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Abstract: Background: There is a growing interest in bone tissue MRI and an even greater interest in
using low-cost MR scanners. However, the characteristics of bone MRI remain to be fully defined,
especially at low field strength. This study aimed to characterize the signal-to-noise ratio (SNR), T2,
and T2* in spongy bone at 0.3 T, 1.5 T, and 3.0 T. Furthermore, relaxation times were characterized as
a function of bone-marrow lipid/water ratio content and trabecular bone density. Methods: Thirty-
two women in total underwent an MR-imaging investigation of the calcaneus at 0.3 T, 1.5 T, and
3.0 T. MR-spectroscopy was performed at 3.0 T to assess the fat/water ratio. SNR, T2, and T2* were
quantified in distinct calcaneal regions (ST, TC, and CC). ANOVA and Pearson correlation statistics
were used. Results: SNR increase depends on the magnetic field strength, acquisition sequence, and
calcaneal location. T2* was different at 3.0 T and 1.5 T in ST, TC, and CC. Relaxation times decrease
as much as the magnetic field strength increases. The significant linear correlation between relaxation
times and fat/water found in healthy young is lost in osteoporotic subjects. Conclusion: The results
have implications for the possible use of relaxation vs. lipid/water marrow content for bone quality
assessment and the development of quantitative MRI diagnostics at low field strength.

Keywords: MRI; low magnetic field; high magnetic field; spongy bone; bone marrow fat

1. Introduction

Magnetic resonance imaging (MRI) is one of the most promising tools to assess in vivo
pathological abnormalities of bone tissues [1,2]. Due to its high sensitivity to water pro-
tons, musculoskeletal MRI has found its main applications in investigating soft tissues
such as cartilage [3], muscles [4], and tendons [5] to detect injuries, such as fractures or
tears to tendons [6], ligaments, or cartilages [7–9], and in diagnosing soft tumors [10,11].
MR imaging techniques for studying the musculoskeletal system have undergone strong
development over the past 20 years [12], and rapid progress has been made recently related
to the structure [13–16] and quality of spongy bone [17–23] that is potentially applicable
to the clinical evaluation of osteoporosis [24–26]. Osteoporosis is characterized by loss
of bone mineral in the human skeleton due to metabolic changes primarily affecting the
micro-architectural structure of spongy bone. As recommended by the WHO [27], the
clinical diagnosis of osteoporosis is currently based on the quantification of bone mineral
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density (BMD) of those skeletal sites with high trabecular content, such as the spine, proxi-
mal femur, and calcaneus [28]. Dual-energy X-ray absorptiometry (DXA) and computed
tomography (CT) are the diagnostic tools currently employed in clinical routines for BMD
assessment. However, these techniques have some relevant limitations, including the use
of ionizing radiation and a low predictive value on patients’ risk of reporting bone fracture
(65%). This lack of sensitivity is likely due to the partial information that DXA and CT
provide on spongy bone characteristics, assessing exclusively its mineral component. Other
components, such as bone marrow, collagen, and proteins, are present in the context of
bone tissue and may contribute to determining its resistance to fracture [29,30]. Moreover,
osteoporosis is a silent and largely undiagnosed disease [31,32]. People often turn to an os-
teoporosis diagnostic center when they suffer a fracture. Diagnostic tools that can increase
the population undergoing diagnosis would therefore be needed. Ideally, the diagnosis
should be radiation-free and low-cost to be accessible to all. Currently, magnetic resonance
imaging (MRI) and magnetic resonance spectroscopy (MRS) are proposed as potential
radiation-free methods for the diagnosis of osteoporosis. However, the two main MR ap-
proaches developed for the evaluation of osteoporosis: (1) MR interferometry [13,15,16,31]
and high-resolution MRI [14], and (2) the evaluation of the bone marrow quality with
MRS [17–19,22,25,26,32], require high-field MR scanners, which have the disadvantage of
costing around EUR 1 million per tesla and consequently entail a high cost for the user
who needs a diagnosis.

The former approach is based on T2*-weighted gradient-echo (GE) imaging of the
spongy bone marrow, which exploits the magnetic field inhomogeneities generated by the
magnetic susceptibility difference between bone trabecula and biological water [33] and/or
on high-resolution MR Imaging, which allows a quantitative and direct morphometric
analysis of the three-dimensional structure of cancellous bone. High-resolution MRI is
very demanding in terms of field gradient strength and system performance and is hardly
applicable in clinical routines. The latter approach requires the acquisition of MR spectra
from which extract the fatty acid quantification or the fat/water ratio in the bone marrow.
Currently, scanners equipped with magnetic field strengths of 1.5 T and 3.0 T are available
for clinical and translational research use.

In recent years, low-cost MR scanners have been developed. They are characterized by
low magnetic field strength (less than 0.5 T) and usually are dedicated to specific body parts,
such as the extremities. As an example, a single-sided MR with a magnetic field of about 0.3 T
has been used to detect skin anomalies [34,35], investigate breast tissue [36], extract tendons
and cartilage information indirectly [37,38], or extract geometrical information about trabecular
bone microstructures potentially useful for the diagnosis of osteoporosis [39,40]. A compact
MRI system for measuring the trabecular bone volume fraction (TBVF) of the calcaneus was
developed using a 0.21 T permanent magnet and portable MRI console [41].

Nowadays, it is possible to find detailed information on different MRI parameters
related to different cerebral zones and measured as a function of the magnetic field
strength [42]. Conversely, few available data for the musculoskeletal system and, in
particular, for spongy bone are furnished. The purpose of this study is to characterize the
signal-to-noise ratio (SNR), T2*, and T2 in calcaneus spongy bone at 0.3 T, 1.5 T, and 3.0 T for
future investigations related to the diagnosis of osteoporosis and related musculoskeletal
dysfunction. Toward this goal, we have investigated the calcaneus because it is the site of
the skeleton rich in spongy bone that does not cause claustrophobia problems for patients
who underwent an MRI. Moreover, we have evaluated the lipid/water ratio content in the
bone marrow at 3.0 T to study the behavior of T2 and T2* as a function of the water and fat
content in young, healthy, and osteoporotic postmenopausal women.

2. Materials and Methods
2.1. Subject Recruitment

A cohort of thirteen healthy women (H1, mean age, 24 ± 3 years), a cohort of six
healthy women (H2, mean age, 27 ± 3 years), and a cohort of thirteen osteoporotic women
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(OPO, mean age, 62 ± 5 y, mean T-score = −3.1 ± 0.4) of the Caucasian race participated
in this study. All subjects were carefully investigated to exclude the presence of any bone
disease (apart from osteoporosis for the osteoporotic group), systemic metabolic disorders,
and malignancies. Subjects assuming any medication affecting bone mineral homeostasis
(e.g., steroids) were also excluded.

This study was approved by the local Ethics Committee (Fondazione Santa Lucia,
Rome, Italy, Prot. CE/2023_024), and written informed consent was obtained in all cases
before study initiation.

2.2. MR Measurements

MRI was performed using three different commercial MR scanners: O-Scan (Esaote,
Genova, Italy), Vision, Siemens, and Allegra, Siemens, (Siemens, Erlangen, Germany),
operating at 0.31 T, 1.5 T, and 3.0 T, respectively. The cohort H1 of thirteen healthy women
was investigated at both 1.5 T and 3.0 T, the cohort OPO of osteoporotic women was
investigated at 3.0 T, and the cohort H2 of six healthy women was investigated at 0.3 T.

2.2.1. MR Acquisition at 1.5 T and 3.0 T

Peak gradient amplitudes were 24 mT/m and 40 mT/m for 1.5 and 3.0 T, respectively,
while slew rates were 180 mT/m/ms for 1.5 T and 400 mT/m/ms for 3.0 T systems. A circular
polarized volume head-coil for radiofrequency (RF) transmission and reception was used in
both cases. Subjects were placed in a supine position on the imaging table with the right foot
inside the head RF coil. Thus, sagittal view images obtained on the same slices (5 mm thickness)
and by using the same foot position were acquired for every volunteer. Specifically, sagittal
images were obtained parallel to the long axis of the calcaneus. FLASH (fast low-angle shot)
and MCSE (multi-contrast spin-echo) images at various TEs were collected to evaluate T2* and
T2, respectively.

The imaging parameters used for MCSE images at both 1.5 T and 3.0 T were as follows:
echo time (TE) = 20, 45, 80, 120 ms; bandwidth (BW) = 130 Hz/pixel; square field of view
(FOV) = 192 mm; matrix = 256 × 256 pixels; and resolution = 0.75 × 0.75 × 5 mm3. For
FLASH images, the following parameters at both 1.5 T and 3.0 T were used: TE = 5, 7,
10, 20 ms; BW = 260 Hz/pixel; square FOV = 192 mm; matrix = 128 × 128 pixels; and
resolution = 1.5 × 1.5 × 5 mm3. Finally, TR = 3000 ms, number of signals (NSs) = 1, and
slice thickness (STK) equal to 5 mm were used in all experiments.

Table 1 summarizes the MR acquisition protocol at 1.5 T and 3.0 T used for any
studied subject.

Table 1. MR acquisition sequences and parameters used to acquire data at 1.5 T and 3.0 T.

T2* Measurements T2 Measurements

Acquisition sequence FLASH MCSE
TR (ms) 3000 3000
TE (ms) 5 20

7 45
10 80
20 120

Flip angle 30◦ 90◦, 180◦

FOV (mm2) 192 × 192 192 × 192
Bandwidth (Hz/pixel) 260 130

Matrix (pixels) 128 × 128 256 × 256
Slice thickness (mm) 5 5

Number of slices 10 10
Slice gap 0 0

Number of signals acquired 1 1
Acquisition time 10 min 20 min

TR, repetition time; TE, echo time; FOV, field of view; FLASH, fast low-angle shot; MCSE, multi-contrast spin echo.
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We also performed a FLASH T2*–T1-weighted image at 3.0 T using square FOV = 180 mm,
matrix = 512 × 512, TE = 10 ms, TR = 600 ms, and BW = 160 Hz/pixel as a reference to
discriminate the calcaneus zones ST, TC, CC characterized by different trabecular bone
density. In Figure 1, an example of this acquisition is reported with the selected subtalar
(ST), tuber calcanei (TC), and cavum calcanei (CC).
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Figure 1. (a) T2*–T1-weighted image obtained at 3.0 T. (b) Selection of ROIs that correspond to the
three calcaneus areas of interest: ST, subtalar region, TC, tuber calcanei region, CC, cavum calcanei
region. Image resolution was 0.35 × 0.35 × 5 mm3.

ROIs. In all the MRI sequences, no chemical pre-saturation pulses were used for either
fat or water protons.

2.2.2. MR Acquisition at 0.3 T

A permanent magnet (constituted by multiple magnets) of 0.31 T, peak gradient
amplitudes of 20 mT/m, and slew rates of 100 mT/m/ms was used with a dual-phase
array knee coil for radiofrequency (RF) transmission and reception. Subjects placed their
right foot inside the RF coil. Thus, sagittal view images of 7 mm thickness were acquired
for every volunteer. Specifically, GE (gradient-echo) at TE = 10, 14, and 16 ms and FSE
(fast spin-echo) images at various TEs from 25 to 200 ms were collected to evaluate T2*
and T2, respectively. The in-plane resolution was =0.55 × 0.55 mm2 for both T2 and T2*
weighted images. Table 2 summarizes the MR acquisition protocol at 0.3 T used for any
studied subject.

Table 2. MR acquisition sequences and parameters used to acquire data at 0.3 T.

T2* Measurement T2 Measurement

Acquisition sequence GE FSE
TR (ms) 2500 2500
TE (ms) 10 25

14 50
16 75

100
125
150
175
200
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Table 2. Cont.

T2* Measurement T2 Measurement

ETL 1 10
Flip angle 30◦ 90◦, 180◦

FOV (mm2) 140 × 140 140 × 140
Matrix (pixels) 256 × 256 256 × 256

Slice thickness (mm) 7 7
Number of slices 10 10

Slice gap 0 0
Number of signals acquired 1 1

Acquisition time 4 min 10 min
TR, repetition time; TE, echo time; ETL, echo-train length; FOV, field of view; GE, gradient echo; FSE, fast
spin echo.

2.3. SNR, T2, and T2* Measurements

As reported in the Introduction, T2* and T2 measurements of spongy bone are indi-
cated in the literature as promising parameters to develop an NMR approach to diagnose
osteoporosis. To test the potentiality of this method in detecting variation in trabecular
bone density, as occurs in osteoporosis, we focused our attention on three different cal-
caneal sites characterized by different trabecular bone density: the subtalar (ST), the tuber
calcanei (TC) and the cavum calcanei (CC) as represented in Figure 1. The ST region is
characterized by the highest trabecular density. Trabecular density progressively decreases
when moving from TC to CC regions. The CC region is characterized by the lowest and
isotropic trabecular density [43]. To evaluate SNR, the most common TE values used in
radiological imaging of spongy bone were chosen for FLASH and MCSE images. At 1.5 T
and 3.0 T, the SNR was measured from FLASH and MCSE images at TE = 5 ms and 45 ms,
respectively, as the ratio of the mean signal, measured in each of the three regions of interest
(ROI), and the mean value of the background noise (measured in a region of no signal). For
consistency, ROIs were placed at an identical position on each image by the same operator
(shown in Figure 1b), selecting the slice of the center of the calcaneus.

The SNR at 0.3 T was calculated in the whole calcaneal area and then compared with
that acquired at 1.5 T, selecting GE and FSE images (at 0.3 T) and FLASH and MCSE images
(at 1.5 T) using TE = 10 ms and TE = 50 ms for gradient-echo and spin-echo images. We
had to use TEs different from those selected for the comparison between 1.5 T and 3.0 T
due to less flexibility of the low-field scanner, which, for example, only allows TE = 10, 14,
and 16 ms to be selected for the GE acquisition sequence.

T2* and T2 from gradient-echo and spin-echo images, respectively, were obtained by
performing a mono-exponential fit of the mean intensities of every selected calcaneal ROI
and at the whole calcaneal area at the different TEs.

The equation (Equation (1))

S(TE) = S(0)exp
(
−TE

T2

)
+ c (1)

was fitted to signal decay data. The term S(0) is the signal at TE = 0, which represents the
equilibrium magnetization M0, and the T2 term represents T2* and T2 for gradient-echo
and spin-echo experiments, respectively. The term c is a constant that takes into account
the noise level.

2.4. Single-Voxel Spectroscopy at 3.0 T

As the recent literature suggests changes in bone marrow fat content with the develop-
ment of osteoporosis, we evaluated the dependence of T2 and T2* parameters on fat/water
ratio. Towards this goal, single-voxel spectroscopy (SVS) was performed at 3.0 T with
point-resolved spectroscopy (PRESS) sequence and with TE = 22 ms, TR = 5 s, and NS = 32
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to obtain bone marrow proton spectra. The voxel size of 15 × 15 × 15 mm3 was positioned
in the center of the calcaneus.

2.5. Data Analysis
2.5.1. SNR, T2, and T2* Evaluation

A modified Levenberg–Marquardt nonlinear regression fit-type function (using MATH-
LAB software) was used to obtain relaxation time values from all cohorts of subjects.
SNR and relaxation times were averaged across all subjects, and their standard errors
were calculated using the propagation of errors. p-values were calculated using a paired
Student’s t-test.

The mean percentage of SNR gain at 3 T compared to 1.5 T was calculated for each
ROI using the following equation (Equation (2)):

SNRg(%) =
(SNR)3T − (SNR)1.5T

(SNR)1.5T
∗ 100 (2)

where (SNR)3.0T is the mean value of SNR at 3.0 T magnetic field, and (SNR)1.5T is the
mean value of SNR at 1.5 T. A two-way ANOVA was used to investigate the effect of the
magnetic field strength on the T2* and T2 values of the three considered calcaneal regions.

Using Equation (2), the mean percentage of SNR gain at 1.5 T compared to 0.3 T was
calculated considering the whole calcaneus. Moreover, as the slice thickness of images is
7 mm and 5 mm for investigations at 0.3 T and 1.5 T, respectively, the SNR at 0.3 T was
multiplied for 5/7.

2.5.2. Bone Marrow Lipid to Water Concentration Ratio

As mentioned above, 1H-MR spectroscopy was used to evaluate the dependence
of the relaxation times as a function of the fat-to-water concentration ratio. Row data
of spectra acquired from each subject at 3.0 T were analyzed using LCModel (SPTYPE
6) [44]. Methylene (CH2) and methyl (CH3) peak areas (at 1.3 ppm, 1.6 ppm, and 0.9 ppm)
and water (H2O) (at 4.7 ppm) peak areas were calculated for each spectrum. Then, the
CH2+CH3/H2O ratios were derived (provided by LCModel as L16 + L13 + L09 resonance
normalized to water) and correlated with T2 and T2* values using Pearson’s correlation
coefficient.

Other than the bone marrow lipid/water quantity is also used the bone-marrow fat
content percentage C, which is equal to

C(%) =
lipid

lipid + water
× 100 (3)

3. Results

Examples of gradient-echo (T2*-weighted) acquisitions obtained at 0.3 T, 1.5 T, and 3.0
T are reported in Figure 2.

3.1. SNR and Relaxation Times
3.1.1. Results at 1.5 T and 3.0 T

The results reported in Table 3 show that the mean SNR gain (SNRg) at 3.0 T compared
to 1.5 T is different for the three calcaneal regions in both FLASH and MCSE images. The
lowest was found in the subtalar region, the highest in the cavum calcanei, while there
was an intermediate value in the tuber calcanei. The SNRg change was more prominent
in MCSE than in FLASH images. Preliminary assessments of SNR gain were performed
on a homogeneous phantom, reporting values of about 100% in both MCSE and FLASH
images. The results can be better understood by comparing the values reported in Table 3
with the transverse relaxation times results reported in Tables 4 and 5. T2* values were
also different among the considered calcaneal regions, with the highest values in the
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cavum calcanei and the lowest in the subtalar region. Intermediate values were found
in the tuber calcanei. Furthermore, T2* and T2 at 3.0 T were significantly lower than the
corresponding values measured at 1.5 T (Tables 5 and 6). However, the percentage decrease
was significantly higher for T2* than for T2. These results are statistically significant, as
indicated by the calculated p-values. A two-way ANOVA analysis shows that the mean
T2 values are significantly different at the two field strengths (p = 0.0062), but there is no
difference in T2 between the three trabecular regions (p = 0.69) and no interaction effect
(p = 0.914) (Table 5). Conversely, the mean T2* values differed significantly between fields
(p = 0.0001) and between trabecular bone regions (p < 0.0001); however, there was no
interaction effect (p = 0.998), indicating that the T2* values decreased similarly in all regions
when the magnetic field strength increased.
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Figure 2. T2*-weighted images obtained at 0.3 T, 1.5 T, and 3.0 T in young women. Specifically, images
(a–c) were obtained using a low-cost 0.3 T scanner dedicated to the extremities using TE = 10 ms,
14 ms, and 16 ms, respectively. Images (d–f) and (g–i) are obtained at 1.5 T whole-body scanner
and 3.0 T head dedicated scanner using TE = 5, 10, and 20 ms. Images obtained at 1.5 T and 3.0 T
are of the same volunteer. Image resolution is 0.55 × 0.55 × 7 mm3 for those obtained at 0.3 T and
1.5 × 1.5 × 5 mm3 for those obtained at 1.5 T and 3.0 T. The different image contrasts are due to the
magnetic susceptibility differences between tissues that increase in parallel to the magnetic field
strength increase.
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Table 3. Mean SNR percentage gains, SNRg(%), with their standard errors obtained at 3.0 T compared
to 1.5 T in the three calcaneal sites in FLASH and MCSE images.

Acquisition Sequence ST TC CC

FLASH (TE = 5 ms) 29 ± 5 38 ± 5 44 ± 5
MCSE (TE = 45 ms) 88 ± 6 92 ± 6 95 ± 7

ST, subtalar region; TC, tuber calcanei region; CC, cavum calcanei region; FLASH, fast low-angle shot; MCSE,
multi-contrast spin echo.

Table 4. Mean T2* (ms) with their standard errors obtained at 1.5 T and 3.0 T in the three calcaneal
sites (ST, TC, and CC) and percent decreases relative to 1.5 T.

ST TC CC P (Two-Way ANOVA)

1.5 T 7.9 ± 0.4 11.2 ± 0.9 14.3 ± 1.6 0.0001
3.0 T 6.0 ± 0.3 9.1 ± 1.8 12.3 ± 1.8

Decrease (%) 25 18 14
p 0.0001 0.0001 0.0005

P (two-way ANOVA) <0.0001

ST, subtalar region; TC, tuber calcanei region; CC, cavum calcanei region.

Table 5. Mean T2 (ms) with their standard errors obtained at 1.5 T and 3.0 T in the three calcaneal
sites (ST, TC, and CC) and percent decreases relative to 1.5 T.

ST TC CC P (Two-Way ANOVA)

1.5 T 48.3 ± 1.0 48.3 ± 0.9 48.8 ± 1.2 0.0062
3.0 T 47.0 ± 1.7 47.4 ± 1.8 47.4 ± 1.8

Decrease (%) 2.7 1.9 2.6
p 0.0001 0.0001 0.0005

P (two-way ANOVA) 0.69

ST, subtalar region; TC, tuber calcanei region; CC, cavum calcanei region.

Table 6. Mean SNR percentage gains, SNRg(%), with their standard errors obtained at 1.5 T compared
to 0.3 T in the whole calcaneus for gradient-echo and spin-echo images.

Acquisition Sequence SNRg(%)

FLASH/GE (TE = 10 ms) 200 ± 14
MCSE/FSE (TE = 50 ms) 260 ± 20

FLASH, fast low-angle shot; GE, gradient echo; MCSE, multi-contrast spin echo; FSE, fast spin echo.

3.1.2. Results at 0.3 T and 1.5 T

Results reported in Table 6 show the mean SNR gain (SNRg) at 1.5 T compared to
0.3 T is different obtained in both gradient-echo (i.e., FLASH and GE) and spin-echo (i.e.,
MCSE and FSE) images and considering the whole calcaneus. Moreover, T2* and T2 values
obtained at 0.3 T and 1.5 T in the whole calcaneus are displayed in Table 7.

Table 7. Mean T2* (ms) values with their standard errors obtained at 1.5 T compared to 0.3 T in the
whole calcaneus.

T2* T2

0.3 T 70 ± 9 83 ± 6
1.5 T 13 ± 2 50 ± 2

% Decrease 81 40

3.1.3. Dependence of Relaxation Times on Lipid/Water Ratio

An example of a bone marrow NMR spectrum obtained in the calcaneus at 3 T is
displayed in Figure 3, with the images for the voxel localization and the fit (in red) obtained
using LCModel to extract resonance quantification.
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In Figure 4, relaxation times T2 and T2* obtained at 3.0 T as a function of the calculated
L16 + L13 + L09-to-water peak area ratios are reported for each of the three calcaneus
sites: subtalar (a, d), tuber calcanei (b, e), and cavum calcanei regions (c, f). The graphs in
Figure 4 show that both spongy-bone T2 and T2* strongly depend on the lipid-to-water
ratio present in the bone marrow. It is important to note that even in a very selective
healthy women group (small age range, same race), a wide variability of bone marrow
fat content was observed, and a high significant (p < 0.001) linear correlation was found
between both T2 and T2* and the lipid/water in healthy young women. On the other hand,
in Figure 5, relaxation times T2* obtained at 3.0 T as a function of the lipid/water (or bone
marrow fat content percentage) in the whole calcaneus of the healthy and osteoporotic
group are displayed. Interestingly, the significant linear correlation observed in young,
healthy subjects is completely lost when the osteoporotic group is examined.
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Figure 5. Comparison between the T2* dependence on lipid/water in the healthy young and
osteoporotic group obtained in the whole calcaneus at 3.0 T. The significant linear correlation in the
healthy group is lost when osteoporotic subjects are investigated.

4. Discussion

In NMR theory, the signal is proportional to the square of the static magnetic field
strength, and the noise is proportional to the static magnetic field strength. Therefore, a
3.0 T MR system can theoretically achieve two times the SNR of a 1.5 T system (i.e., the
increase in SNR is 100%), and a 1.5 T MR system can theoretically achieve five times the
SNR of a 0.3 T MRI system (with an SNR gain of 400%). The results regarding the SNR
gain reported in this work indicate lower values compared to those predicted by theory,
suggesting that many other factors affect the gain in SNR when the intensity of the magnetic
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field increases, as already observed by some authors [45–47]. The SNR also depends on the
properties of the object to be imaged and the scanning acquisition and instrumentation.

In this paper, we have evaluated the SNR gain at 3.0 T compared to 1.5 T and at 1.5 T
compared to 0.3 T, considering the calcaneal spongy bone. Spongy bone consists of a three-
dimensional network in which bone marrow, mainly containing water and fat, is dispersed
in the interstitial spaces. The susceptibility mismatch between the solid matrix (composed
of trabecular bone network) and the interstitial liquid (composed of bone marrow) causes
an induced local magnetic field that generates inhomogeneities of the static magnetic
field [48–50], thus generating the so-called internal gradient Gi [16,33]. The effective
transverse relaxation time T2* is sensitive to the difference in magnetic susceptibility
between trabecular bone and bone marrow. The dephasing of the transverse magnetization
due to susceptibility differences produces a T2* shortening. An increase in trabecular
spacing, for instance, induced by osteoporosis, reduces the spatial field inhomogeneity
and prolongs T2* [51]. This effect is clearly visible in the images shown in Figure 2 and in
Tables 3, 4, 6 and 7. As bone density increases, T2* decreases, and the gain in SNR decreases
at 3.0 T compared to 1.5 T. In fact, in our study, the lower T2* and lower gain in SNR at
3.0 T compared to 1.5 T is obtained by analyzing the ST area of the calcaneus. This shows
a particular sensitivity of T2* to the density of the spongy bone, which, in fact, is already
the subject of studies for a possible diagnosis of osteoporosis by NMR [13,15,16,31,33]. The
effect of the local field inhomogeneity generated by the magnetic susceptibility difference
between bone trabeculae and bone marrow depends on the magnetic field strength. As
the magnetic susceptibility difference between bone and water is about 1 ppm, much
greater than the usual magnetic susceptibility differences found in cerebral tissues [52],
the magnetic susceptibility mismatch effect is more pronounced in spongy bone than in
other cerebral tissues. As a consequence, no information found in the literature relating
to T2* or SNR obtained on brain tissues at different magnetic field strengths [53,54] can be
used for spongy bone and/or musculoskeletal tissues. In this work, we found a T2* value
obtained at 0.3 T much greater than those obtained at 1.5 T and 3.0 T (Tables 4 and 7) with a
consequent smaller increase in SNR expected at 1.5 T compared to 0.3 T, in reference to that
expected from NMR theory. Also, the small chemical shift difference between fat and water
resonance that is equal to about 44 Hz at 0.3 T compared to 440 Hz at 3.0 T contributes to a
better image quality at 0.3 T (Figure 2) [55].

On the other hand, the transverse relaxation time T2 obtained by a spin-echo (SE)
sequence [56] is less sensitive to differences in magnetic susceptibility. This is because the
180◦ radiofrequency pulse in the SE sequence refocuses all the static magnetic field inho-
mogeneity [56]. Regarding the non-static magnetic field inhomogeneity, in spongy bone,
the diffusion of bone marrow molecules in the local magnetic field gradient Gi becomes
an important factor [57]; molecules interchange their positions, resulting in a small phase
difference between their nuclear magnetic moments, thus generating an irreversible signal
loss [58–60]. As a consequence, a dependence of T2 by Gi and diffusion D is observable
in spongy bone [16,33]. To reduce diffusion and Gi effects on T2 values, the echo train
acquisition sequence has been developed [61,62]. In this work, the images obtained using
the 0.3 T scanner were acquired using FSE for the T2 contrast. FSE sequences, due to the
use of a 180◦ echo train (the number of which is indicated by the parameter ETL), show
the advantage of a strong reduction in susceptibility artifacts, field inhomogeneity, and
acquisition time [55,62]. For this reason, the experimental SNR gain at 1.5 T compared to
0.3 T in cancellous bone is about half of what was expected (experimental SNRg(%) = 260
and theoretical SNRg(%) = 400).

The T2 relaxation time of the calcaneus estimated at 1.5 T and 3.0 T with conventional
spin-echo acquisition sequences is approximately 50 ms, while that estimated at 0.3 T is
approximately 80 ms. Since the T2 should not change as a function of the magnetic field
strength, the difference between the values is due to the effect of the Gi and molecular
diffusion coupling, which contributes to decreasing the value of T2 at 1.5 T and 3.0 T
compared to that calculated at 0.3 T.
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Results related to relaxation times as a function of bone marrow fat content obtained
in young, healthy women underline the high sensitivity of relaxation times to bone marrow
characteristics. It is well known that the fat fraction percentage in bone marrow is site
and age-dependent [63,64]. Fat bone marrow content increases with age, and it is higher
in calcaneal than in vertebral spongy bone, whose bone marrow is characterized by a
higher content of water [21,63,64]. This work underlines a wide variability of lipids/water
ratios and relaxation times values, even in the bone marrow of young healthy women
with a very narrow age range (21–27 years). This suggests that bone marrow includes
information about an individual. For example, correlations between the quality of bone
marrow and nutrition are recently being studied [65] or bone marrow quality concerning
physical activity [66]. Moreover, the loss of the significant linear correlation between T2*
values and marrow fat content percentage when the osteoporotic group is investigated
underlines changes in bone marrow components compared to normal healthy bone marrow.
In this perspective, the measurement of T2 and T2* relaxation times, regardless of image
resolution or magnetic field intensity, could be used for personalized diagnostics. Towards
this goal, low-cost dedicated scanners should be optimized for the quantification of the
relaxation times and other quantitative MRI parameters, such as the molecular diffusion
coefficient D, another parameter very sensitive to bone marrow changes [16].

This work has limitations. First of all, we used a small group of subjects. Furthermore,
in Figure 5, the results obtained in healthy and young women (age range 21–27 years) are
compared with those obtained in osteoporotic women aged between 57 and 67 years, not
considering the effects of normal aging. Furthermore, T2* at the low magnetic field was
estimated using only three images at three echo times of values much smaller than the
estimated T2*.

The development of MRI protocols with low-cost, low-field scanners can help greatly
reduce the cost of diagnostics so that they can be available to a greater number of women. It
would also be possible to make this technology accessible to elderly men who are affected by
osteoporosis at a ratio of one to five compared to women. Furthermore, since the technology
is radiation-free, it could also be useful for identifying and monitoring pathologies related
to the quality of bone marrow and bones in children and adolescents. However, low-cost
instrumentation hardware and software should allow quantification of NMR parameters
such as T1 and T2 relaxation times and diffusion coefficient of musculoskeletal tissue.
Therefore, it should be possible to change the value of the echo time (TE) from very small
values to values comparable with tissue T2 or T2* to better evaluate these parameters.
In this work, for example, we reported that the Esaote O-SCAN at 0.3 T allowed the
selection of only three echo times to evaluate the T2* parameter (see Table 2). This is related
to the fact that low-cost clinical scanners are mainly made to obtain images adequately
weighted in some NMR parameters to better visualize and contrast the different tissues
rather than quantifying NMR parameters that are potential biomarkers of musculoskeletal
tissue pathologies.

5. Conclusions

This work highlights that changes in MRI characteristics of spongy bone tissue due to
variations in magnetic field intensity differ from those widely reported in the literature on
brain tissue. Furthermore, this study highlights a specific and sensitive detection of bone
marrow quality (in terms of lipids/water) using transverse relaxation times, which would
be desirable to develop and test with low-cost scanners [67,68].

This work suggests the optimization of a low-cost dedicated MRI scanner to be used
to develop new protocols based on the quantification of MRI relaxation and diffusion
parameters for the diagnosis of osteoporosis. This is because the SNR decrease compared
to conventional 1.5 T and 3.0 T is not as dramatic as predicted by the theory, especially
when spongy bone is analyzed. This is mainly due to the reduced magnetic susceptibility
differences between tissues, the reduced chemical shift between water and fat at lower
magnetic field strengths, and the development of acquisition sequences that can noticeably
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improve image quality. Moreover, the quantification of relaxation times and diffusion
MRI parameters in spongy bone sites, such as calcaneus, does not require high-resolution
images but requires the possibility to change the acquisition parameters to optimize the
quantification of MRI parameters, which may serve as potential biomarkers of pathologies.
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