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Abstract: In order to deal with complex risk scenarios involving claims, uncertainty, and investments,
we consider the ruin problems in a compound Poisson risk model with liquid reserves and propor-
tional investments and study the expected discounted penalty function under threshold dividend
strategies. Firstly, the integral differential equation of the expected discounted penalty function is
derived. Secondly, since the closed-form solution of the equation cannot be obtained, a sinc method
is used to obtain the numerical approximation solution of the equation. Finally, the feasibility and
superiority of the sinc method are illustrated by error analysis. In addition, based on a symmetric
jump risk market, we discuss the influence of some parameters on the ruin probability with some
examples. This study can help actuaries develop more robust risk management strategies and ensure
the long-term stability and profitability of insurance companies. It provides a theoretical basis for
actuaries to carry out risk management.

Keywords: liquid reserves; threshold strategy; proportional investment; expected discounted penalty
function; sinc method

MSC: 91B05; 91G05; 65C30

1. Introduction

With the development of the economy, the risks faced by insurance companies have
also increased. Therefore, it is necessary to effectively prevent and control operational risks.
The key lies in how insurance companies use reasonable means, such as dividends, capital
injection, investment, and reinsurance strategies, to control the surplus process of funds in
order to minimize corporate risks or maximize shareholder returns [1].

Risk theory is the core content of actuarial mathematics research, which has been paid
much attention in the field of finance and insurance. Since the Cramér–Lundberg classic
risk model was proposed, it has been paid attention to and promoted by many researchers
as an important method to study corporate ruin risk. Zhang et al. [2] assumed that the jump
terms in the classical model are two-sided jumps; that is, upward and downward jumps.
Based on the classic model, Zhang and Han [3] consider the mixed dividend strategy.
Then, Liu et al. [4] proposed a dual risk model subject to diffusion perturbation under a
threshold strategy.

Ruin theory is one of the important subjects of risk theory, and ruin probability is
the most important quantitative index in ruin theory. In the actual operation, the insurer
not only pays attention to the ruin probability but also focuses on the quantity related to
ruin. In 1998, Gerber and Shiu proposed a powerful tool for unifying these variables—the
expected discount penalty function (Gerber–Shiu function) [5]. Lin and Pavlova [6] adapted
this function to the classical model. In the past ten years, the Gerber–Shiu function played
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an important role in the risk management of insurance companies, which has attracted
wide attention from scholars [7]. Yu et al. [8] and Wang et al. [9] discussed the ruin problem
under different models with the help of this function.

In reality, insurance companies do not invest all of their assets, but keep a portion of
their funds to cover contingencies. Considering this situation, Cai et al. [10] put forward the
liquid reserve strategy; that is, assuming that the surplus is higher than the level of liquid
reserve, make a risk-free investment. Subsequently, Peng et al. [11] and Zhang et al. [12]
studied the issue of liquid reserves successively. Both of these papers assumed that the
insurer would invest their surplus at fixed interest rates, but in reality, the investment
method of insurers may not be so simple. Inspired by Chen et al. [13], we assume that
surplus is invested in a financial market consisting of riskless assets and risky assets in a
fixed proportion, consider a classical model with a liquid reserve and threshold strategy,
and study the Gerber–Shiu function of this model; the dividend problem of this model
can be seen in reference [14]. In order to show the innovation of this paper intuitively, we
compare the models in this study with those in the literature in Table 1.

Table 1. Compared with previous literature.

Existing Literature
Model

Penalty Function Sinc Error Analysis
Liquid Reserve Investment Threshold Strategy

Wang et al. [9] ! ! ! ! !

Wan [15] ! !

Zhi and Pu [16] !

Peng et al. [11] ! ! ! !

Cai et al. [10] ! ! ! !

Yang and He [17] ! ! !

Lu and Li [18] ! !

Chen and Ou [13] ! ! ! !

Zhang et al. [12] ! ! ! !

Gao and Liu [19] ! ! !

This paper ! ! ! ! ! !

Contribution of this paper: Both proportional investment and liquid reserves are
important measures taken by insurance companies in the face of various risk events to
ensure that companies can effectively manage risks, maintain financial soundness, and meet
their insurance liabilities on time. For now, there are few studies that consider proportional
investment and liquid reserve factors in risk models, and there are no studies that consider
both factors in one model. Therefore, the research in this paper enriches the ruin theory
and provides a theoretical basis for insurance companies to better prevent risks.

2. The Model

We introduce the classical risk model, and the expression of the surplus process
{Ut}t≥0 is

Ut = u + ct − Zt, t ≥ 0, (1)

where c > 0 is the premium rate. The cumulative claim amount Zt =
N1(t)

∑
i=1

Yi is a compound

Poisson process, and the intensity of the homogeneous Poisson process N1(t) = sup{k :
D1 + D2 + · · ·+ Dk ≤ t} is γ ≥ 0. The independent identically distributed (i.i.d) claim size
{Yi}∞

i=1 is a general non-negative continuous random variable with cumulative distribution
function (c.d.f.) FY and probability density function (p.d.f.) fY, and the i.i.d claim interval
{Di}∞

i=1 has a common exponential distribution with the parameter µ.
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There is a financial market made up of riskless assets and risk assets. The riskless asset
{Qt}t≥0 satisfies

dQt = r1Qtdt. (2)

where r1 > 0 is the riskless interest rate. Risk assets {Rt}t≥0 follow a geometric Lévy
process, which satisfies

Rt = e
r2t+σrWt+

N2(t)
∑

i=1
Xi

, (3)

where r2(r2 > 0) represents the expected instantaneous rate of return of the risk assets and
σr represents the price volatility of the risk assets. {Wt}t≥0 denotes a standard Brownian
motion. {Xi}∞

i=1 is a i.i.d random variable that takes value from real numbers R, with
c.d.f.FX and p.d.f. fX. The intensity of the homogeneous Poisson process N2(t) = sup{k :
H1 + H2 + · · · + Hk ≤ t} is η ≥ 0, and the i.i.d jump interval {Hi}∞

i=1 has a common
exponential distribution with parameter η ≥ 0. In addition, {Yi}∞

i=1, {Xi}∞
i=1, {N1(t)}t≥0,

and {N2(t)}t≥0 are independent of each other. So, we obtain

dRt

Rt
= (r2 +

1
2

σr
2)dt + σrdWt + d

N2(t)

∑
i=1

(eXi − 1). (4)

In order to reduce risk and obtain high returns, we assume that insurer invests its
surplus in the risk market with the ratio of q (0 < q < 1), and invests its surplus in the
riskless market with the ratio of 1 − q. So, {Ut}t≥0 satisfies

dUt = qUt−
dRt

Rt
+ (1 − q)Ut−

dQt

Qt
+ cdt − dZt. (5)

Then, we consider a model with a liquid reserve and a threshold strategy. We let ∆
represent the liquid reserve level and b represent the threshold level. Based on model (5),
we further assume that if 0 ≤ Ut < ∆, the insurer neither invests nor pays dividends; if
∆ ≤ Ut < b, the portion above ∆ will be invested proportionally; if Ut ≥ b, the portion
above b will be a dividendat a constant rate θ(0 < θ < c). So, {Ut}t≥0 satisfies

dUt =



cdt − dZt, 0 ≤ Ut− < ∆,

qÛt
dRt
Rt

+ (1 − q)Ût
dQt
Qt

+ cdt − dZt, ∆ ≤ Ut− < b,

qÛt
dRt
Rt

+ (1 − q)Ût
dQt
Qt

+ (c − θ)dt − dZt, b ≤ Ut− < ∞,

(6)

where Ût = Ut− − ∆. Expanding model (6), we have

dUt =



cdt − dZt, 0 ≤ Ut− < ∆,

qσrÛtdWt − d
N1(t)

∑
i=1

Yi + (řÛt + c)dt + qÛtd
N2(t)

∑
i=1

(eXi − 1), ∆ ≤ Ut− < b,

qσrÛtdWt − d
N1(t)

∑
i=1

Yi + (řÛt + c − θ)dt + qÛtd
N2(t)

∑
i=1

(eXi − 1), b ≤ Ut− < ∞,

(7)

where ř = (1 − q)r1 + q(r2 +
1
2 σr

2), and the security loading condition is c − θ > γE[Y1].
The expected discount penalty function is

ϕ(u) = ϕ(u; b) = E[e−τTu ω(U(Tu−), |U(Tu)|)I(Tu < ∞)|U(0) = u], (8)
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where ω(·, ·) is a non-negative penalty function, Tu = inf{t : Ut < 0} denotes the moment
of ruin, U(Tu−) denotes the instantaneous surplus before ruin, and |U(Tu)| denotes the
deficit at ruin time, τ > 0 is the discounted factor, and I(A) is the indicator function of a
set A. We let ω(0, 0) = 1, and assume that ϕ(u) is completely smooth in this paper.

Remark 1. When τ = 0, ω(·, ·) = 1, ϕ(u) will become the ruin probability ψ(u) = ψ(u; b) =
P(Tu < ∞|U(0) = u).

In this paper, the remainder content is as follows. In Section 3, we derive a system
of integral differential equations (IDEs) for ϕ(u), satisfying certain boundary conditions.
In Section 4, we obtain an approximate solution of ϕ(u) by the sinc method and find the
upper bound of the error of sinc approximation. In Section 5, the relative errors of exact
and approximate solutions under certain conditions are given, and the superiority of the
sinc method is demonstrated. Finally, based on a symmetric jump risk market, the impact
of some parameters on φ(u) is illustrated by numerical examples.

3. Integral Differential Equations for ϕ(u)

When the initial surplus is different, ϕ(u) satisfying different expressions, let

ϕ(u) =


ϕ1(u), 0 ≤ u < ∆;

ϕ2(u), ∆ ≤ u < b;

ϕ3(u), b ≤ u < +∞.

So, we obtain the following theorem.

Theorem 1. ϕ(u) satisfies the following systerm of IDEs. When 0 ≤ u < ∆,

cϕ1
′
(u)− (τ + γ + η)ϕ1(u) + γ

[∫ u

0
ϕ1(u − y)dFY(y) +

∫ ∞

u
ω(u, y − u)dFY(y)

]
= 0, (9)

when ∆ ≤ u < b,

1
2

q2σr
2(u − ∆)2ϕ

′′
2 (u) + [ř(u − ∆) + c]ϕ

′
2(u)− (τ + γ + η)ϕ2(u)

+ γ

[∫ u−∆

0
ϕ2(u − y)dFY(y) +

∫ u

u−∆
ϕ1(u − y)dFY(y) +

∫ ∞

u
ω(u, y − u)dFY(y)

]
+ η

[∫ Lq

−∞
ϕ2(Cq)dFX(x) +

∫ +∞

Lq
ϕ3(Cq)dFX(x)

]
= 0,

(10)

when b ≤ u < +∞,

1
2

q2σr
2(u − ∆)2ϕ

′′
3 (u) + [ř(u − ∆) + c − θ]ϕ

′
3(u)− (τ + γ + η)ϕ3(u)

+ γ

[∫ u−b

0
ϕ3(u − y)dFY(y) +

∫ u−∆

u−b
ϕ2(u − y)dFY(y) +

∫ u

u−∆
ϕ1(u − y)dFY(y)

]
+ η I

(
u < Bq

)[∫ Lq

−∞
ϕ2(Cq)dFX(x) +

∫ +∞

Lq
ϕ3(Cq)dFX(x)

]
+ η I

(
u ≥ Bq

) ∫ +∞

−∞
ϕ3(Cq)dFX(x) + γ

∫ ∞

u
ω(u, y − u)dFY(y) = 0,
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with boundary conditions

ϕ(0) = ω(0, 0) = 1, (11)

lim
u→∞

ϕ(u) = 0, (12)

where

Bq =
b − q∆
1 − q

,

Cq = u + q(u − ∆)(ex − 1),

Lq = ln
q(u − ∆) + b − u

q(u − ∆)
.

Proof. According to the processing procedure in reference [15], within a small interval
[0, dt], considering whether the claims and the jumps of the risk investment process occur,
there are four scenarios.

(1) Neither the claims nor the jumps of the risk investment process occur, and the
probability of this event occurring is P(H1 > dt, D1 > dt);

(2) The claims occur, but the jumps of the risk investment process do not occur, and
the probability of this event occurring is P(H1 > dt, D1 ≤ dt);

(3) The jumps of the risk investment process occur, but no claims occur, and the
probability of this event occurring is P(H1 ≤ dt, D1 > dt);

(4) Both the claims and the jumps of the risk investment process occur, and the
probability of this event occurring is P(H1 ≤ dt, D1 ≤ dt).

We expand the probabilities of these four events using Taylor’s formula; we can obtain

A1 = P(H1 > dt, D1 > dt) = 1 − (η + γ)dt + o(dt), (13)

A2 = P(H1 > dt, D1 ≤ dt) = γdt + o(dt), (14)

A3 = P(H1 ≤ dt, D1 > dt) = ηdt + o(dt), (15)

A4 = P(H1 ≤ dt, D1 > dt) = ηγ(dt)2 + o(dt), (16)

where the fourth scenario is a low probability event and will not be considered. Therefore,
using the total probability formula, when 0 ≤ u < ∆,

ϕ1 = e−τdt
{

A1E[ϕ1(u + cdt)] + A2E[ϕ1(u + cdt − Y1)]
}

. (17)

According to Taylor’s formula, we have

E[ϕ1(u + cdt)] = ϕ1 + cϕ1
′
dt + o(dt). (18)

Next, substituting (13), (14) and (18) into (17), letting dt → 0, and then sorting it out, you
obtain Equation (9).

Similarly, when ∆ ≤ u < b,

ϕ2 =e−τdt
{

A1E[ϕ2(B1)] + A2E
[

E[ϕ2(B1 − Y1)|Y1 ∈ (0, B1 − ∆)]

+ E[ϕ1(B1 − Y1)|Y1 ∈ (B1 − ∆,+∞)]
]

+ A3E
[

E[ϕ2(B1 + q(u − ∆)(eX1 − 1))|X1 ∈ (−∞, E1)]

+ E[ϕ3(B1 + q(u − ∆)(eX1 − 1))|X1 ∈ (E1,+∞)]
]
.

(19)
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When b ≤ u < +∞,

ϕ3 =e−τdt
{

A1E[ϕ3(B2)] + A2

[
E[ϕ3(B2 − Y1)|Y1 ∈ (0, B2 − b)]

+ E[ϕ2(B2 − Y1)|Y1 ∈ (B2 − b, B2 − ∆)] + E[ϕ1(B2 − Y1)|Y1 ∈ (B2 − ∆,+∞)]
]

+ A3

[
E[ϕ2(B2 + q(u − ∆)(eX1 − 1))|X1 ∈ (−∞, E2)]

+ E[ϕ3(B2 + q(u − ∆)(eX1 − 1))|X1 ∈ (E2,+∞)]
]
,

(20)

where

B1 = u + qσr(u − ∆)dWt + (ř(u − ∆) + c)dt,

B2 = u + qσr(u − ∆)dWt + (ř(u − ∆) + c − θ)dt,

E1 = ln
q(u − ∆) + b − B1

q(u − ∆)
, E2 = ln

q(u − ∆) + b − B2

q(u − ∆)
.

By the Itô formula, we can obtain

E[ϕ2(B1)] = E[ϕ2(u + qσr(u − ∆)dWt + (ř(u − ∆) + c)dt)]

= ϕ2 + [ř(u − ∆) + c]ϕ2
′
dt +

1
2

q2σr
2(u − ∆)2ϕ2

′′
dt,

E[ϕ3(B2)] = E[ϕ3(u + qσr(u − ∆)dWt + (ř(u − ∆) + c − θ)dt)]

= ϕ3 + (ř(u − ∆) + c − θ)ϕ3
′
dt +

1
2

q2σr
2(u − ∆)2ϕ3

′′
dt.

(21)

By substituting (13)–(15) and (21) into (19) and (20), letting dt → 0 , and then sorting
it out, you obtain Equations (10) and (11).

Finally, when u = 0, ruin will happen immediately, so (11) can be obtained; when
u → ∞, ruin will never happen, so (12) can be obtained.

Remark 2. When u > ∆, there is q(u − ∆) + ∆ − u < 0, which shows that ln q(u−∆)+∆−u
q(u−∆)

does not exist and lim
u→∞

ln q(u−∆)+∆−Bi
q(u−∆) = 0, i = 1, 2 does not exist either. So, asset jumps do not

produce items smaller than ∆ in (19) and (20).

Remark 3. According to the similar discussion in reference [15], we assume that ϕ(u), ϕ′(u), and
ϕ′′(u) exist and are continuous.

4. Sinc Asymptotic Analysis
4.1. Approximate Solution of ϕ(u)

In this section, a sinc method to find the approximate solution of Equations (9)–(11)
is provided. Since the sinc method [20] was proposed, it has been widely consideredand
applied by scholars. It is often used in numerical calculus and numerical integration,
especially in interpolation and approximation problems. In conclusion, the sinc method is
a very useful tool and is widely used in numerical computation [21].

We define a one-to-one mapping

ζ(z) = log z.

Then, the sinc grid point is

zk = ζ−1(kh) = ekh, (22)
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where z ∈ R, k is an integer, and h > 0 indicates the step size of grid points. Just as
Definition 1.5.2 in reference [22] defines space, we have

Γ = {z ∈ R; z = ζ−1(u), u ∈ R}. (23)

Merging the IDEs (9)–(11), we obtain

ρ1(u)ϕ′′(u) + ρ2(u)ϕ′(u) + ρ3(u)ϕ(u) + γ
∫ u

0
ϕ(u − y) fY(y)dy

+ ρ4

∫ +∞

−∞
ϕ(u + q(u − ∆)(ex − 1)) fX(x)dx + γ

∫ ∞

u
ω(u, y − u) fY(y)dy = 0,

(24)

where

ρ1(u) =
1
2

q2σr
2(u − ∆)2 Iu>∆, ρ2(u) = ř(u − ∆)Iu>∆ + c − θ Iu>b,

ρ3(u) = −(τ + γ + η), ρ4(u) = η Iu>∆.

Then, transforming Equation (24), we have

ρ1(u)ϕ′′(u) + ρ2(u)ϕ′(u) + ρ3(u)ϕ(u) + γ
∫ u

0
ϕ(y)J1(u − y)dy

+ ρ4(u)
∫ +∞

(1−q)u+q∆
ϕ(z)J2(u, z)dz + γ

∫ ∞

u
ω(u, y − u) fY(y)dy = 0,

(25)

with boundary conditions

ϕ(0) = 1,

lim
u→∞

ϕ(u) = 0,

where

J1(u − y) = fy(u − y),

J2(u, z) =
fX

(
ln z−u+q(u−∆)

q(u−∆)

)
z − u + q(u − ∆)

.

By reference [22] (p. 73), we can let M(u) = ϕ(u)− 1
1+u . So, we have

ρ1(u)M′′(u) + ρ2(u)M′(u) + ρ3(u)M(u) + γ
∫ u

0
M(y)J1(u − y)dy

+ ρ4(u)
∫ ∞

(1−q)u+q∆
M(z)J2(u, z)dz + K(u) = 0,

(26)

with boundary conditions

M(0) = 0,

lim
u→∞

M(u) = 0,

where

K(u) =2(1 + u)−3ρ1(u)− (1 + u)−2ρ2(u) + (1 + u)−1ρ3(u) + γ
∫ u

0

J1(u − y)
1 + y

dy

+ γ
∫ ∞

u
ω(u, y − u) fy(y)dy + ρ4(u)

∫ ∞

(1−q)u+q∆

J2(u, z)
1 + z

dz.
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Then, according to Theorems 1.5.13, 1.5.14, and 1.5.20 of reference [22], we define

M =
[ κ̂N

α̂

]
, h =

( πd
κ̂N

) 1
2
,

where 0 < α̂, κ̂ ≤ 1, 0 < d < π and N is a positive integer. Then, we have

∫ u

0
M(y)J1(u − y)dy ≈

N

∑
j=−M

N

∑
i=−M

ϑi Aij Mj, (27)

∫ ∞

(1−q)u+q∆
J2(u, z)M(z)dz ≈ h

N

∑
j=−M

N

∑
i=−M

ϑiς
(−1)
ji

J2(u, uj)

ϕ′(uj)
Mj, (28)

M(u) ≈ M̂(u) =
N

∑
j=−M

MjS(j, h) ◦ ζ(u), (29)

ϑi = S(i, h) ◦ ζ(u) = sinc
(

ζ(u)− ih
h

)
, i = −M, ..., N, (30)

A = hI(−1)Dm

(
1
ζ
′

)
, (31)

where

I(−1) = [ς
(−1)
kj ], ς

(−1)
kj =

1
2
+
∫ k−j

0

sin(πx)
πx

dx, sinc(x) =


sinc(πx)

πx , x ̸= 0,

1, x = 0,

Mj is an approximate estimate of M(uj) and Aij is the element of matrix A. Let uk = ekh,
then we have

M̂(uk) =
N

∑
j=−M

Mj[S(j, h) ◦ ζ(uk)] =
N

∑
j=−M

Mjς
(0)
jk , (32)

M̂
′
(uk) =

N

∑
j=−M

Mj[S(j, h) ◦ ζ(uk)]
′
=

N

∑
j=−M

Mjζ
′
(uk)h−1ς

(1)
jk , (33)

M̂
′′
(uk) =

N

∑
j=−M

Mj[S(j, h) ◦ ζ(uk)]
′′
=

N

∑
j=−M

Mj[ζ
′′
(uk)h−1ς

(1)
jk + (ζ

′
(uk))

2h−2ς
(2)
jk ], (34)

where

ς
(0)
jk =


0, j ̸= k,

1, else,
ς
(1)
jk =


(−1)(k−j)

k−j , j ̸= k;

0, else,

ς
(2)
jk =


−2(−1)(k−j)

(k−j)2 , j ̸= k,

−π2

3 , else.

Substituting Equations (27)–(29) and Equations (32)–(34) into Equation (26), we obtain

N

∑
j=−M

{
ρ1(uk)ζ

′′(uk)
ς
(1)
jk

h
+ ρ1(uk)(ζ

′(uk))
2

ς
(2)
jk

h2 + ρ2(uk)ζ
′(uk)

ς
(1)
jk

h
+ ρ3(uk)ς

(0)
jk

+ γ
N

∑
i=−M

ϑi(uk)Aij + hρ4(uk)
N

∑
i=−M

ϑi(uk)ς
(−1)
ji

J2(uk, uj)

ζ ′(uj)

}
Mj = −K(uk). (35)
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Let us multiply both sides of Equation (35) by h2

(ζ ′(uk))
2 , then

N

∑
j=−M

{
ρ1(uk)ς

(2)
jk + h

[
ρ1(uk)

ζ ′′(uk)

(ζ ′(uk))
2 +

ρ2(uk)

ζ ′(uk)

]
ς
(1)
jk + h2 ρ3(uk)

(ζ ′(uk))
2 ς

(0)
jk

+ γ
h2

(ζ ′(uk))
2

N

∑
i=−M

ϑi(uk)Aij +
ρ4(uk)h3

(ζ ′(uk))
2ζ ′(uj)

N

∑
i=−M

ϑi(uk)ς
(−1)
ji J2(uk, uj)

}
Mj

= − h2K(uk)

(ζ ′(uk))
2 . (36)

Since

ς
(0)
jk = ς

(0)
kj , ς

(1)
jk = −ς

(1)
kj , ς

(2)
jk = ς

(2)
kj ,

ζ ′′(uk)

(ζ ′(uk))
2 = −

(
1

ζ ′(uk)

)′
,

Equation (36) can be rewritten as

N

∑
j=−M

{
ρ1(uk)ς

(2)
kj + h

[
ρ1(uk)

(
1

ζ ′(uk)

)′
− ρ2(uk)

ζ ′(uk)

]
ς
(1)
kj + h2 ρ3(uk)

(ζ ′(uk))
2 ς

(0)
kj

+ γ
h2

(ζ ′(uk))
2

N

∑
i=−M

ϑi(uk)Aij +
ρ4(uk)h3

(ζ ′(uk))
2ζ ′(uj)

N

∑
i=−M

ϑi(uk)ς
(−1)
ji J2(uk, uj)

}
Mj

= − h2K(uk)

(ζ ′(uk))
2 , k = −M, . . . , N. (37)

Next, we let I(m) = [ς
(m)
kj ], m = −1, 0, 1, 2,

M = [Mj]
T , j = −M, . . . , N,

K =

[
−h2 K(u−M)

(ζ ′(u−M))2 , . . . ,−h2 K(uN)

(ζ ′(uN))2

]
,

C = ρ1 I(2) + hDm

(
ρ1

(
1
ζ ′

)′
− ρ2

ζ ′

)
I(1) + h2Dm

(
ρ3

(ζ ′)2

)
I(0) + h2γDm

(
1

(ζ ′)2

)
ϑM A

+ h3Dm

(
ρ4

(ζ ′)2

)
ϑM[I(−1)]T J2,

where J2 = [
J2(uk ,uj)

ζ ′(uk)
], ϑM = (ϑ−M, ..., ϑN), Dm(.) represents a diagonal matrix, I(m) is a

square matrix of order M + N + 1, and ς
(m)
kj is the element of I(m). Then, we can rewrite

Equation (37) as

CM = K. (38)

By solving Equation (38), we can obtain M̂(u), then obtain

ϕ(u) ≈ ϕ̃(u) =
N

∑
j=−M

MjS(j, h) ◦ ζ(u) +
1

1 + u
. (39)
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4.2. Error Analysis

In this section, we will look for an upper bound on the error resulting from the sinc
method approximation. When ∆ ≤ u < b, we divide both sides of Equation (10) by
q2σr

2(u−∆)2

2 , and we obtain

ϕ′′(x) + ρ̃1(x)ϕ′(x) + ρ̃2(x)ϕ(x) + G̃(x) = 0, (40)

where ρ̃1(x) = 2[r̆(u−∆)+c]
q2σr2(u−∆)2 , ρ̃2(x) = − 2(τ+γ+η)

q2σr2(u−∆)2 ,

G̃(x) =
2γ

q2σr2(u − ∆)2

[ ∫ u

0
ϕ(u − y)dFY(y) +

∫ ∞

u
ω(u, y − u)dFY(y)

]
+

2η

q2σr2(u − ∆)2

∫ +∞

−∞
ϕ(u + q(u − ∆)(ex − 1))dFX(x).

Then, Equation (40) satisfies the form of Equation (4.12) in reference [20], and according
to the method in Section 4.2 of reference [20], we can obtain the following theorem.

Theorem 2. If ϕ(u) is an exact solution to Equation (10) and ϕ̃(u) is the approximate solution
expressed by Equation (39), then there exists a constant c̃ independent of N, such that

sup
u∈Γ

|ϕ(u)− ϕ̃(u)| ≤ c̃N5/2e−
√

(πdα̂N). (41)

Proof. Let

ϑN(u) =
N

∑
j=−M

ϕ(uj)S(j, h) ◦ ζ(u), (42)

using the triangle inequality, it is easy to obtain

|ϕ(u)− ϕ̃(u)| ≤ |ϕ(u)− ϑN(u)|+ |ϑN(u)− ϕ̃(u)|. (43)

Based on Theorem 4.2.5 of [23], there exists a constant c1, which is independent of N.
We have

sup
u∈Γ

|ϕ(u)− ϑN(u)| ≤ c1N1/2e−
√

(πdα̂N). (44)

In inequality (43), |ϑN(u)− ϕ̃(u)| satisfies the following relation

|ϑN(u)− ϕ̃(u)| =
∣∣∣∣∣ N

∑
j=−M

[ϕ(uj)− Mj]S(j, h) ◦ ζ(u)− 1
1 + u

∣∣∣∣∣
≤

N

∑
j=−M

|ϕ(uj)− Mj||S(j, h) ◦ ζ(u)|

≤

√√√√( N

∑
j=−M

|ϕ(uj)− Mj|2
)(

N

∑
j=−M

|S(j, h) ◦ ζ(u)|2
)

≤

√√√√( N

∑
j=−M

|ϕ(uj)− Mj|2
)

= ∥H − M∥. (45)
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where H = [ϕ(uj)]
T , j = −M, . . . , N. Similar to Theorem 7.2.6 of [23], if u ∈ Γ, then

∑j∈Z |S(j, h) ◦ ζ(u)|2 = 1. We have

∥H − M∥ = ∥C−1C(H − M)∥
= ∥C−1[CH − K]∥

≤
∥∥∥C−1

∥∥∥∥CH − K∥

≤ c2N5/2e−
√

(πdα̂N), (46)

where c2 is independent of N. Let c̃ = max{c1, c2}; then, the inequality (41) is finally
obtained by combining Formulas (42)–(46).

In the same way, we can obtain an upper bound on the error when 0 ≤ u ≤ ∆ and
b < u < ∞.

5. Numerical Analysis
5.1. Error Analysis of a Special Case

In this subsection, we assume that the claim follows an exponential distribution, and
its p.d.f. is fY(y) = µe−µy, 0 < y < ∞. In addition, we also assume that q = 0 and r1 = 0.
Therefore, we can obtain the real solution of the equation under certain conditions. By
comparing it with the approximate solution obtained by the sinc method and calculating
the relative error between them, the accuracy of the sinc method can be verified.

Firstly, let us rearrange Equations (9)–(11). For b ≤ u < +∞, we have

(c − θ)ϕ
′
3(u)− (τ + γ)ϕ3(u) + γ

[∫ u

b
ϕ3(y) fY(u − y)dy +

∫ b

∆
ϕ2(y) fY(u − y)dy

]
+ γ

[∫ ∆

0
ϕ1(y) fY(u − y)dy +

∫ ∞

0
ω(u, y) fY(u + y)dy

]
= 0. (47)

Next, using operation d2

du2 − µ2, we can obtain

(c − θ)ϕ
′′′
3 (u)− (τ + γ)ϕ

′′
3 (u) + (γµ − cµ2 − θµ2)ϕ

′
3(u) + τµ2ϕ3(u) = 0.

So, the characteristic equation of the above equation is

(c − θ)s3 − (τ + γ)s2 + (γµ − cµ2 − θµ2)s + τµ2 = 0.

According to the properties of the characteristic equation, we can obtain three roots s1, s2,
and s3, which has s1 < 0 < s2 < s3.

Similarly, we can obtain that the characteristic equations in the other two cases are
consistent, both of which are

ct3 − (τ + γ)t2 − µ(cµ − θ)t + τµ2 = 0,

which has three roots t1, t2, and t3 (t1 < 0 < t2 < t3). So, we can obtain

ϕ(u) =


W1et1u + W2et2u + W3et3u, 0 ≤ u < b;

R1es1u + R2es2u + R3es3u, b ≤ u < +∞,
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where R1, R2, R3, W1, W2, and W3 are the coefficient of uncertainty. According to boundary
conditions (12), we obtain R1 = R2 = 0. In addition, according to the analysis method in
reference a, we can obtain

W1 + W2 + W3 = 1,

W1et1b + W2et2b + W3et3b = R1es1b,

W1t1et1b + W2t2et2b + W3t3et3b = R1s1es1b,

(ct1 − τ − γ)W1et1b + (ct2 − τ − γ)W2et2b + (ct3 − τ − γ)W3et3b = čR1es1b, (48)

where č = (c − θ − τ − γ).
Finally, we set c = 0.6, µ = 2, γ = 1, τ = 0.06, θ = 0.1, and b = 10, and by solving for

(48), we can obtain an exact expression for ϕ(u), and thus an exact solution. By comparing
with the approximate solution, the relative error can be obtained, and the results are listed
in the following table.

From Table 2, we can see that the relative error between the exact solution and the
approximate solution is small, so the superiority of the sinc method can be explained.

Table 2. The relative error of ϕ(u).

u 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40

ES 0.4199 0.4109 0.4021 0.3935 0.3850 0.3767 0.3686 0.3607 0.3530
SA 0.4055 0.3999 0.3945 0.3891 0.3838 0.3785 0.3734 0.3684 0.3634

RE(%) −3.44 −2.67 −1.90 −1.12 −0.32 0.48 1.29 2.12 2.96

5.2. Examples

In this subsection, two examples will be used to discuss the influence of different
parameters on ψ(u) when the claim follows different distributions. In the following, we
assume that under a symmetric jump risk market, X obeys

fX(x) = p1λ1e−λ1x Ix≥0 + q1λ2eλ2x Ix<0, (49)

where p1 + q1 = 1, 0 < p1, q1 < 1, λ1 ≥ 1, λ2 > 0. The details are given in the following
discussion.

5.2.1. The Exponential Distribution Case

In this part, we assume that the claim follows

fY(y) = µe−µy, 0 < y < ∞

In the following example, we set the parameter as γ = 1, θ = 0.1, δ = 0, b = 1,
r1 = 0.06, r2 = 0.5, c = 0.4, µ = 5, N = 10, α̂ = π

4 , κ̂ = 1
8 , d = π

12 .

Example 1. Firstly, we study the influence of q and p1 on ψ(u), respectively, taking two extreme
cases. As shown in Figure 1, the larger the q, the greater the fluctuation of the ψ(u) curve. When
u ∈ (0, 1] and q is large, ψ(u) is larger. When u ∈ (1, 10] and q is large, ψ(u) will be relatively
small. In real life, if we want to make more risky investments and minimize the ruin probability, we
need to ensure that the initial surplus is large enough. Comparing the two pictures, we can find that
p1 has little effect on ψ(u).
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Figure 1. ψ(u) for parameters σr = 0.2, η = 5, and ∆ = 0.01.

Example 2. Secondly, we discuss the influence of σr on ψ(u), and still take two extreme cases for
comparison, as shown in Figure 2. We can find that, on the whole, when u ∈ (0, 10], ψ(u) shows
a decreasing trend with the increase of initial surplus. In addition, when u ∈ (0, 1], σr has little
influence on ψ(u), but when u ∈ (1, 10], σr has a greater influence on ψ(u). Therefore, in the
actual situation, if we want to reduce the ruin probability by changing σr, we also need to consider
the value of the initial surplus.
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u
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0.1
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0.6

0.7

0.8

0.9

1

ψ
(u

)

σ
r
=0.2

σ
r
=0.8

Figure 2. ψ(u) for parameters q = 0.9, p1 = 0.8, η = 5, and ∆ = 0.01.

Example 3. Next, we discuss the effect of η on ψ(u), as shown in Figure 3. On the whole, when
u ∈ (0, 10], ψ(u) shows a decreasing trend with the increase of initial surplus. By comparing
the three curves, it is found that the smaller the η, the greater the fluctuation of the curve. When
u ∈ (0, 0.5], the smaller η is, the greater ψ(u) is. When u ∈ (0.5, 2], the smaller η is, the smaller
ψ(u) is. When u ∈ (2, 5], the smaller η is, the greater ψ(u) is. When u ∈ (5, 10], the smaller η is,
the smaller ψ(u) is. This experiment shows that the effect of η on ψ(u) is not simply “the greater η,
the smaller ψ(u)".
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Figure 3. ψ(u) for parameters q = 0.9, p1 = 0.8, σr = 0.2, and ∆ = 0.01.

Example 4. Finally, we discuss the effect of ∆ on ψ(u), as shown in Figure 4. On the whole, when
u ∈ (0, 10], ψ(u) shows a decreasing trend with the increase of initial surplus. By comparing the
three curves, it is found that the larger the ∆, the smoother the trend of the ψ(u) curve, and when the
∆ is large enough, the ∆ has almost no influence on ψ(u). When u is in different interval segments,
the effect of ∆ on ψ(u) is not invariable.
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∆=0.10

∆=0.30

Figure 4. ψ(u) for parameters q = 0.9, p1 = 0.8, η = 5, and σr = 0.2.

5.2.2. The Lognormal Distribution Case

In this part, we assume that the claim follows

fY(y) =


1

2πυy e− (ln y−χ)2

4υ2 , 0 < y < +∞;

0, −∞ < y ≤ 0,



Symmetry 2024, 16, 612 15 of 18

where the mean and variance are χ and 2υ2, respectively.
In the following example, the basic parameter settings are consistent with the expo-

nential distribution example. In addition, we assume χ = 0.1, υ = 0.1.

Example 5. Firstly, we study the influence of q and p1 on ψ(u), again taking two extreme cases,
as shown in Figure 5. Comparing the two pictures, we can find that when p1 is a small value and
u ∈ (0, 3], q has a greater impact on ψ(u); when u ∈ (3, 10], q has little effect on ψ(u). However,
when p1 is taken to a large value, q has a large effect on ψ(u), and these effects become small only
when u is sufficiently large.
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Figure 5. ψ(u) for parameters b = 1, σr = 0.2, η = 5, and ∆ = 0.01.

Example 6. Secondly, we discuss the effect of σr on ψ(u), as shown in Figure 6. On the whole,
ψ(u) decreases with the increase of initial surplus; when u ∈ (0, 1], σr has little influence on ψ(u),
but when u ∈ (1, 10], σr has a great influence on ψ(u). In addition, according to the trend of the
curve, we can see that when u is large enough, the effect of the parameter σr on ψ(u) becomes small.
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Figure 6. ψ(u) for parameters q = 0.9, p1 = 0.8, η = 5, and ∆ = 0.01.

Example 7. Next, we discuss the effect of η on ψ(u), as shown in Figure 7. On the whole, with the
increase of initial surplus, ψ(u) shows a decreasing trend. By comparing the three curves, it is also
found that the smaller the η, the greater the fluctuation of the curve. In addition, η has little effect
on ψ(u) when u is large enough.
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Figure 7. ψ(u) for parameters q = 0.9, p1 = 0.8, σr = 0.2, and ∆ = 0.01.

Example 8. Finally, we discuss the effect of ∆ on ψ(u), as shown in Figure 8. We can intuitively
see that the parameter ∆ has a greater impact on ψ(u), and it is shown that the larger the ∆, the
greater the curve fluctuation of ψ(u). However, we can still see that when u is large enough, the
effect of ∆ on ψ(u) will become smaller.
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Figure 8. ψ(u) for parameters q = 0.9, p1 = 0.8, η = 5, and σr = 0.2.

6. Conclusions

In this paper, a new model that is more practical is proposed, and the approximate
solution of the expected discounted penalty function is obtained by the sinc numerical
approximation method. Then, we calculate the real solution of ψ(u) under certain condi-
tions and compare the error with the approximate solution obtained by the sinc method to
show the feasibility and superiority of the sinc method. Finally, the numerical analysis is
carried out under the assumption that the claims obey different distributions. The analysis
shows that the parameters have significant effects on the ruin probability, and presents
that the influence is not a simple linear relationship. As for the investment ratio, when
the initial surplus is in different ranges, the impact of the investment ratio on the ruin
probability is also different. However, on the whole, with the increase of initial surplus,
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the ruin probability shows a decreasing trend, which is consistent with the law of the
actual situation.

This study provides a new model that is more practical and provides a theoretical
basis for actuaries to carry out risk management. When insurance companies are faced with
trade-offs between investment assets and liquid reserves, this study can be used to analyze
the potential impact of different investment strategies to ensure they have enough liquid
assets to pay claims while maintaining earnings. In addition, actuaries can use the model to
predict the ruin probability of insurance companies under different claims and investment
scenarios. This can help companies develop capital reserves and premium strategies to
reduce the risk of ruin. In conclusion, this study is useful for dealing with complex risk
scenarios involving claims, uncertainty, and investments, and can help actuaries develop
more robust risk management strategies and ensure the long-term stability and profitability
of insurance companies.

There are still two aspects of this study that need to be further improved. On the one
hand, we need to find an approximate method with a better approximation effect to solve
it. On the other hand, we hope to cooperate with insurance companies in the future and
use real data for analysis in the future.
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