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Abstract: Embedded computers are ubiquitous in products across various industries, including the
automotive and medical industries, and in consumer goods such as appliances and entertainment
devices. These specialized computing systems utilize Systems on Chips (SoCs), devices that are
made up of one or more main microprocessor cores. SoCs are augmented with sub-blocks that
perform dedicated tasks to support the system. Sub-blocks contain custom logic or small-footprint
microprocessors, depending upon their complexity, and perform support functions such as clock
generation, device testing, phase-locked loop synchronization and peripheral management for
interfaces such as a Universal Serial Bus (USB) or Serial Peripheral Interface (SPI). SoC designers
have traditionally obtained sub-blocks from commercial vendors. While these sub-blocks have
well-defined interfaces, their internal implementations are opaque. Without visibility of the specifics
of the implementation, SoC designers are limited to the degree to which they can optimize these
off-the-shelf sub-blocks. The result is that power and area constraints are dictated by the design of a
third-party vendor. This work introduces a novel idea: using an open-source, small, multitasking,
real-time operating system inside an SoC sub-block to manage multiple processes, thereby conserving
code space. This OS is TurbOS, a new operating system whose primary goal is to provide the
highest performance using the least amount of space. It is written in the assembly language of a
new pipelined 16-bit microprocessor developed at the University of Florida, the Turbo9. TurbOS is
derived from and incorporates the design benefits of an existing operating system called NitrOS-9,
and reduces the code size from its progenitor by nearly 20%. Furthermore, it is over 80% smaller than
the popular FreeRTOS operating system. TurbOS delivers a rich feature set for managing memory
and process resources that are useful in SoC sub-block applications in an extremely small footprint of
only 3 kilobytes.

Keywords: system on a chip; sub-block optimization; real-time operating system; 16-bit microprocessor;
open source; pre-emptive multitasking

1. Introduction

Embedded systems power devices across a range of fields, from safety to health [1].
The global market for these systems is expected to reach approximately USD 114 billion in
2024 [2]. Strategies exist to optimize these ubiquitous devices by reducing their area and the
power they consume. At scale, such optimizations can result in quantifiable reductions in
the energy consumed over time, as well as the materials (rare earth minerals and chemicals)
required to produce them. The resulting savings yield conservation benefits that promote
environmental sustainability, green goals, and stewardship of our planet.

SoCs are central actors in modern embedded systems. They are composed of one or
more microprocessor cores and are often 32-bit or 64-bit in size. As the name implies, a
System on a Chip is an entire integrated computer system that is made up of additional
components called sub-blocks. They provide support functionality such as communica-
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tion interface controllers and device testing components. Given the copious amount of
functionality in SoCs, there is ample opportunity to optimize them for area and power.

One optimization opportunity is to reduce the number of sub-blocks by process consol-
idation through the employment of a real-time operating system (RTOS) [3] that manages
multiple tasks and delivers predictable timing performance for applications. Another
optimization strategy is reducing the sub-block’s area and power utilization by employing
smaller footprint microprocessors in them, such as a 16-bit or smaller architecture, versus a
larger 32-bit one. While the main core or cores can still be 32-bit or even 64-bit for main
applications, the narrow scope of work of sub-blocks makes them ideal for much smaller
processors with minimal address spaces.

There is also an opportunity to open the current closed-source, opaque model, where
SoC sub-blocks are purchased and integrated from vendors who preserve their intellec-
tual property without providing any visibility into their implementation or their inner
workings. A completely open-source RTOS and application suite for SoC sub-blocks can
provide transparency and community-based opportunities for further area and power
optimizations.

1.1. Evolution of Operating Systems and Their Sub-Block Potential

The operating system is at the heart of computers that run software applications. This
critical software component offers important services such as input and output handling,
memory and file management, process scheduling, and interprocess communication facili-
ties. These services provide a base of common routines that the application software does
not need to concern itself with implementing. The operating system acts as the arbiter and
vendor of system resources through API calls, allowing the developer to focus on creating
the application.

An RTOS is a specific class of operating system that promises to deliver execution on
specific deadlines. RTOSs are common in critical applications that require precise timing.
An RTOS is usually significantly smaller in size than an operating system designed for
desktop or server computing.

In the early history of small-footprint microprocessors, operating systems were pre-
ceded by monitors. Monitors were system-level applications typically written in the
assembly language of the processor. Monitors provided simplistic debugging services
and some form of object code loading and execution. Small in size and usually existing
onboard a read-only memory (ROM), the monitor provided enough intelligence for the
microprocessor to execute code for a given task, but little more.

As demands for more application functionality increased, desktop operating systems
began to emerge. A few examples are CP/M [4] and MS-DOS [5]. These operating systems
were written in assembly language for the specific processor, as opposed to UNIX, which
was written in C for portability.

Later, the advent of 32- and 64-bit processors provided increased memory sizes, both
for the operating system itself and for the applications it managed. This in turn led to
more complexity in both the features that the operating system offered, as well as the
sophistication of the applications that ran under them.

At the same time, such increases in available resources led to the use of high-level
languages such as C and C++ in the development of both the operating system and the
applications. While these languages are near “bare-to-metal”, they nonetheless contributed
to the growth in size of the operating system and its related commands and tools. Recent
research has focused on bringing full-featured desktop operating systems to the real-time
embedded space [6] or implementing an RTOS completely in hardware [7]. Such research
can benefit the area of SoC sub-blocks.

There is also the question of using a high-level language such as the C programming
language for operating system development. The motivation for this is portability to other
microprocessor architectures. While using a high-level language abstracts the architecture
of the processor and makes porting both operating systems and software to other systems



Electronics 2024, 13, 1978 3 of 13

more tenable, the resulting increase in code size adds pressure to the size of the system.
In applications where smaller-memory-footprint microprocessors are desirable, with an
operating system to manage resources and provide multi-tasking and process scheduling,
the smallest size is achieved using assembly language. Portability becomes less of a concern
when the application is based on a single microprocessor that is baked in silicon, as SoC
sub-blocks are, and is used for a specific purpose.

1.2. Research Question and Contributions

There is a direct correlation between an SoC’s area and its power consumption; reduc-
ing the former has a direct impact on the latter. The primary way to minimize the sub-block
area is to focus on a reduction in logic gates. This can be accomplished by reducing the
amount of memory that an SoC uses, both in terms of random access memory and read-only
memory. This can be achieved by decreasing functionality, but this is not desirable. We
seek to maximize the functionality of an SoC while at the same time decreasing its area.
Power consumption will then naturally decrease. The research question we seek to answer
in this work is: how might a reduction in both area and power utilization of an SoC and its
sub-blocks be achieved while maintaining performance, meeting feature requirements, and
promoting design transparency?

The work into answering this research question has yielded TurbOS: an open-source,
small-footprint, pre-emptive multitasking operating system suited for SoC applications,
along with a methodology for determining the appropriate hardware and software for SoC
sub-blocks.

This paper reviews the previous literature on SoCs with regard to area and power;
provides a survey of the Turbo9 microprocessor and its accompanying TurbOS operating
system; provides a methodology for decreasing the size of TurbOS for further optimization;
and presents a size comparison of FreeRTOS, a widely available open-source operating sys-
tem used in a large number of modern embedded applications. The results and conclusions
then follow.

2. Literature Review and Prior Work

Power and area optimizations for applications under real-time operating systems on
SoCs have been explored in the literature, but none have focused specifically on sub-blocks
within an SoC. Some have focused on the operating system running on the main SoC
processor to manage specific use cases in critical applications, the critical applications
themselves, SoC security, and design and verification tooling improvements.

Rane and Panem et al. [8] discuss the use of an RTOS to perform task management
and traffic synchronization on a specific SoC known as a Network on a Chip (NoC).
Vargas’ tutorial on on-chip cross-layer infrastructure focuses on an RISC-V SoC with
an RTOS for aerospace applications [9]. Krishnan and Wan et al. [10] explore domain-
specific design SoCs (DSSoCs) for autonomous unmanned aerial vehicles (UAVs). In their
work, they discuss the challenges of the complexity between sensors and computational
power and propose a machine-learning-based methodology to explore efficient design.
This work underscores the critical nature of optimizing the power and area of SoCs in
applications such as self-driving cars and autonomous aerial vehicles, but only addresses
the applications running on the main processor cores.

Specific real-time operating systems for SoC applications have also been explored.
Shang focuses on the µC/OS-II RTOS [11] in their work [12]. Zhu, Zhou, Liu, and Dai
employ a real-time operating system on a 32-bit SoC utilizing the stack-oriented Forth
programming language [13]. Larrea and Barbalace propose Serverkernel, an operating
system that blends ideas from Unix-like kernels and real-time operating systems for IoT
devices [14]. All of these operating systems are written in the C programming language,
and target a 32-bit SoC.

Security and performance are important areas affecting real-time operating systems
in embedded applications. Wu, Zheng, Zeng, Gao, and Xiong propose a SystemC-based
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cryptographic SoC virtual prototyping platform to accelerate the design and verification of
embedded security devices [15]. While this work may have applicability in SoC sub-block
applications, a tightly sealed silicon-based SoC sub-block with well-defined, stringent
interfaces with the main SoC subsystem can avoid the overhead of additional security logic.
The work of Orenes-Vera and Manocha et al. focuses on memory performance in SoCs that
have a large number of cores [16]. Chi and Lin explore SoC simulation modeling that could
be helpful in creating optimized SoCs along with an RTOS [17].

The literature is replete with SoC area and performance optimizations using 32-bit or
larger processors, but there is a dearth of work focused specifically on using a real-time
operating system to optimize power and area through the use of efficient process allocation
on smaller 16-bit microprocessors. Moreover, there is not a focus on the most interesting
part of the SoC that could benefit from such an optimization: the sub-block.

3. Approach

In order to determine the feasibility of using a real-time operating system for SoC
sub-blocks, several factors must be considered:

• Microprocessor selection.
• Operating system selection.
• An application survey.
• Optimization methods.
• Performance comparison.

3.1. Microprocessor Selection

The target microprocessor proposed in this work is the Turbo9 [18], a pipelined 16-bit
addressable microprocessor with a complex instruction set computer (CISC) architecture.
The Turbo9 is based on the architecture of the Motorola 6809 [19,20], an 8/16-bit micropro-
cessor with a compact yet versatile orthogonal instruction set with a maximum addressable
space of 64 K. The Turbo9 register file in Figure 1 shows two 8-bit accumulators (A and B
which combine to form D), three 16-bit index registers (X, Y, and U), a 16-bit system stack
pointer (S), and a 16-bit program counter (PC). There is an 8-bit direct page (DP) register that
can be loaded with the upper 8 bits of a 16-bit address; this allows for shorter instruction
lengths and fast access within a 256 byte region (known as a page). The Turbo9 adapts all of
the addressing modes of the 6809 for accessing data directly from memory or indexed off of
an index register. Branching instructions support both absolute and relative addressing; the
latter allows for position-independent code to be written. Position-independent code can
be loaded anywhere within the address space of the processor. The Turbo9 also improves
upon the performance of 6809 by implementing an instruction execution pipeline that
allows for interleaving of instructions as they are executed.

The Turbo9 offers a contrast to the 32-bit reduced instruction set computer (RISC)
architecture that is used as default in designs today. This avenue is less represented in the
literature; this is precisely why it is of interest to explore this model of microprocessor and
see what benefits it may yield.

3.2. Operating System Selection

TurbOS is the operating system specifically designed for the Turbo9. It was derived
from NitrOS-9 [21], which includes a number of innovative features for a small-footprint
microprocessor, including pre-emptive multitasking, interprocess communication, and a
module structure which allows code to be located anywhere in the memory and reused by
multiple processes. It is loosely based on Unix and incorporates a number of fundamental
choices in that operating system [22]. A summary of the major system calls and parameters
is shown in Table 1.
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Figure 1. Turbo9 register file.

Table 1. Major system calls in TurbOS.

System Call Parameters Returns

F$Fork module name new process instance
F$Wait process ID process ID of terminated child
F$Link module name module pointer

F$Unlink module pointer error status
F$All64 number of pages pointer to allocated pages
F$Ret64 pointer to allocated pages error status
F$SRqMem number of bytes pointer to allocated bytes
F$SRtMem pointer to allocated bytes error status

Selecting an operating system that is open source encourages contributions from
others for study and improvement. An open-source model for sub-blocks is opposite to
the closed-source, black-box model of existing IP sub-block vendors. While the idea of
an open-source framework for SoC applications has been explored before (Mantovani
and Giri et al. explored an open-source SoC platform with Open ESP [23]), there is no
16-bit open-source project specifically focused on SoC sub-blocks. TurbOS is an open-
source project that encourages collaboration and innovation from a worldwide group of
contributors. The source code for both system-level software (kernel, support modules,
etc.) and the application code is available on GitHub. GitHub offers a rich set of services
that allow for collaboration on and extension of the TurbOS project. The preferred method
is for an interested contributor to create a fork in the TurbOS repository. This fork gives
the contributor a copy of the source code repository on their own GitHub account. They
can experiment by making changes that they can easily discard or decide to improve
upon. Once their changes are committed to their fork, they can create a pull request which
offers the opportunity to integrate changes into the original (forked) repository. Principal
contributors can review the pull request and either accept it as it is, reject it, or ask for
revisions.

Issue tracking and documentation for the project are also hosted on GitHub. Collabo-
rators can open issues for investigation by principal contributors. This level of openness
and transparency intends to foster a sense of purpose and community. It also structures
code changes within a peer review system and enforces code discipline. Since the source
code lies in a single repository, the entire project can be built on a modern computer using
cross-hosted assemblers and compilers [24,25].
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3.2.1. The Kernel

The heart of TurbOS is the kernel. The kernel creates an environment that processes
reside and work in. It provides a number of common operating system services, including:

• Process creation, known as forking.
• Process scheduling and prioritization.
• Memory allocation and deletion.
• Module validation and management.
• Interrupt handling.
• Interprocess communication.

These services are available through system calls. System call names have a prefix
of F$, for example, F$Fork, F$Chain, etc. System calls are made through the Turbo9’s
swi2 instruction. This is a software interrupt instruction that suspends execution, pushes
registers to the stack, then redirects execution to a location in the kernel that performs the
system call. The byte following the swi2 call represents the system call code. The assembly
language source in Listing 1 demonstrates how this is achieved in TurbOS. The F$Link
system call code, which is byte $00, follows the swi2 instruction in the instruction stream.

Listing 1. TurbOS system call in Turbo9 assembly language.

some_rout ine :
c l r a ; A = 0 ( any module type / language )
l e a x modname , pc r ; X = module name add r e s s
sw i2 ; i n voke system c a l l
f cb F$L ink ; r e s o l v e s to the con s t an t $00
r t s ; r e t u r n to the c a l l e r

modname f c s " t e s t p r o g " ; hard−coded name o f the module

System call parameters are passed directly within the Turbo9’s registers themselves.
This provides a tight binding which saves code space and increases execution speed,
compared to the C convention of the caller/callee using the stack for parameter placement
and reference.

3.2.2. The Module

The fundamental organizational structure of a block of executable code or data is the
module. As indicated in Figure 2, a module is composed of three parts: a header, a body, and
a footer. The header contains information about the module such as its name and its identity
(for example, is it object code or data). The body contains either executable code or data,
and the footer is a 3-byte CRC (cyclic redundancy check) that the kernel uses to verify the
integrity of the module. A module has a name, which uniquely identifies it in the system.

header

body (code / data)

CRC (3 bytes)

Figure 2. TurbOS module format.

Modules reside in the memory and are indexed in a module directory. The module
directory contains a list of all of the modules in the memory. To obtain access to a module,
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the application can link to it with the F$Link system call. This increases the module’s
link count, which is an indicator of how many times it is in use. Conversely, when the
application finishes using a module, it calls F$Unlink to unlink it. This decreases the
module’s link count. When a module’s link count reaches 0, it is removed from memory
and the space is reclaimed.

3.2.3. Programs and Processes

A program is an executable block of code that resides inside a module. In other words,
a program may also be considered an app. A program’s purpose is to perform some
useful work on the system, such as controlling inputs/outputs or performing calculations.
Applications are a broad class of programs that communicate to the kernel through system
calls.

On the other hand, a process, (also known as a task, in other operating systems such as
FreeRTOS) is a single instance of a program. The kernel manages the running time of one or
more processes through priority-based round-robin scheduling. The scheduling algorithm
incorporates an age for each process to ensure that even lowest priority processes receives
some run time. The kernel keeps track of the process with a data structure known as the
process descriptor, (also known as a task control block in FreeRTOS), which is a 64-byte block
of data. Figure 3 illustrates four sub-block processes interacting with the TurbOS kernel.

Figure 3. TurbOS process/kernel interaction.

The system call responsible for creating a new process is F$Fork. When a new process
is forked, the kernel provides it with its own data area and stack, then places it in the active
queue for scheduled execution. The process calling F$Fork becomes the parent, and the
new process becomes the child. If the parent chooses to wait for the child process to finish,
it calls the F$Wait system call, which blocks the parent process for the duration of the child
process’ lifetime.

New processes can also be created through chaining. When a process calls F$Chain, it
effectively becomes the new process. There is no parent/child relationship when chaining
occurs. This is useful when attempting to keep system resource usage to a minimum.

3.2.4. Process Scheduling

The kernel is responsible for determining when a process can run and obtain CPU
time. The basic unit of time is called a tick and is usually 1 millisecond in length. The unit
of time that a process can run on the CPU at an interval is called the time slice. A time slice
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is a configurable multiple of a tick. A time slice is nominally 10 ticks or 10 milliseconds
given a 1 millisecond tick.

The kernel uses a priority-based round-robin scheduling algorithm. Every process
has an 8-bit priority and an 8-bit age. The highest value for priority and age is 255 and the
lowest is 0. The default priority and age value for a new process is 128.

In order to manage access to the microprocessor, known as providing CPU time, the
kernel defines a number of different queues that a process can be in at any given time.

3.2.5. The Active Queue

The active queue is a singly linked list of process descriptors that represents processes
which are actively expecting to use the CPU. When a process is created through the F$Fork
system call, the kernel places it in the active queue. The active queue is sorted by a process’
age in order to ensure that lower priority processes receive some CPU time. As each process
receives a slice of time on the CPU, the kernel increases its age. When the age reaches the
maximum value of 255, the process’ priority value is copied into its age. The kernel then
reinserts the process into the active queue based on its new age value.

3.2.6. The Wait Queue

The wait queue is a singly linked list of process descriptors that represents processes
which are waiting on one or more children to complete execution. A process enters this
queue by calling the F$Wait system call.

3.2.7. The Sleep Queue

The sleep queue is a singly linked list of process descriptors that represents processes
which are expecting to not use the CPU. A process can call the F$Sleep system call to give
CPU time to another process for a given period of time.

3.2.8. Memory Allocation and Management

Given that memory is a constrained resource, the kernel manages memory in both
256-byte and 64-byte chunks. Some kernel data structures are small enough to only need
64 bytes, while others require 256 bytes, hence the separate system calls for obtaining
different sizes.

The kernel divides the memory up primarily into 256-byte pages. The page size of
256 bytes conveniently fits into the 64K address space of the Turbo9, as 64K can accommo-
date exactly 256 pages of 256 bytes.

The kernel is responsible for managing memory resources on behalf of processes, but
also claims some memory for its own use. Starting at the very low end of the memory map,
the first 256-byte page from $0000 to $00FF is the area known as the system globals. The
kernel uses this area for its own housekeeping. The next three 256-byte pages between
$0100 and $03FF contain allocation bitmaps, the module directory, the system call table,
and the system stack.

The top of the memory map contains the kernel and other system modules, as well as
any program modules necessary to perform work. The free memory exists in between, and
is available for both the kernel and programs to draw from.

The kernel provides four system calls that vend memory to and recover memory from
processes. For memory allocations with 256-byte increments, there is F$SRqMem, which
allocates memory on behalf of a process, and F$SRtMem, which returns allocated memory
back to the system’s free memory pool. The system’s free memory pool is managed by the
kernel using a 256-bit (32 byte) allocation bitmap located in the system globals area. Each
bit in the 256-bit table represents one 256-byte page of memory starting at address 0 and
ending at address 65280. It is the responsibility of the process to return the memory once it
has finished using it; however, if the process terminates without deallocating memory, it is
automatically returned to the system’s free memory pool.
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For finer grained memory allocation, two additional system calls are available for
64 byte allocation and deallocation: F$All64 allocates memory on behalf of a process, and
F$Ret64 returns allocated memory back to the system’s free memory pool. These two calls
rely on F$SRqMem and F$SRtMem, respectively, to request and return 256-byte pages that are
subdivided into four 64-byte blocks. TurbOS uses these fine grained calls for certain system
data structures that fit within 64 bytes to utilize memory more efficiently.

3.2.9. Interrupt Handling

Interrupts are external triggers that arrest the microprocessor’s execution and direct
its path to a new execution area. Interrupts are instigated by hardware sources like clock
generators, communications circuits, and human interface devices such as buttons or keys.
The nature of interrupts is that they may arrive at any time, and must be serviced as soon
as possible. Only after the interrupt is serviced will the original execution path resume at
the interrupted location.

A key component to an RTOS’s response is minimizing the time between the genera-
tion of the interrupt and the time at which it is handled. It is important that this span of
time, known as the interrupt latency, be as short as possible.

In TurbOS, interrupts are directed into the kernel, where they are checked against
an interrupt polling table. A process that expects to service interrupts must call the F$IRQ
system call with a pointer to a polling table entry data structure, which includes the address
of the interrupt service routine and other information that the kernel uses to verify the
party responsible for servicing that interrupt.

3.2.10. Interprocess Communication through Signaling

At times, multiple processes may need to pass information between each other. Inter-
process communication facilities such as pipes, events, message queues, and signals are
mechanisms for this type of cross-communication in many operating systems.

TurbOS provides a fast and simplistic method of interprocess communication known
as signaling. A signal is an 8-bit value that a process receives and acts upon. When a
process receives a signal, a routine, known as a signal handler, is invoked. The code to
address and act upon the signal value is executed inside the signal handler.

Once the signal handler routine is complete, execution resumes at the point in the
process where it left off. Signals act in a similar fashion to interrupts, but are sourced from
processes instead of hardware.

A number of signals are reserved for specific behavior. S$Kill is the kill signal; any
process that receives it is immediately terminated. S$Wake is the wakeup signal. When a
process receives this signal, the kernel puts the process into the active queue if it is not
already there. The signal handler is not called, and is not even necessary, for a process
receiving this signal.

A process can install a signal handler to process signals by using the F$Icpt system
call. If a process does not install a signal handler, any signal it receives (except for S$Wake)
immediately causes its termination; its parent then receives the signal value as the exit
code.

The remaining signal values from 4 to 255 are known as user-defined signals, and can
be used to pass information from one process to another. Cooperating applications can
define their own behavior when receiving such a signal, and use the F$Send system call to
send a signal to another process.

3.3. Application Survey

This work does not broach the area of specific applications; that will be studied in
the next steps in the research. However, it is worth noting that when focusing on the
smallest possible area and power consumption for a given task, hand-written assembly lan-
guage programming for both the operating system and the applications yields the smallest
size. A microprocessor, such as the Turbo9, with a rich instruction set that encapsulates
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more functionality per instruction aids in hand-written assembly language, and intimate
knowledge of the microprocessor’s architecture gives the designer an advantage over an
implementation of that operating system in a high-level language such as C. As noted
earlier, this trade-off comes at the expense of code portability.

4. Methodology

With the Turbo9 and TurbOS selected, a validation step is conducted to compare
its performance against other known microprocessors and operating systems. There
are a number of open-source RTOSs written in the C programming language, but none
are available that have binary compatibility with Turbo9. A popular C-based RTOS is
FreeRTOS [26] and this is the operating system that is used for comparison. Like TurbOS,
FreeRTOS offers pre-emptive scheduling, multiple process management, and interrupt
handling facilities. Unlike TurbOS, it is arranged in a single monolithic artifact and has no
modular organization. The Turbo9 port of FreeRTOS [27] resides in its own repository and
is compiled using the CMOC C compiler [25].

In order to bring as much parity as possible to the comparison, it is necessary to
optimize certain features in TurbOS. Knowing where to optimize requires a complete
understanding of the operating system and where the dependencies are. The modular
design of TurbOS provides a level of granularity that can help pare down the memory
footprint; unneeded functionality can be discarded by simply removing the module that
contains it. The kernel itself, however, is a monolithic object, and as such, it needs successive
“cuts” to remove unneeded functionality. Therefore, the first step to optimizing TurbOS is to
identify and eliminate operating system features that may not be needed for SoC sub-block
management. Eliminating these features saves code space and ultimately contributes to a
smaller on-chip area.

4.1. Interrupt Processing

Interrupt processing is crucial for the Turbo9 to process external events that may
happen at any time. External interrupts can arrive on the Turbo9 in two ways: through
a regular interrupt and a fast interrupt. The regular interrupt causes all of the Turbo9’s
registers to be pushed onto the stack; then, control is transferred to the interrupt handler,
which processes the interrupt and exits with an rti instruction. The fast interrupt only
pushes the condition code and program counter before transferring control to the fast
interrupt handler.

Under TurbOS, processes register for interrupt processing through a system call. The
kernel itself receives the interrupt and implements a polling mechanism to determine the
source of the interrupt. If the interrupt is deemed to belong to a pre-registered process, the
interrupt service routine is called to service that interrupt. Otherwise, the kernel continues
requesting other handlers.

FreeRTOS does not contain a polling table, so for testing, it was conditionally removed
from TurbOS for this analysis.

4.2. Module Verification

TurbOS performs a CRC validation check when loading a module into memory from
an external storage device. This time-consuming task is justified to ensure that the integrity
of the module is intact and that none of its contents have changed.

In an SoC context, modules are not loaded from an external storage device, but are
present at the start of the operating system. Moreover, TurbOS and any running applications
are immutable and essentially frozen in silicon, so module verification is not needed. It
was conditionally removed for this analysis.

FreeRTOS does not have a module structure or perform any module validation, so for
testing, this feature was eliminated in TurbOS.
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4.3. Unified I/O

One of the features of the TurbOS operating system is its unified I/O model, which is
very similar to UNIX. A device is accessible through a file interface, with common entry
points labeled as Init, Read, Write, and Terminate. System calls enforce access to these
devices and data are read or written via a path.

In embedded applications where external storage does not exist, the value of a uni-
fied I/O model is negligible. Moreover, FreeRTOS does not have this feature, so it was
conditionally removed from TurbOS for this analysis.

4.4. Boot Support

In the same vein as unified I/O, boot support in TurbOS relies on the fact that the
operating system’s core resides in flash or ROM, and the rest of the system is loaded from
external storage. For embedded applications where storage is not present, there is no need
for boot support, and FreeRTOS does not have this feature, so it was conditionally removed
from TurbOS for this analysis.

4.5. Code Base Reduction

In addition to reducing the code footprint of the operating system, the TurbOS reposi-
tory is composed of 37 assembly source files. The NitrOS-9 repository from which it derives
currently consists of 1092 source files. Much of this code is third-party drivers, add-ons, and
apps that are not needed in a targeted application like SoC sub-blocks. These extraneous
files have been eliminated in the TurbOS repository.

5. Results

Table 2 shows the size with specific and all features eliminated from TurbOS. Individ-
ually, feature elimination has a small impact on the resulting size of the kernel; together,
they provide a 16.5% size reduction. This size does not include any application code; it is
just the operating system.

Table 2. Feature elimination (bytes).

Feature Before After % Reduced

interrupt polling 3435 3268 4.8%
module verification 3435 3270 4.8%

unified I/O 3435 3259 5.1%
boot support 3435 3351 2.4%

all of the above 3435 2865 16.6%

Table 3 shows the size of the artifact for TurbOS and FreeRTOS. It is expected that
FreeRTOS, which is written in C, will be larger than an operating system written in assembly
language. Setting aside the portability of the operating system as a requirement, the
>80% reduction in size directly impacts the SoC sub-block area considerably, and weighs
heavily in favor of using a hand-tuned assembly-language-based operating system for such
applications.

Table 3. Operating system artifact size (bytes).

TurbOS FreeRTOS % Reduced

2865 16,379 82.5%

6. Conclusions and Future Work

As shown in the results, TurbOS is considerably smaller in size than FreeRTOS while
providing the same functionality (e.g., process/task creation and destruction, memory
allocation, and task switching). While the kernel is demonstrably small for the amount of
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features it presents, its size can be further minimized with more hand-tuned instruction
optimizations and careful excision of unneeded features.

Further space savings can be realized on the hardware by removing higher address
lines of the Turbo9. For example, eliminating both the highest and second highest address
lines provides a maximum addressing size of 32 KB in a 15-bit system or 16 KB in a 14-bit
system, which is still large enough to fit the kernel and a number of robust applications.

Additionally, there are a number of areas in this work that should be explored in
further research, including:

• Analysis of physical metrics (die area, power consumption) for a set of SoC sub-block
applications on TurbOS vs. operating systems on other architectures such as RISC-V
and ARM.

• System call, interrupt handling, and application bench marking comparisons against
other operating systems on the Turbo9, such as FreeRTOS and FUZIX [28].

• Designing new instructions for the Turbo9 to increase performance.
• A complete test bench and validation suite for TurbOS.
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Abbreviations
The following abbreviations are used in this manuscript:

CPU Central Processing Unit
CRC Cyclic Redundancy Check
IoT Internet of Things
IRQ Interrupt Request
RTOS Real-Time Operating System
SoC System on a Chip
SPI Serial Peripheral Interface
SWI Software Interrupt
USB Universal Serial Bus

Glossary

Forking The act of creating a new process in TurbOS.
FreeRTOS An open-source real-time operating system.
Link count A count of the number of times a TurbOS module is in use.
Module A set of bytes in TurbOS that contains a header, a body, and a CRC.
Process A process in TurbOS that is analogous to a task in FreeRTOS.
SoC System on a Chip; a single or multicore processor with sub-blocks.
Task A process in FreeRTOS that is analogous to a process in TurbOS.
Turbo9 An open-source, 16-bit pipelined microprocessor modeled after the Motorola 6809.
TurbOS An open-source, 16-bit real-time operating system designed for the Turbo9.
Sub-block A unit of logic in an SoC that provides specific support functionality.
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