2∆c2,c+6∆c3,ctρ)κ fs

fc
can be a preferable

choice to balance the detection performance and computational burden in practice.
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3.4. The Single-Target Case

It is easy to check that there are multiple pairs of [c′2, f , c′3, f ] that can satisfy (32), but all
pairs of solutions are on the straight line determined by the following equation:

2c′2, f + 6c′3, f tρ − Ω̂ = 0. (35)

with the slope being −6tρ.
As a matter of fact, two straight lines with different slopes can confirm the unique

solution. Hence, given two time positions tρ1 and tρ2 satisfying ρ1 ̸= ρ2, we can construct
the following equation:

Ω̂ = Xċ′f (36)

where

Ω̂ ≜
[
Ω̂1, Ω̂2

]T , (37)

ċ′f ≜
[
c′2, f , c′3, f

]T
, (38)

X ≜
[

2 6tρ1

2 6tρ2

]
. (39)

Notably, Ω̂1 and Ω̂2 are estimated by finding the peaks of the CCPFs at two different time
positions ρ1 and ρ2, respectively, according to (30). Two different time positions can ensure
the invertibility of the matrix X, and, thus, ensure the unique estimate of ċ′f , i.e.,

ˆ̇c′f = κ ˆ̇c f = X−1Ω̂, (40)

where ˆ̇c′f = [ĉ′2, f , ĉ′3, f ]
T ; ˆ̇c f = [ĉ2, f , ĉ3, f ]

T , ĉ2, f and ĉ3, f are estimates of c2, f and c3, f , condi-
tioned on the coarse parameter.

Remark 1. Considering that the choice of the two different time positions ρ1 and ρ2 affects the
variance of the motion parameter estimates, we follow the suggested default setting for the two time
positions. Specifically, the first time position ρ1 chooses (M + 1)/2, guaranteeing that ĉ2, f are
asymptotically optimal at high SNR, while the second time position ρ2 chooses 0.65M + 0.5 [24],
giving rise to a minimum asymptotic mean-square error for ĉ3, f at high SNR.

According to the aforementioned procedure, to estimate the motion parameters c2, f

and c3, f , we only need two instances of one-dimensional searches on space CΩ (getting
Ω̂1 and Ω̂2, respectively). Indeed, the size of CΩ is comparable with C2, f or C3, f . Then,
the DFM matching coefficients can be constructed by estimates ĉ2, f and ĉ3, f , i.e.,

HDFM(tm; ĉ2, f , ĉ3, f ) = exp
[

j
2π

λ
κ
(

ĉ2, f t2
m + ĉ3, f t3

m

)]
. (41)

Then, following the framework of the DS-GRFT, as long as the condition fc/ fs
M ≤ 1 is

satisfied, the DFM correction procedure can be simplified by applying (41) as follows:

|GFTyGIFT(τn ,tm ;c̃c)(c̃
′
f )| =

∣∣∣FFT
{

y(τn, tm; c̃c)HDFM(tm; ĉ2, f , ĉ3, f )
}∣∣∣ H0

≶
H1

γLRT, c̃′1, f ∈ κC1, f , (42)

where c̃′f = [c̃′1, f , ĉ2, f , ĉ3, f ]. On the condition that ĉ2, f and ĉ3, f have been achieved, it only
requires one instance of a one-dimensional search on the space C1, f to complete (42).
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3.5. The Multi-Target Case

It is worthy noting that multiple targets has been divided into groups naturally
utilizing the DS decomposition, and, inside each group, the targets share the same coarse
motion parameters. For targets falling into different range bins or having different coarse
motion parameters, the CPF is performed independently, thus avoiding cross-term among
these targets. If multiple targets fall into the same range bin and have the same coarse
motion parameter, it can happen that multiple peaks are found for the CCPF (32), resulting
in multiple estimates conditioned on the given coarse motion parameters. It should be
noted that this case is not common, but can happen for group target or swarm targets
in which targets share similar kinematic characteristic. Similar to the single-target case,
to achieve unique solutions of fine motion parameter estimates, the maximization (32)
is performed twice for two different time positions tρ1 and tρ2 , yielding two groups of
estimates, respectively,

Ω1 =
[
Ω(1)

1 , Ω(2)
1 , · · · , Ω(n1)

1

]
Ω2 =

[
Ω(1)

2 , Ω(2)
2 , · · · , Ω(n2)

2

]. (43)

Without loss of generality, we assume n1 ≥ n2 hereafter.
Clearly, the association relationship (with respect to the same target) between elements

of Ω1 and those of Ω2 is unknown and thus needs to be estimated first. To this end, we
model the association map as an injective function θ : {1, · · · , n1} → {1, · · · , n2} such that
θ(i) = θ(i′) > 0 implies i = i′. Let ˆ̇c′(i,θ)f = [κĉ(i,θ)2, f , κĉ(i,θ)3, f ] denote unique solutions of fine

motion parameters solved by (Ω(i)
1 , Ω(θ(i))

2 ), i = 1, · · · , n1 utilizing (40). The corresponding

DFM matching coefficients are then constructed utilizing ˆ̇c(i,θ)f as follows:

HDFM(tm; ĉ(i,θ)2, f , ĉ(i,θ)3, f ) = exp
[

j
2π

λ
κ
(

ĉ(i,θ)2, f t2
m + ĉ(i,θ)3, f t3

m

)]
. (44)

Accordingly, the accumulated energy after the DFM correction using (44) is as follows:

E(i,θ(i)) =maxc̃1, f ∈C1, f

∣∣∣FFT
{

y(τn, tm; cc)HDFM(tm; ĉ(i,θ)2, f , ĉ(i,θ)3, f )
}∣∣∣. (45)

It is clear that the higher the accumulated energy E(i,θ(i)), the larger probability that fine
motion parameters [ĉ(i,θ)2, f , ĉ(i,θ)3, f ] are correctly estimated. What is more, assuming that the
noise is white and Gaussian, and given the false alarm probability PFA, the accumulated
energy of the target under correct estimation should satisfy

E(i,θ(i)) > γLRT, (46)

where γLRT =
√
−M K σ2 ln PFA. In addition, taking advantage of the DS decomposition,

another constraint condition also can be utilized, namely, the solved fine parameters ĉ(i,θ)2, f

and ĉ(i,θ)3, f are within their corresponding scope C2, f and C3, f , respectively.
Considering both aforementioned aspects, we construct the cost function of the match-

ing pair (i, j), i.e.,

C(i, j) =

{
E(i,j)

γLRT
, ĉp, f ∈ Cp, f , ∀p = 2, 3

1, otherwise
, (i, j) ∈ [1, n1]× [1, n2]. (47)

Finally, the global cost function considering all targets is constructed by

C(θ) = −
n1

∑
i=1

ln(C(i, θ(i))), (48)
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then, the “best” association map is obtained by the following maximization:

θ̂ = argmax
θ

C(θ). (49)

Remark 2. This optimization problem can be modeled by a linear assignment problem solved by the
Hungarian algorithm with computational complexity O(n3

1) [28]. Considering that the CCPF is
performed under each given coarse motion parameter, this optimization finding the best association
map needs to be solved only when multiple targets fall into the same range bin and have the same
coarse motion parameter. Hence, n1 is generally a small number; hence, the computational burden
to solve this optimization could be small in practice.

Finally, after the “best” association map is achieved, to get the final motion parameter
estimations, the procedure (50) is performed again for each i = 1, · · · , n1 and c̃c ∈ Cc, i.e.,

|GFTyGIFT(τn ,tm ;c̃c)(c̃
′
f )| =

∣∣∣FFT
{

y(τn, tm; c̃c)HDFM(tm; ĉ(i,θ̂)2, f , ĉ(i,θ̂)3, f )
}∣∣∣ H0

≶
H1

γLRT, c̃′1, f ∈ κC1, f . (50)

3.6. Summary

To summarize, the proposed method works as follows: applying the DS decomposition
of motion parameters, first, the mGIFT (21) is performed on the coarse motion parameter
space Cc for the RM compensation and a pre-compensation of DFM; a suitable designed
CCPF is then constructed applying (31) to estimate the fine part of high-order motion
parameters conditioned on the coarse motion parameters, on the basis of which the GFT is
finally used as the detection statistic to estimate the all the motion parameters. As such,
the resulting LTCI algorithm is called the DS-GIFT-CCPF detector.

Compared to the DS-GRFT procedure, the computation load of the proposed DS-
GIFT-CCPF detector is decreased significantly, in the sense that the three-dimensional
joint search in the fine parameter space is reduced to three instances of one-dimensional
independent searches. The detailed computation complexity analysis is shown in the
following subsection. On the other hand, compared to existing MPCPF-based detectors,
the energy accumulation performance of the proposed DS-GIFT-CCPF detector is much
better from the view that the RM is fully corrected by the GIFT, taking advantage of
DS correction framework. Nevertheless, due to the nonlinear operations of the CCPF,
the detector performance of the proposed DS-GIFT-CCPF detector decreases a bit compared
with the DS-GRFT detector.

Let ĉc = {ĉ0, · · · , ĉP,c} and ĉ′f = {κĉ1, f , · · · , κĉP, f } denote the parameter estimates of
a moving target’s motion with the cascade correction procedure of RM and DFM in (50).
Then, after RM and DFM compensations with estimated motion parameters, the target can
be finely focused in the fast-time range and slow-time Doppler domain, i.e.,

GFTmGIFTy( fk ,tm)(ĉc)(ĉ
′
f )

=A4(τn)asinc
{

B
(
τn(ĉ0)

− c0

c

)}
asinc

{
PRF

(
f̂d(ĉ′1, f )−

c′1, f

λ

)}
(51)

where A4(τn) denotes the target complex attenuation after GIFT and GFT, and f̂d(ĉ1, f ) the

Doppler frequency estimate, i.e., f̂d(ĉ1, f ) =
ĉ′1, f
λ .

4. Implementation Issues
4.1. Pseudo-Code of the Proposed DS-GIFT-CCPF Detector

This subsection provides pseudo-code of the proposed DS-GIFT-CCPF detector. The
DS-GIFT-CCPF involves two cascade procedures, i.e., GIFT compensation with respect
to the coarse motion parameters followed by CCPF compensation with respect to the fine
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motion parameters. Hence, we first provide pseudo-code of CCPF operation, in Algorithm 1.
One can refer to [15] for pseudo-codes of GIFT and GFT operations. Then, pseudo-code of
the DS-GIFT-CCPF is given in Algorithm 2.

Algorithm 1: CCPF
INPUT: y(τn, tm; c̃c) of the form (26) and a given c̃c ;

OUTPUT: motion parameter estimates ˆ̇c′f =
[
c′2, f , c′3, f

]T
;

Initialize ρ1 = M/2, ρ2 = M/2 + floor(0.11M), M′ = M − ρ2;
function CCPF (y(τn, tm; c̃c))
for i = 1, 2 do

CΩi = [−(2∆c2,c + 6∆c3,ctρi )κ/2 : ∆Ω : (2∆c2,c + 6∆c3,ctρi )κ/2];
for Ω ∈ CΩi do

CCPFy(τn ,tm ;c̃c)(tρi ; Ωi) =

∑M′

ι=1 y(τn, tρi + tι; c̃c)y(τn, tρi − tι; c̃c)y∗(τn, tρi ; c̃c)y∗(τn, tρi ; c̃c) exp
[

j 2π
λ Ωit2

ι

]
;

end
Ω̂i = arg max

Ω∈CΩi

|CCPFy(τn ,tm ;c̃c)(tρi ; Ωi)|;

end

Ω̂ =
[
Ω̂1, Ω̂2

]T ;

X =

[
2 6tρ1

2 6tρ2

]
;

ˆ̇c′f = X−1Ω̂;

return: ˆ̇c′f =
[
c′2, f , c′3, f

]T
.

Algorithm 2: DS-GIFT-CCPF
INPUT: Baseband signal y( fk, tm) of the form (1) ;
OUTPUT: motion parameter estimates ĉ;
Initialize ĉ = ∅;
function DS-GIFT-CCPF (y( fk, tm))
for (c̃1,c, c̃2,c, c̃3,c) ∈ C1,c ×C2,c ×C3,c do

c̃c := [c̃1,c, c̃2,c, c̃3,c]
T ;

y(τn, tm; c̃c) := mGIFT(y( fk, tm), c̃c);
for τn ∈ 2c0

c C̃0 do
[ĉ′2, f , ĉ′3, f ]

T := CCPF(y(τn, tm; c̃c));

c̃′f := [c̃′1, f , ĉ2, f , ĉ3, f ]
T ;

for vd ∈ κC1, f do
y(τn, vd; c̃′1, f , ĉ2, f , ĉ3, f ) := GFTy(τn ,tm ;c̃c)(c̃

′
f );

if |y(τn, vd; c̃′1, f , ĉ2, f , ĉ3, f )|>γLRT then
ĉ0 := cτn/2; ĉ1 := c̃1,c + vd/κ; ĉ2 := c̃2,c + ĉ′2, f /κ; ĉ3 := c̃3,c + ĉ′3, f /κ;

ĉ := ĉ
⋃{[ĉ0, ĉ1, ĉ2, ĉ3]

T};
end

end
end

end
return: ĉ.

4.2. Computational Complexity Analysis

In what follows, the computational complexity (CC) of the DS-GIFT-CCPF detector is
analyzed by comparison with the DS-GRFT, standard GRFT and ACCF-GFT detectors. Let
M denote the number of pulses, N0 the number of range bins, K the number of frequency
bins (i.e., K = N0), N1 the number of velocity bins, N2 the number of acceleration bins, N3
the number of jerk bins and Ñ0 the number of range bins for the area of interest.
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According to implementations of the four considered detectors, their computational
costs are mainly due to four basic operations (BOs): matched filtering (MF), FFT, IFFT
and CCPF(ACCF). Then, CC of these four basic operations and overall complexity for the
different detectors are provided in Table 1. According to Table 1, the following conclusions
can be drawn.

Table 1. Computational complexity of the GRFT, DS-GRFT and DS-GIFT-CCPF detectors.

Alg.s

Times BO
s MF

O(M)
IFFT

O(0.5N0 log2 N0)
CCPF O(2M)
/ACCF O(N0)

FFT
O(0.5M log2 M)

Total CC

GRFT N3 N2 N1 N0 N3 N2 N1 M – – O(MN3 N2 N1 N0(1 + 0.5 log2 N0))

DS-GRFT f 2
s

f 2
c

N3 N2 N1 Ñ0
f 3
s

f 3
c

N3 N2 N1 M – fs
fc

N3 N2 N1 Ñ0
O( fs

2 fc
MN3 N2 N1 Ñ0(log2 M + 2 fs

fc
)

+ f 3
s

2 f 3
c

MN3 N2 N1 N0 log2 N0)

DS-GIFT-CCPF
f 3
s

f 3
c

N3 N2 N1 N0

+2Ñ0

f 3
s

f 3
c

N3 N2 N1 M 2 f 3
s

f 3
c

N3 N2 N1 Ñ0 NΩ
f 3
s

f 3
c

N3 N2 N1 Ñ0
O(2MÑ0 +

f 3
s

2 f 3
c

MN3 N2 N1 N0(2 + log2 N0)

+ f 3
s

2 f 3
c

MN3 N2 N1(8Ñ0 NΩ + log2 M))

ACCF-GFT fc
fs

Ñ0 M − 1 M − 1 fc
fs

Ñ0
O((M − 1)N0(1 + 0.5 log2 N0)

+ fc
2 fs

MÑ0(2 + log2 M))

First of all, the most computationally demanding part of the proposed DS-GIFT-CCPF
is the CCPF operation. Furthermore, NΩ can be considered to be comparable with the size

of C2, f or C3, f , i.e., fc
fs

. As such, the CC of total CCPF operations becomes 8 f 2
s

f 2
c

MN3N2N1Ñ0.
Meanwhile, the FFT operation is the most computationally demanding part of DS-GRFT
with the CC fs

2 fc
MN3N2N1Ñ0log2M. Thus, the CC of the DS-GIFT-CCPF is further reduced

to about 8 fs
fc log2 M of the DS-GRFT, since fs

fc
is generally a very small value and 8

log2 M is of

the same order (say, when M = 512, 8
log2 M = 1). Consequently, the DS-GIFT-CCPF has

remarkable computational complexity reduction compared with the DS-GRFT.
Secondly, the most computationally demanding part of the standard GRFT is the MF

operation. The CC of total MF operations is MN3N2N1N0. Hence, the CC of the proposed

DS-GIFT-CCPF is reduced to about 4 f 2
s Ñ0

f 2
c N0

of the GRFT. Accordingly, the computational
complexity of the DS-GIFT-CCPF is reduced significantly compared with the DS-GRFT.

Finally, for the ACCF-GFT detector, the most computationally demanding part is also
the FFT operation, having the CC of fc

2 fs
MÑ0 log2 M. Clearly, the computational complexity

of the DS-GIFT-CCPF is about 16 f 3
s N3 N2 N1

f 3
c log2 M

times that of the ACCF-GFT.

In general, the computational complexity of the proposed DS-GIFT-CCPF is higher
than that of the ACCF-GFT but much lower than that of the GRFT and the DS-GRFT.

5. Performance Assessment

In this section, the proposed DS-GIFT-CCPF detector is assessed with respect to its
coherent integration performance and computational efficiency, considering a scenario
where both the transmitter and the receiver placed on the satellite observe high-speed,
high-maneuvering targets. The radar cross-section of the targets is assumed to be of type
Swerling 0. Experiments were carried out applying the bistatic radar geometry model of
Figure 1 in Section 1. The parameters of the bistatic radar are summarized in Table 2.

Table 2. Parameter setting for the spatial-based bistatic radar system.

fc [GHz] fs [MHz] Br [MHz] PRF [Hz] M

8 15.36 12.5 937.5 1024
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5.1. Experiment 1

The purpose of this experiment was to show the effectiveness of the proposed DS-GIFT-
CCPF in a challenging multi-target situation. We considered four moving targets with
motion parameters as shown in Table 3. Specifically, to test performance of the proposed
detector when dealing with targets that share similar kinematic characteristics and fall into
the same range bin, we set motion parameters of targets to 1, 2 and 3. Furthermore, to test
its applicability in dealing with well-separated targets, we set motion parameters of targets
to 4.

Figure 2a–d show the range–pulse spectra at different stages of the RM correction.
An obvious RM effect can be observed in Figure 2a. Figure 2b shows the range spectrum with
slow time after coarse velocity compensation. It can be seen that the RM effect is partially
corrected by 25 range bins for targets 1, 2 and 3. For target 4, according to Table 3, RMs
caused by c2 and c3 could cancel each other out. Therefore, after coarse velocity compensation,
RM is totally corrected for target 4. In Figure 2c, the result after coarse velocity and coarse
acceleration compensation is given, showing that the RM effect has been corrected by 28 range
bins for targets 1 and 2, 29 range bins for target 3 and 22 range bins for target 4. In Figure 2d, it
is shown that, after coarse velocity, coarse acceleration and coarse jerk compensation, the RM
effect has been eliminated. The aforementioned results demonstrate that the RM effect can be
eliminated by coarse compensation alone. It should be noted that, for the sake of exhibition,
the results in Figure 2a–d are given without noise background.
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Figure 2. Range spectrum with slow time at different stages: (a) before RM correction; (b) after
coarse acceleration compensation; (c) after RM compensation with respect to coarse acceleration
and coarse velocity; (d) after RM compensation with respect to coarse jerk, coarse acceleration and
coarse velocity.
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Table 3. Motion parameters of multiple maneuvering targets in Experiment 1.

Num. c0 [km] c1 [m/s] c2 [m/s2] c3 [m/s3]
SNR after
PC [dB]

target 1 150.00 225 29 28 −1.2
target 2 150.00 224 30 27 −1.8
target 3 150.75 225 27 25 −3.8
target 4 148.74 213 −10 12 −2.8

However, as Figure 3 shows, even if the RM effect has been eliminated, the target
motion trajectory is submerged in the noise background due to the DFM effect.

Figure 3. Range–Doppler spectrum after RM correction

Figure 4 illustrates the procedure of the DS-based estimation of target motion parame-
ters. In particular, Figure 4 plots the maximum outputs of DS-GIFT-CCPF over slow time
for each range bin. It can be observed that the peaks occur at range bins 15,232 (148.75 km),
15,361 (150.01 km) and 15,438 (150.76 km), which are consistent with the slant range values
of the true objects. It should be noted that there are three peaks since targets 1 and 2 share
the same range bin 15,361. Both targets 3 and 4 are located in different range bins than
target 1. Without loss of generality, targets 1, 2 and 4 are considered in the following specific
analysis of the procedure of the DS-GIFT-CCPF detector.

Figure 5a,d show the DS-based coarse motion parameter estimation procedure for tar-
gets 1, 2 and target 4. Specifically, Figure 5a shows the spectrum with respect to the coarse
velocity, the coarse acceleration and the coarse jerk at range bin 15361 for targets 1 and 2. Ob-
serving Figure 5a, the maximum output is at coarse motion parameters (223.16, 28.59, 26.17).
Then, at this maximum, we further plot the CCPF spectra in Figure 5b, from which it can

be seen that Ω̂ ≜
[

6.77363 6.12902
5.54777 5.24892

]
. Additionally, X ≜

[
2 6tρ1

2 6tρ2

]
≜
[

2 0.5461
2 0.4864

]
.

Therefore, ˆ̇c′f = X−1Ω̂ =

[
0.4400 1.7986
1.4077 0.8338

]T

. The estimation of fine acceleration and

fine jerk of targets 1 and 2 are (0.4403 m/s2, 1.7980 m/s3) and (1.4088 m/s2, 0.8345 m/s3),
respectively. Then, it is shown in Figure 5c that both the RM and DFM are compensated
on the basis of the estimated parameters in Figure 5a,b. According to results in Figure 5,
by simple calculation according to (13), we can achieve the final parameter estimation
results of target 1, which are c1 = 224.979 m/s, c2 = 29.0303 m/s2 and c3 = 27.9680 m/s3,
while those of target 2 are c1 = 223.984 m/s, c2 = 29.9988 m/s2 and c3 = 27.0045 m/s3.
Similar to Figure 5a,b, Figure 5d,e show the DS-based motion parameter estimation pro-
cedure for target 4. Finally, Figure 5f shows the range–Doppler spectrum after both RM
and DFM are compensated for target 4. It can be seen that the target power is well-focused
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after the compensation of target motion. The final estimated motion parameters of target 4
are c1 = 212.963 m/s, c2 = −9.9328 m/s2 and c3 = 11.9561 m/s3. Overall, the results are
consistent with the parameters set in Table 3.
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Figure 4. Maximum outputs of each range bin after RM and DFM corrections
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Figure 5. Estimation of target motion parameters: (a) coarse velocity, coarse acceleration and
coarse jerk spectrum at range bin 15,361; (b) fine acceleration and fine jerk spectrum with estimated
coarse motion parameters of (a); (c) range–Doppler spectrum after target motion compensation
with estimated motion parameters of (a,b); (d) coarse velocity, coarse acceleration and coarse jerk
spectrum at range bin 15,232; (e) fine acceleration and fine jerk spectrum with estimated coarse motion
parameters of (c); (f) range–Doppler spectrum after target motion compensation with estimated
motion parameters of (d,e).
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Figure 6 further shows the Doppler spectra in the processing of fine motion param-
eter compensation. Figure 6a shows the DFM of targets 1 and 2 at range bin 15,361.
In Figure 6b, the DFM has been partially compensated by fine acceleration but the energy
is still dispersed. Figure 6c shows the Doppler spectrum after fine acceleration and fine jerk
compensation of target 1. Finally, the fine velocity of target 1 is the velocity corresponding
to the Doppler spectral peak. It is worth noting that there are two peaks in Figure 6c.
The reason is that targets 1 and 2 share the same range bin and coarse motion parameters
but the fine motion parameters are different. Compensating the fine motion parameters
of target 1 is equivalent to partially compensating target 2, resulting the second extended
peak in Figure 6c. Similarly, Figure 6d–f show the processing of fine motion parameters
compensation of target 2. The second peak in Figure 6f expresses the energy extension of
target 1. Figure 6g shows the Doppler spectrum of target 4 at range bin 15,232. Figure 6h
shows the Doppler spectrum after compensating the fine acceleration. Then, it is shown in
Figure 6i that the DFM is eliminated after compensating the fine acceleration and fine jerk.
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Figure 6. Doppler spectrum for targets 1, 2 and 4 at different stages: (a) after DFM compensation with
respect to coarse motion parameters for target 1 at range bin 15,361; (b) after DFM compensation with
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respect to coarse motion parameters and fine acceleration of target 1 at range bin 15,361; (c) after DFM
compensation with respect to coarse motion parameters, fine acceleration and fine jerk of target 1 at
range bin 15,361; (d) after DFM compensation with respect to coarse motion parameters of target 2 at
range bin 15,361; (e) coarse motion parameters and fine acceleration of target 2 at range bin 15,361;
(f) after DFM compensation with respect to coarse motion parameters, fine acceleration and fine jerk
of target 2 at range bin 15,361; (g) after DFM compensation with respect to coarse motion parameters
of target 4 at range bin 15,232; (h) after DFM compensation with respect to coarse motion parameters
and fine acceleration of target 4 at range bin 15,232; (i) after DFM compensation with respect to coarse
motion parameters, fine acceleration and fine jerk of target 4 at range bin 15,232.

5.2. Experiment 2

In this section, the performance of the proposed DS-GIFT-CCPF is assessed via
500 Monte Carlo runs. First, to provide a useful indicator for the step size of Ω, i.e., ∆Ω,
we carried out different experiments under |CΩ| = {1270, 520, 400, 300, 260} and the het-
erogeneous search space CΩ. Figure 7 shows the curves of detection performance for the
proposed DS-GIFT-CCPF detector under the aforementioned settings. The dotted green line
denotes that the probability of detection is 0.9. As expected, the proposed DS-GIFT-CCPF
with the heterogeneous search space CΩ performs the best, while under the homogeneous
search space, the detector performance degrades slightly as |CΩ| decreases. Specifically,
as observed from Figure 7, when |CΩ| reaches the level of the fine motion parameter space,
i.e., |CΩ| = fc

fs
= 520, the performance loss can still remain at less than 1 dB. Considering

this result, to balance the performance and the computational complexity, |CΩ| = fc
fs

can be
a preferable choice in practice.
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Figure 7. Detection probability versus pulse-compressed SNR for the proposed DS-GIFT-CCPF with
different sizes of search space of Ω.

Then, the performance of the proposed DS-GIFT-CCPF detectors are further assessed
by comparison with the standard GRFT [6], the DS-GRFT [15] and the ACCF-GFT [17,18]
detectors considering the third motion parameters, as well as the DS-GRFT considering
the second motion parameters [15]. Figure 8a shows the curves of detection performance
for these five methods in different input SNR cases, and Figure 8b shows the theoretical
complexity of the considered four methods for different values of fc/ fs.
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Figure 8. Performance comparison of different detectors: (a) detection probability versus pulse-
compressed SNR; (b) computational complexity.

It can be seen from Figure 8a that, unsurprisingly, the DS-GRFT (third) has almost the
same detection performance as the optimal GRFT detector. However, the DS-GRFT (second)
detector is much worse than the DS-GRFT detector (third), with a 12 dB performance loss
at Pd = 0.9, which is consistent with common sense. As for the ACCF-GFT detector, due
to the high-order nonlinear operation and the error propagation effect, it performs even
worse than the DS-GRFT (second). Specifically, it has a 15 dB performance loss at Pd = 0.9,
also taking the DS-GRFT as the baseline. By contrast, the proposed DS-GIFT-CCPF detector
only has about a 4 dB performance loss when |CΩ| = fc

fs
, compared to the DS-GRFT (third)

detector at Pd = 0.9, demonstrating its ability when dealing with targets having high-
order motions. On the other hand, as we can observe from Figure 8b, the computational
complexity reduction of the DS-GIFT-CCPF detector relative to the DS-GRFT detector
grows gradually as fc/ fs increases. For the parameter setting of this experiment where
fc/ fs = 520, this reduction can reach more than two orders of magnitude, highlighting the
computational efficiency of the proposed DS-GIFT-CCPF.

Table 4 further reports the execution time of different considered detectors at fc/ fs = 520.
Specifically, the velocity scope is set to 0–270 m/s, the acceleration scope to 0–40 m/s2 and the
jerk scope to 0–40 m/s3. Experiments were carried out in MATLAB 2023b using Intel Core
i7-11700 with an eight-core 2.5-GHz CPU and 32 GB of RAM. It can be seen that the execution
time of the DS-GIFT-CCPF is reduced by more than two orders of magnitude compared with
the DS-GRFT, while it is reduce by seven orders of magnitude compared with the GRFT,
further verifying the computational efficiency of the proposed detector.

To summarize, the above results demonstrate the computational efficiency of the
proposed DS-GIFT-CCPF as well as a slight performance degradation relative to the DS-
GRFT detector.

Table 4. Execution times of different detectors in Experiment 2.

Alg.s GRFT DS-GRFT DS-GIFT-CCPF ACCF-GFT

Execution
Time [s]

1.78 × 1010 5.09 × 104 2.48 × 102 3.16

6. Conclusions

To cope with the range migration (RM) and Doppler frequency migration (DFM)
caused by high-order motion parameters for the space-based bistatic radar application, this
paper proposed a computationally efficient long-time coherent integration (LTCI) method
under the dual-scale (DS) motion parameter framework. First, the modified generalized
inverse Fourier transform (GIFT) was performed on the coarse motion parameter space for
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the RM compensation and a pre-compensation of DFM; a suitable designed conditioned
cubic phase function (CCPF) was then proposed to estimate and compensate the fine part
of high-order motion parameters conditioned on the coarse motion parameters, on the
basis of which the GFT was finally used as the detection statistic to estimate all the motion
parameters. The resulting LTCI algorithm is called the DS-GIFT-CCPF detector, which has
shown a slight performance loss compared with the optimal GRFT (or DS-GRFT) detector,
but achieved seven orders of magnitude of computational cost reduction with respect to
the GRFT detector, and two orders of magnitude of computational cost reduction with
respect to the DS-GRFT detector in numerical experiments.
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Abbreviations
The following abbreviations are used in this paper:

fk the discrete frequency of the signal, fk = k∆ f
∆ f the interval of frequency bins
k the number of frequency bins, k = 1, · · · , K
K the number of frequency bins
tm the slow time (inter-pulse sampling time)
m the number of pulses, m = 1, · · · , M
M the number of pulses
fc the carrier frequency
c the velocity of light
λ the wave length
R(tm) the instantaneous slant range between the receiver and the transmitter
τn the fast time (intra-pulse sampling time), τn = nTs
Ts the sampling interval of fast time, Ts = 1/ fs
fs the sampling rate of frequency
Br the signal bandwidth, Br = Kvalid∆ f
Kvalid the valid number of frequency bins
p the order of the target motion parameters
c0 the initial radial distance of the signal from the transmitter to the receiver
cp the radial components of the target of order p
c̃p the motion parameter variable of order p
cp,min the minimum value of c̃p
cp,max the maximum value of c̃p
c̃p,c the coarse motion parameter variable of c̃p
c̃p, f the fine motion parameter variable of c̃p

κ the folding factor κ ≜ 1 − Br
2 fc

c̃′p, f the fine motion parameter variable of c̃p weighted by κ

∆cp,c the step size of c̃p,c
∆cp, f the step size of c̃p, f
cp,c the coarse motion parameter of cp
cp, f the fine motion parameter of cp
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ĉp,c the estimation of cp,c
ĉp, f the estimation of cp, f
ĉ′p, f the estimation of c′p, f
Cp,c the search space of c̃p,c
Cp, f the search space of c̃p, f
C′

p, f the search space of c̃′p, f
C f the joint search spaces of the fine part of target motion parameters
c̃ the vector consisting of motion parameter variables
c̃c the vector consisting of coarse motion parameter variables
c̃ f the vector consisting of fine motion parameter variables
c̃′f the vector consisting of fine motion parameter variables weighted by κ

cc the vector consisting of real coarse motion parameters
Ω the constructed instantaneous frequency rate variable
CΩ the search space of Ω
ρi the i-th time position
CΩ the homogeneous search space of Ω
Ω̂ the estimation of Ω
∆Ω the step size of CΩ
| · | the size of the space
ċ′f the vector consisting of c′2, f and c′3, f
ˆ̇c′f the estimation of ċ′f
ˆ̇c f the vector consisting of ĉ′2, f and ĉ′3, f
θ the injective function from elements of Ω1 to those of Ω2
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