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Abstract: During circuit conduction immunity simulation assessments, the existing black-box model-
ing methods for chips generally involve the use of time-domain-based modeling methods or ICIM-CI
binary decision models, which can provide approximate immunity assessments but require a high
number of tests to be performed when carrying out broadband immunity assessments, as well as
having a long modeling time and demonstrating poor reproducibility and insufficient accuracy in
capturing the complex electromagnetic response in the frequency domain. To address these issues,
in this paper, we propose a novel frequency-domain broadband model (Sensi-Freq-Model) of IC
conduction susceptibility that accurately quantifies the conduction immunity of components in the
frequency domain and builds a model of the IC based on the quantized data. The method provides
high fitting accuracy in the frequency domain, which significantly improves the accuracy of circuit
broadband design. The generated model retains as much information within the frequency-domain
broadband as possible and reduces the need to rebuild the model under changing electromagnetic
environments, thereby enhancing the portability and repeatability of the model. The ability to reduce
the modeling time of the chip greatly improves modeling efficiency and circuit design. The results
of this study show that the “Sensi-Freq-Model” reduces the broadband modeling time by about
90% compared to the traditional ICIM-CI method and improves the normalized mean square error
(NMSE) by 18.5 dB.

Keywords: integrated circuit (IC); models of integrated circuits for RF immunity behavioral
simulation-conducted immunity modeling (ICIM-CI); immunity modeling; electromagnetic
compatibility (EMC) modeling; direct power injection (DPI); X-parameters

1. Introduction

The immunity of integrated circuits is related to the electromagnetic safety of electronic
devices (Figure 1) [1]. Researchers J. Loeckx and G. Gielen [2] found that small circuit
topology changes can increase the immunity of integrated circuits by several orders of
magnitude during DPI testing [3]. In light of this finding, being able to predict whether a
device will pass sensitivity testing before it is manufactured is of great importance in terms
of cost reduction [4,5]. However, chip manufacturers in general do not provide immunity
models for their chips; as such, circuit designers must obtain a model of the chip’s behavior
by utilizing specific testing methods. This behavioral model is called the “black-box model”,
and involves extraction without knowing the internal physical details of the chips; instead,
through the mapping of input and output signals, an abstract mathematical expression is
obtained to describe the relationship between the recorded input signal x(t) and the output
signal y(t). When the black-box model and the DUT are inspired by the same input signal,
the output of the black-box model should effectively be as close as possible to the actual
response of the DUT. The use of behavioral models protects the intellectual property (IP)
rights of the device manufacturer and reduces the difficulty involved in modeling [6]. The
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authors of articles [7] and [8] used artificial neural networks (ANNs), Volterra levels [9],
time-domain behavioral models such as envelope domain models [10], nonlinear impulse
response models [11], and two-path memory models [12] in their studies, and constructed
time-domain-sensitive behavioral models of devices to describe the output behavioral
effects of the devices. However, time-domain models usually require a large number of
tests to be conducted and for characterizations in the time domain to be made in order to
generate a model that is accurate over a specific frequency range [13]. In the aforementioned
techniques, the models can only be used to focus on IC faults (detection efficiency, jitter,
etc.) in the time domain, and it is difficult to analyze mismatches between ports and
high harmonics, which in turn prevents them from meeting the needs of broadband EMC
applications. Moreover, one model only supports the simulation of a single frequency
point under a single interference, and a large number of simulation models need to be
established if the simulation is performed in the broadband frequency range. Therefore,
frequency-domain models are more suitable for simulating distributed components over
a bandwidth. In recent years, the ICIM-CI [14] model has been shown to predict chip
immunity. The ICIM-CI [15] model is able to approximate and replace accurate chip or
circuit simulations by using a look-up table and power distribution network (PDN)-based
approach and enables the use of the model in the frequency domain [16].
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However, the model still needs to depend on time-domain measurements when
obtaining the IB (input behavior) netlist, which leads to the need for a large number of
tests in broadband multi-frequency applications as well as redundant designs, which
makes the process cumbersome and time-consuming. This then leads to a lack of model
adaptability and the need to rebuild the model frequently when the criterion is changed,
which in turn increases the amount of work required and overall time consumption. In
addition, the ICIM-CI model has limitations in handling the nonlinear characteristics of
the chip when it is under interference, and linear assumptions often need to be made [17],
which leads to discrepancies between the model and the actual measurement results. In
addition, since the model is based on the go–no-go decision criterion, it is not capable
of parametric simulation, which limits its ability to accurately predict and meticulously
analyze the performance of integrated circuits in complex electromagnetic environments
and also obstructs circuit designers from integrating the chip into the cascade simulation
of the whole circuit board. Due to this issue, the model is unable to comprehensively
assess the electromagnetic characteristics of the circuit, resulting in a negative impact on
overall design efficiency. Therefore, although the ICIM-CI model provides a framework for
frequency-domain analysis, its limitations in terms of efficiency and nonlinear characteristic
handling [18], as well as its inability to support overall quantitative simulation at the board
level, are important challenges that need to be overcome.

In this study, we present the “Sensi-Freq-Model”, a novel immunity black-box model
for the rapid frequency-domain characterization of chips based on X-parameter theory,
which aims to address the limitations of existing models. The model is accurate in character-
izing the output characteristics of chips in both time and frequency domains and supports
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the parametric simulation of chips in circuits. The main advantage of the model is that it
can adapt to changes in the sensitivity criteria so that circuit designers can quickly adapt to
changes in design specifications or complex electromagnetic environments without having
to dedicate long periods of time to reconstructing the model, which greatly improves the
model’s versatility and modeling efficiency. This flexibility and efficiency are especially
important for modern circuit design, in particular in the pursuit of high-precision and fast
iterative engineering.

The present paper is organized as follows: Section 2 describes the structure and
theoretical basis of the model. Section 3 illustrates the extraction process and simulation
results through two simulation examples. Lastly, in Section 4, we verify the modeling
results and analyze them through the use of a test modeling example.

2. Sensi-Freq-Model Structure

In general, chips exhibit nonlinearity when sensitized by conducted interference [19],
and this nonlinear effect is the main cause of EMC failures on chips. This is why the
assumption of linearity often leads to biased final predictions [20,21]. When a small signal
is injected, at this moment, the system exhibits linear characteristics and the harmonic
frequencies at the output are negligible. The behavior of the chip can be sufficiently
characterized using the scattering parameters in this case; however, with an increasing
number of injected signals, the system will exhibit nonlinearity, and the range available
for the scattering parameter will continue to decrease. The harmonic response cannot
be ignored (Figure 2), at which point the output signal will produce multi-harmonic
spectral mapping on the chip. Therefore, based on the characteristics of the chip-conducted
interference response, the Sensi-Freq-Model modeling theory is proposed in combination
with the X-parameter theory [22,23].
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We introduce a set of multivariate complex functions Fpk(.) into the frequency domain
that relate all relevant input spectral components Aqn to the output spectral components
Bpk (where q and p range from 1 to the number of signal ports and m and n range from
zero to the highest harmonic index). The mathematical expression is as follows:

Bpk = Fpk
(

A11, A12 . . . , A1n, A21, A22, . . . , A2n, ...Aq1, Aq2, ...Aqn
)

(1)

where A11 denotes the input interference fundamental frequency.
While the chip is under the interference condition, it usually comprises a large-signal

interference input component A11, a DC excitation component, a regular drive signal
input component, and other input components (harmonic frequency components). At this
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time, the relatively small regular drive signal input component satisfies the superposition
principle, and all of the large-signal excitation and large-signal response in the excitation
can be expressed by Equation (2):

LSOP =


DCS(LOSP) =

{
DCSq

}
RFS(LOSP) = A11

DCR(LOSP)
p = X(FDCR)

p
({

DCSq
}

, |A11|
)

B(LOSP)
p,k = X(F)

p,k
({

DCSq
}

, |A11|
)

Pk

(2)

where DCS(LSOP) denotes the DC excitation present in the chip related to the large-signal
DC bias excitation DCSq at port q.

RFS(LSOP) denotes the RF interference excitation present in the chip equal to the
large-signal interference input component A11.

DCRp
(LSOP) denotes the DC response at the large-signal operating point of port p re-

lated to the large-signal DC bias excitation DCSq at port q, and the large-signal interference

input component A11, with the parameter X(FDCR)
p used to denote the X-parameter element

of the excitation portion of the DC bias voltage.
B(LSOP)

p,k denotes the system response at the large-signal operating point related to
the large-signal DC bias excitation DCSq at port q and the large-signal interference input

component A11, with the parameter X(F)
p,k used to denote the X-parameter element of the

large-signal operating point’s influence [24].
Therefore, combining the effects of the large-signal nonlinear mapping and the linear

non-analytic mapping that describe the co- and cross-frequency disturbances caused by the
small-signal incidence, the scattering wave at the response port can then be described by
Equation (3):

Bpk
∼= XF

pk(re f LOSPin)Pk +

q = N
l = K

∑
q = 1
l = 1

(q, l) ̸= (1, 1)

XS
pk,ql(re f LOSPin)Pk−l Aql

+

q = N
l = K

∑
q = 1
l = 1

(q, l) ̸= (1, 1)

XT
pk,ql(re f LOSPin)Pk+l A∗

ql

(3)

where P = ejφ(A11) is a unit-length phase quantity with the same phase as A11.XF
pk, XS

pk,ql ,

and XS
pk,ql represent frequency-domain X-parameter elements that describe co-frequency

disturbances caused by a small signal incident on the port of the device during testing. XT
pk,ql

represents a frequency-domain X-parameter element that describes the cross-frequency dis-
turbances caused by a small signal incident on the port of the device during testing. LSOPin
represents the excitation portion of the LSOP, and refLSOPS represents the corresponding
reference excitation.

The A-wave of incidence and the B-wave of scattering have two sets of indexes: p and
q refer to the port number of the chip, while k and l refer to the number of harmonics.
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3. Results
3.1. Immunity Modeling Based on Simulated Circuits

In this section, a method for extracting immunity models using chip-simulated circuits
is presented and the accuracy of the Sensi-Freq-Model is verified. An analog circuit model
of an operational amplifier built based on white-box theory is used. The circuit structure
and specific parameters are shown in Figure 3. This white-box model was built to extract the
Sensi-Freq-Model and verify the difference between its output in the simulation software
and the white-box model. The op-amp is a forward amplifier circuit, and the parameters
set for normal operation are Vin+: f = 10 kHz, V = 100 mV sine wave signal, and the DC
bias voltage set to V+ = +15 V and V− = −10 V. When the chip is in normal operation,
the output of the circuit is as seen in Figure 4. Based on the DPI test method of IEC62132-
4 [3], interference signals of different frequencies and powers are applied to the op-amp’s
input ports and power supply ports. The interference signals are selected for continuous
waveforms according to Section 5 of IEC 62132-4. Here, the interference noise signal is
simulated using the signal source module (power source-N Frequencies and Power Levels)
in the ADS (advanced design system). The output of the op-amp is shown in Figures 4–7.
Interference signals of different levels, when observing the output response sensitivity
characteristics of the monitoring port, can be mainly divided into four phenomena (Table 1),
which can be used to describe the faults as four types of situations according to the IC
performance level specified in IEC62132-1 [25]. The specific description is shown in Table 1,
and its output waveform schematic is shown in Figures 4–7.
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Table 1. Output type and description of the operational amplifier after interference.

Case Criteria IC Performance Level Description

Figure 4

∆Voutp-p ≤ 13.2 mV

Class AIC Normal output

Figure 5 Class AIC

All monitored functions of the IC perform within
the defined tolerances during and after exposure
to disturbance.

Figure 6 Class CIC

The output waveform experiences distortion or
jitter. The IC does not perform within the defined
tolerances during exposure and does not return to
normal operation. It returns to normal operation
via manual intervention.

Figure 7 Class CIC

The output waveform experiences serious
distortion or jitter. The IC does not perform within
the defined tolerances during exposure and does
not return to normal operation by itself. It returns
to normal operation via manual intervention.

Through the use of simulation, the Sensi-Freq-Model is extracted, a simulation model
is built, the accuracy of the model is tested and it is verified as to whether the model can
accurately reflect the output response of the chip under different disturbed situations to
compare the built Sensi-Freq-Model with the traditional ICIM-CI model in the frequency-
domain immunity prediction curves.

3.1.1. Model Extraction

During normal operation of the chip, the interference injection signal is injected
from V− and Vin+ (Figures 8 and 9) separately, and the power of the interference signal
is in the range from −40 dBm to 20 dBm. Each parameter in Equation (2) is solved
according to the proposed method outlined in Section 2 to complete the operational
amplifier immunity model.
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source; R1 and R2 are resistors; Load is the matching load; Vin and RFI are the amplifier’s function
signal and interference signal injection source; VDC is the DC voltage source for the amplifier.

3.1.2. Model Verification

The accuracy of the extracted immunity model is examined by first verifying whether
the model can output an accurate time-domain response waveform at a single frequency.
As an example, the frequency of interference injection to the input is set at 100 kHz to
verify the accuracy of the model. It can be seen that the model is able to accurately simulate
the response waveforms of the device under various disturbed/unperturbed states, such
as normal operation (Figure 10), distorted output waveform (Figure 11), distorted and
jittered output waveform (Figure 12), and severely distorted output signal (Figure 13).
These results show that the model is able to accurately predict the disturbed behavior and
provide quantitative waveforms.

Micromachines 2024, 15, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 9. Extraction of the injected immunity model for the input terminal of Vin+. DC Bias is a DC 
source; R1 and R2 are resistors; Load is the matching load; Vin and RFI are the amplifierʹs function 
signal and interference signal injection source; VDC is the DC voltage source for the amplifier. 

3.1.2. Model Verification 
The accuracy of the extracted immunity model is examined by first verifying whether 

the model can output an accurate time-domain response waveform at a single frequency. 
As an example, the frequency of interference injection to the input is set at 100 kHz to 
verify the accuracy of the model. It can be seen that the model is able to accurately simulate 
the response waveforms of the device under various disturbed/unperturbed states, such 
as normal operation (Figure 10), distorted output waveform (Figure 11), distorted and jit-
tered output waveform (Figure 12), and severely distorted output signal (Figure 13). These 
results show that the model is able to accurately predict the disturbed behavior and pro-
vide quantitative waveforms. 

 
Figure 10. Comparison of simulation model output and actual output results during normal oper-
ation of the chip. 
Figure 10. Comparison of simulation model output and actual output results during normal operation
of the chip.

Micromachines 2024, 15, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 11. Comparison of simulation model output and actual output when slight jitter occurs at 
the chip output (interference injection −25 dBm). 

 
Figure 12. Comparison of simulation model output and actual output results when severe jitter 
occurs at the chip output (when interference is injected at 0 dBm). 

 
Figure 13. Comparison of simulation model output and actual output results when the chip out-
put is severely disturbed (interference injection at 10 dBm). 

3.1.3. Discussion 
As can be seen from the results displayed in the above section, the Sensi-Freq-Model 

can directly output the response waveform of the chip after being perturbed; therefore, it 
is only necessary to build broadband immunity prediction curves for different immuniza-
tion standards after one test. Compared to the traditional ICIM-CI model, which needs to 
determine the immunity criteria before establishing the immunity prediction curves, the 
Sensi-Freq-Model does not need to be re-modeled due to the change in the test criteria, 
which will result in significant savings in overall modeling time. In this section, the im-
munity criterion is set to the condition that the allowable change in peak-to-peak output 

Figure 11. Comparison of simulation model output and actual output when slight jitter occurs at the
chip output (interference injection −25 dBm).



Micromachines 2024, 15, 658 9 of 16

Micromachines 2024, 15, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 11. Comparison of simulation model output and actual output when slight jitter occurs at 
the chip output (interference injection −25 dBm). 

 
Figure 12. Comparison of simulation model output and actual output results when severe jitter 
occurs at the chip output (when interference is injected at 0 dBm). 

 
Figure 13. Comparison of simulation model output and actual output results when the chip out-
put is severely disturbed (interference injection at 10 dBm). 

3.1.3. Discussion 
As can be seen from the results displayed in the above section, the Sensi-Freq-Model 

can directly output the response waveform of the chip after being perturbed; therefore, it 
is only necessary to build broadband immunity prediction curves for different immuniza-
tion standards after one test. Compared to the traditional ICIM-CI model, which needs to 
determine the immunity criteria before establishing the immunity prediction curves, the 
Sensi-Freq-Model does not need to be re-modeled due to the change in the test criteria, 
which will result in significant savings in overall modeling time. In this section, the im-
munity criterion is set to the condition that the allowable change in peak-to-peak output 

Figure 12. Comparison of simulation model output and actual output results when severe jitter
occurs at the chip output (when interference is injected at 0 dBm).

Micromachines 2024, 15, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 11. Comparison of simulation model output and actual output when slight jitter occurs at 
the chip output (interference injection −25 dBm). 

 
Figure 12. Comparison of simulation model output and actual output results when severe jitter 
occurs at the chip output (when interference is injected at 0 dBm). 

 
Figure 13. Comparison of simulation model output and actual output results when the chip out-
put is severely disturbed (interference injection at 10 dBm). 

3.1.3. Discussion 
As can be seen from the results displayed in the above section, the Sensi-Freq-Model 

can directly output the response waveform of the chip after being perturbed; therefore, it 
is only necessary to build broadband immunity prediction curves for different immuniza-
tion standards after one test. Compared to the traditional ICIM-CI model, which needs to 
determine the immunity criteria before establishing the immunity prediction curves, the 
Sensi-Freq-Model does not need to be re-modeled due to the change in the test criteria, 
which will result in significant savings in overall modeling time. In this section, the im-
munity criterion is set to the condition that the allowable change in peak-to-peak output 

Figure 13. Comparison of simulation model output and actual output results when the chip output is
severely disturbed (interference injection at 10 dBm).

3.1.3. Discussion

As can be seen from the results displayed in the above section, the Sensi-Freq-Model
can directly output the response waveform of the chip after being perturbed; therefore, it is
only necessary to build broadband immunity prediction curves for different immunization
standards after one test. Compared to the traditional ICIM-CI model, which needs to
determine the immunity criteria before establishing the immunity prediction curves, the
Sensi-Freq-Model does not need to be re-modeled due to the change in the test criteria,
which will result in significant savings in overall modeling time. In this section, the
immunity criterion is set to the condition that the allowable change in peak-to-peak output
voltage ∆Voutp-p is ≤5% for comparison purposes, and Figure 14 shows the comparison
of the results of using the method proposed in this paper and the traditional ICIM-CI
modeling method with white-box simulation when interference is injected from the power
supply side through the V- port. It can be seen that, under this immunity criterion, both
modeling methods predict the sensitivity better because the chip has higher linearity.
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Figure 14. Comparison of the sensitivity prediction of the two modeling methods with the ac-
tual white-box output results (at the power supply side’s V− with the immunity criterion at
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When injecting interference to Vin+ and setting ∆Voutp-p ≤ 5%, it can be seen that the
prediction accuracy of the ICIM-CI model deteriorates when the system has a nonlinear
response due to interference; in contrast, the Sensi-Freq-Model’s prediction accuracy is still
relatively satisfactory (Figure 15).
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Figure 15. Comparison of the sensitivity prediction of the two modeling methods with the actual
output results (at the Vin+ port with the immunity criterion at ∆Voutp-p ≤ 5%).

Changing the immunization criterion to output voltage peak-to-peak ∆Voutp-p ≤ 10%,
the ICIM-CI requires that the model be rebuilt; however, the Sensi-Freq-Model can provide
the immunity curve directly based on the output waveforms, and it can also be seen
that the prediction accuracy of ICIM-CI is still lower than the prediction accuracy of the
Sensi-Freq-Model (Figure 16).

It can be seen that the Sensi-Freq-Model can provide a very accurate output response
in both time and frequency domains. Compared to ICIM-CI, even when the immunity
criterion is changed, the model can still accurately predict the sensitivity phenomena of the
device under examination without the need for re-measurement and modeling, which will
greatly reduce the time required for modeling and testing.

3.2. Immunity Modeling Based on Measurements

In this section, we will verify the accuracy of the methodology by obtaining a Sensi-
Freq-Model immunity model of the device using actual instrumentation and performing
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immunity simulations using the model. An operational amplifier, which is more susceptible
to sensitization, was chosen for testing and modeling. The amplifier was used in a voltage
follower configuration [26], in which interference to the input differential pair may cause
the amplifier output to be offset, making the amplifier inoperable [27]. In addition, of all
the possible interference signals, those overlaid on the op-amp input pins are the most
difficult to prevent [28]. The op-amp is powered by a ±2.5 V supply voltage, with the V+
pin set to 0 VDC. Interference signals are injected through a bias tee on this pin.
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Using a test instrument to extract the Sensi-Freq-Model parameters of the chip when
it encounters a sensitive injection, the achieved immunity model of the chip is then loaded
in the simulation software, and the generated model simulation results are compared with
the output generated using the DPI test.

3.2.1. Model Extraction

The Sensi-Freq-Model of the chip can be extracted using a nonlinear vector network
analyzer (NVNA), signal source (optional), DC source, external phase reference generator,
and appropriate instrument control and processing software [29]. The NVNA provides the
RF interference environment to which the chip is exposed. The DC source provides the
chip’s basic operating environment, and an external phase reference generator is used to
provide a standard phase reference to ensure phase consistency. The setup configuration is
shown in Figure 17.
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Using the test setup described above, the parameters of Equation (3) can be solved and
expressed as a matrix, enabling the chip’s Sensi-Freq-Model to finally be generated. The
model parameters of this operational amplifier are extracted from the 10–100 MHz band
under RF interference from −10 dBm to 10 dBm. We loaded the Sensi-Freq-Model in the
simulation software and performed a two-port harmonic balance simulation to simulate
the behavior of the op-amp when exposed to interference.

3.2.2. Model Verification

The results obtained from the DPI measurements were compared with the equivalent
model obtained to verify the accuracy of the model, and the DPI test configuration is shown
in Figure 18.
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By using an RF generator, RF amplifiers, directional coupler, bias-tees, RF power me-
ters, oscilloscopes, and other equipment, the interference waveforms specified in IEC62132-
1 are applied to the chip, and the output waveforms of the chip are recorded. DPI measure-
ments are performed by injecting an interference signal into the DUT (on the V+ pin or
input) via a bias tee, with the operational amplifier used as a follower circuit and powered
by a supply voltage of ±3 V. The V+ pin is set to 0 VDC.

Substituting the test results into Equation (3), the response values of the Sensi-Freq-
model of the chip at different power levels are obtained. The accuracy of the modeling
method is verified by comparing the actual DPI test results of the board. Similarly, the com-
parison of the measured and simulated results of the frequency- and time-domain measure-
ments at 50 MHz after inputting interference signals with different powers (Figures 19–22)
shows that the jitter of the chip’s output response increases as the input power is increased.
When the input power is 10 dBM, the output signal is severely distorted, and the chip
cannot work properly. It can be seen that the Sensi-Freq-Model can provide accurate output
waveforms after disturbance, regardless of whether this disturbance is in the form of a
small jitter or severe distortion.
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Figure 23 shows the comparison between the curves of the sensitivity level using the
Sensi-Freq-Model method and the conventional ICIM-CI with the measured results when
the condition of the immunity criterion ∆Voutp-p ≤ 30 mV is introduced. It can be seen
that the op-amps increase their immunity to disturbances as the disturbance frequency
increases, and this trend can be predicted using both modeling methods; it is obvious,
however, that using the method proposed in this paper (Sensi-Freq-Model) is more accurate
than the traditional ICIM-CI modeling method in terms of prediction accuracy.
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3.2.3. Discussion

Table 2 comprehensively demonstrates the comparison of the two modeling methods
in the time and frequency domains in terms of modeling accuracy, modeling time, and
whether cascade quantization simulation can be carried out. It can be seen that the Sensi-
Freq-Model has obvious advantages in terms of modeling accuracy, modeling time, and
support for quantization output and cascade simulation. Compared with ICIM-CI, using
the method outlined in this paper (Sensi-Freq-Model) not only improves the modeling
accuracy in the frequency domain by around 18.5 dB but also has significant advantages in
terms of being able to output quantized waveforms at a single point and support cascade
simulation, as well as improving the overall modeling time.

Table 2. Comparison of the NMSE and modeling times of different models.

Signal Type Modeling Method NMSE
(dB) Modeling Time Supports Cascade

Quantization Simulation

Time domain
Sensi-Freq-Model −30.92 21 s Yes

ICIM-CI No waveform output No

Frequency domain Sensi-Freq-Model −31.3352 0.58 h Yes
ICIM-CI −12.7982 8.3 h No

In contrast, the Sensi-Freq-Model method provides circuit designers with more
flexibility in designing circuit boards by providing quantized waveform output from
monitoring ports. Specifically, based on the specific waveforms output by the Sensi-Freq-
Model, designers are able to not only work with different degrees of redundancy to meet
diverse design needs but also adjust the immunity standard-setting guidelines for the
chips on the board without having to rebuild the chip immunity model. In addition,
designers can further optimize the board layout using the actual immunity waveform
output data provided by the Sensi-Freq-Model. This form of layout adjustment based on
real-world data is difficult to achieve in traditional behavioral-level black-box models of
frequency-domain conduction immunity. With this approach, immunization problems in
circuit design can be more accurately addressed and solved, improving the reliability and
efficiency of the design.

4. Conclusions

In this study, we validate the proposed X-parameter-based IC frequency-domain
conduction sensitivity modeling method, the Sensi-Freq-Model, by comparing simula-
tion and real cases, and the results prove its effectiveness and accuracy in describing
and predicting the conduction sensitivity of ICs. Compared with the traditional ICIM-
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CI modeling method, the Sensi-Freq-Model significantly reduces the time required for
modeling and achieves a reduction of 18.5 dB in normalized mean square error (NMSE)
in the frequency domain, which demonstrates its advantages in terms of efficiency and
accuracy. In addition, the method provides quantifiable simulation results in the time
domain, supporting the need for quantitative simulation of circuit board cascades and
enhancing its application scope and utility. The Sensi-Freq-Model’s modeling process relies
on only unclassified information and quickly obtains highly accurate conduction immunity
predictions from measurements alone over a wide range of frequencies, even in the absence
of a full-impedance model of the integrated circuit and the surrounding PCB. Even in
situations where a full impedance model of the IC and its surrounding PCB is not present,
interference information can be accurately captured in the time-frequency domain over
a wide range of frequencies, without being limited by the criteria for determining chip
susceptibility. In light of the above, the Sensi-Freq-Model not only meets the needs of most
IC terminal users to predict potential EMI in electronic devices but also provides an efficient
and accurate modeling tool for circuit design and EMC analysis.
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