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Abstract: This paper introduces the Lomax-exponentiated odds ratio–G (L-EOR–G) distribution,
a novel framework designed to adeptly navigate the complexities of modern datasets. It blends
theoretical rigor with practical application to surpass the limitations of traditional models in capturing
complex data attributes such as heavy tails, shaped curves, and multimodality. Through a compre-
hensive examination of its theoretical foundations and empirical data analysis, this study lays down a
systematic theoretical framework by detailing its statistical properties and validates the distribution’s
efficacy and robustness in parameter estimation via Monte Carlo simulations. Empirical evidence
from real-world datasets further demonstrates the distribution’s superior modeling capabilities,
supported by compelling various goodness-of-fit tests. The convergence of theoretical precision and
practical utility heralds the L-EOR–G distribution as a groundbreaking advancement in statistical
modeling, significantly enhancing precision and adaptability. The new model not only addresses a
critical need within statistical modeling but also opens avenues for future research, including the
development of more sophisticated estimation methods and the adaptation of the model for various
data types, thereby promising to refine statistical analysis and interpretation across a wide array
of disciplines.

Keywords: generalized distributions; Lomax distribution; odds ratio; Monte Carlo simulations;
goodness-of-fit

MSC: 62E99; 60E05

1. Introduction

The introduction of generalized distributions represents a significant advancement in
the field of statistical analysis, laying the foundation for the development of both flexible
and complex statistical models. These frameworks are highly regarded by researchers
and statisticians for their capability to tailor analytical strategies to the unique challenges
encountered in various datasets [1]. Generalized distributions have garnered widespread
interest across numerous fields, such as epidemiology and survival analysis, due to their
comprehensive applicability, as illustrated by recent models proposed in [2–4]. Recent
additions to this domain include the transformed Log–Burr III distribution [5], the Ristić–
Balakrishnan–Topp–Leone–Gompertz–G distribution [6], a novel family of modified slash
distribution [7], the flexible Gumbel distribution [8], the new sine inverted exponential
distribution [9], the Beta-truncated Lomax distribution [10], the bivariate Chen distribu-
tion [11], the power function–Lindley distribution [12], and the two-parameter Weibull
distribution [13], among others.

This paper introduces the Lomax-exponentiated odds ratio–G distribution, a novel
integration of the Lomax distribution’s resilience with the odds ratio. Originating from
the Pareto Type-II distribution, the addition of an extra scale parameter to the Lomax
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distribution significantly enhances its effectiveness in accurately estimating failure times
and lifespans [14]. The odds ratio is utilized in various areas, including epidemiology and
the social sciences, to accurately model binary events. It elucidates the impact of numerous
factors on dichotomous outcomes, providing insights into the likelihood of an event occur-
ring. The incorporation of exponentiation within the Odds Ratio distribution broadens its
adaptability, enabling the modeling of complex interrelationships and interactions among
variables. This enhancement exemplifies the extensive utility of statistical distributions in
addressing a wide array of analytical challenges [15–17].

The L-EOR–G distribution demonstrates promising potential as a robust solution
for a wide range of data analysis challenges. By amalgamating these well-established
concepts, the L-EOR–G distribution seeks to enhance the adaptability and potential of the
foundational models. Compared to other sophisticated generalized models, the L-EOR–G
distribution is conceptually straightforward and aligns with well-known distributions such
as the Pareto type I, beta prime, F distribution, and q-exponential distribution.

The rationale for proposing the L-EOR–G distribution stems not only from the need
for greater model flexibility but also from the desire to provide a unified approach to
data analysis that can be easily interpreted and applied across different disciplines. The
L-EOR–G distribution is posited to offer superior fit and predictive accuracy for datasets
that exhibit behaviors challenging to model with traditional distributions. Moreover,
the development of the L-EOR–G distribution is motivated by the ongoing evolution in
statistical methodologies, where there is a pressing need for models that not only fit the
data well but also offer insights into the underlying processes generating the data. By
providing a more adaptable and intuitive modeling tool, the L-EOR–G distribution aims
to contribute to the advancement of statistical science, opening new avenues for research
and application.

The manuscript details the proposal of the new distribution in Section 2, followed by an
exploration of the mathematical properties of this distribution family in Section 3. Section 4
discusses various parameter estimation methods alongside Monte Carlo simulations for
each estimator. Section 5 presents several special cases, including their probability density
functions, hazard rate functions, skewness, and kurtosis. Finally, Section 6 showcases
the application of the new model to real-life datasets, demonstrating its practical utility
and flexibility. Detailed proofs for all theorems and lemmas presented in this manuscript
are available in the Supplementary Information, which is accessible via the following
URL: https://github.com/shusenpu/LEORG/blob/8f2f214fad950627216556df0158f2ca6
d03554d/SI.pdf (accessed on 17 May 2024).

2. Lomax-Exponentiated Odds Ratio–G Family of Distributions

Chen et al. proposed the exponentiated odds ratio generator [18], which introduces
a comprehensive framework for generalized odds ratio distributions. In this paper, the
Lomax distribution is selected as the outer distribution with its cumulative distribution
function (cdf) represented as

R(t) = 1 − (1 + λt)−k, (1)

where λ > 0 is the scale parameter and k > 0 is the concentration of the distribution.
Consequently, the cdf of the newly defined Lomax-exponentiated odds ratio–G is expressed
by the following:

FL-EOR–G (x) = 1 −
(

1 + λα

[
G(x, ψ)

G(x, ψ)

]β
)−k

, (2)

https://github.com/shusenpu/LEORG/blob/8f2f214fad950627216556df0158f2ca6d03554d/SI.pdf
https://github.com/shusenpu/LEORG/blob/8f2f214fad950627216556df0158f2ca6d03554d/SI.pdf
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which simplifies to the following:

FL-EOR–G (x) = 1 −
(

1 + α

[
G(x, ψ)

G(x, ψ)

]β
)−k

, (3)

and the probability density function (pdf) is detailed as follows:

fL-EOR–G (x) = kαβg(x, ψ)
G(x, ψ)β−1

G(x, ψ)β+1

(
1 + α

[
G(x, ψ)

G(x, ψ)

]β
)−k−1

, (4)

where the parameters α, β, and k are positive, characterizing the scale, shape, and concen-
tration of the distribution. The function g(x, ψ) denotes the baseline pdf, G(x, ψ) represents
the cdf associated with the baseline distribution, and G(x, ψ) = 1 − G(x, ψ) is defined as
the survival function. This formulation encapsulates the intricate relationship between
the proposed L-EOR–G distribution and its underlying baseline distribution, emphasizing
the adaptability and comprehensive nature of the L-EOR–G model in capturing various
statistical phenomena. Our objective is to demonstrate that the incorporation of extra
parameters can enhance simple distributions, originally characterized by limited variability,
enabling them to exhibit a diverse array of shapes and skewness. For practical applications,
utilizing this newly developed family of distributions, we advocate the selection of baseline
functions with straightforward formats.

Notably, when k =
1
α

, the L-EOR–G distribution converges to the extended odd
Weibull–G distribution as discussed by [19]. The ensuing subsections are dedicated to a
thorough exploration of the statistical properties, simulations, special cases, and real-world
applications of this innovative distribution.

3. Mathematical and Statistical Properties

Transitioning into a deeper exploration of the Lomax-exponentiated odds ratio–G dis-
tribution, this section is dedicated to elucidating its mathematical and statistical properties.
The analysis includes moments of the L-EOR–G distributions, moment-generating func-
tion, raw, central, and incomplete moments, the Rényi entropy, and probability-weighted
moments, establishing a comprehensive understanding of the distribution’s characteristics.

3.1. Expansion of the Probability Density Function

Theorem 1. The probability density function (pdf) of the L-EOR–G distribution is formulated as a
linear combination of exponentiated generalized distributions, as follows:

fL-EOR–G (x) =
∞

∑
j,m=0

cj,msm+β(j+1)(x, ψ), (5)

where coefficients cj,m are specified by the following:

cj,m =
kαβ(−1)mαj

(m + β(j + 1))

(
k + j

j

)(
β(j + 1) + m

m

)
. (6)

The function sm+β(j+1)(x, ψ) represents the exponentiated–G distribution with parameter m +
β(j + 1), described as follows:

sm+β(j+1)(x, ψ) = (m + β(j + 1))g(x, ψ)G(x, ψ)m+βj+β−1. (7)

Proofs for Theorem 1 and all subsequent theorems and lemmas are provided in the
Supplementary Information.
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3.2. Hazard Rate

Theorem 2. The hazard rate function (hrf) of the L-EOR–G distribution is articulated as follows:

hr f (x) = kαβg(x, ψ)
G(x, ψ)β−1

G(x, ψ)β+1

(
1 + α

[
G(x, ψ)

G(x, ψ)

]β
)−1

, (8)

and its reverse hazard rate function (rhrf) is given by the following:

τ(x) =
kαβg(x, ψ)G(x,ψ)β−1

G(x,ψ)β+1

(
1 + α

[
G(x,ψ)
G(x,ψ)

]β
)−k−1

1 −
(

1 + α
[

G(x,ψ)
G(x,ψ)

]β
)−k . (9)

3.3. Quantile Function

Theorem 3. The quantile function for the L-EOR–G distribution is delineated as follows:

Q(u) = G−1

 ((1 − u)−
1
k − 1)

1
β

α
1
β + ((1 − u)−

1
k − 1)

1
β

. (10)

The subsequent subsections further detail moments, central moments, incomplete
moments, and generating functions, providing a multifaceted view of the L-EOR–G distri-
bution’s mathematical framework.

3.4. Moments, Incomplete Moments and Generating Functions

Moments serve as statistical measures to characterize probability distributions and
succinctly summarize datasets. From the first moment (mean), representing the distribu-
tion’s location, to the variance (second central moment) depicting the spread, and onto
skewness and kurtosis (third and fourth standardized moments) illustrating the shape,
each moment contributes to a full picture of the distribution.

3.4.1. Raw Moments

Lemma 1. The rth order raw moment of the L-EOR–G distribution is expressed as follows:

µ′
r = E[Yr] =

∞

∑
m,j=0

cj,mE(Zr
j,m), (11)

where Zj,m is the exponentiated–G random variable with parameter (m + β(j + 1)), and cj,m is as
defined in Equation (6).

3.4.2. Central Moments

Lemma 2. The nth-order central moment of the L-EOR–G distribution is articulated as follows:

µn =
∞

∑
m,j,r=0

(
n
r

)
(−µ′

1)
n−rcj,mE[Ym+β(j+1)], (12)

where E[Ym+β(j+1)] signifies the expected value of the exponentiated–G random variable Ym+β(j+1),
and cj,m is as outlined in Equation (6).
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3.4.3. Incomplete Moments

Lemma 3. The sth incomplete moment of the L-EOR–G distribution is detailed as follows:

ηs(t) =
∞

∑
j,m=0

cj,m

∫ t

−∞
xshm+β(j+1)(x, ψ)dx, (13)

highlighting the integration of xs with the function hm+β(j+1)(x, ψ) over the range to t, and cj,m is
as defined in Equation (6).

3.4.4. Moment-Generating Functions

Lemma 4. The moment-generating function (MGF) of the L-EOR–G distribution is provided in
terms of the MGF of the exponentiated–G distribution:

MX(t) =
∞

∑
m,j,r=0

(
n
r

)
(−µ′

1)
n−rcj,mE[Ym+β(j+1)], (14)

where Mm+β(j+1)(t) represents the MGF of the exponentiated–G random variable Ym+β(j+1), and
cj,m is as defined in Equation (6).

3.5. Rényi Entropy and Order Statistics

Lemma 5. The Rényi entropy of the L-EOR–G distribution is expressed as follows:

IR(v) =
1

1 − v
log

[
∞

∑
j,m=0

w m+βj
v +β

exp[(1 − v)IREG]

]
, (15)

where IREG is the Rényi entropy of the exponentiated–G family.

In the field of statistics, the kth-order statistic from a statistical sample denotes the kth

smallest value within that sample. Order statistics, together with rank statistics, serve as
essential instruments in the areas of non-parametric statistics and statistical inference.

Lemma 6. Let X1, X2, ..., Xn be independent and identically distributed (i.i.d.) random variables
from the L-EOR–G distribution. The ith-order statistic is articulated as follows:

fi:n(x) =
n!

(i − 1)!(n − i)!

n−i

∑
m=0

(
n − i

m

)
(−1)m

i−1+m

∑
j=0

(
i − 1 + m

j

)
(−1)j

×
kj

∑
z=0

(
kj + z

z

)(
α

G(x, ψ)

G(x, ψ)

)βkj
fL-EOR–G (x), (16)

illustrating the complexity and application potential of the L-EOR–G distribution’s order statistics.

3.6. Probability-Weighted Moments

Lemma 7. The probability-weighted moments of the L-EOR–G distribution are given as follows:

PWM(x; p, q) =
∫ ∞

−∞
(FL-EOR–G (x))p(1 − FL-EOR–G (x))q fL-EOR–G (x)dx (17)

4. Special Cases of the L-EOR–G Distribution

This section is dedicated to examining several special cases within the Lomax-
exponentiated odds ratio–G framework, emphasizing its flexibility and adaptability across
various distributions. Through this exploration, we aim to highlight the versatility of the
L-EOR–G model by using different baseline distributions. For each distinct case, we present
plots of its probability density function, hazard rate function, as well as its skewness and
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kurtosis for chosen parameters. Further visualizations of skewness and kurtosis for these
cases are provided in the Supplementary Information.

4.1. Lomax-Exponentiated Odds Ratio–Uniform Distribution

Given a uniform baseline distribution G(x, ψ) with parameter θ > 0, where

g(x, θ) =
1
θ

and G(x, θ) =
x
θ

, we derive the Lomax-exponentiated odds ratio–uniform (L-
EOR–U) distribution. Its cumulative distribution function and probability density function
are, respectively, defined as follows:

FL-EOR−U (x) = 1 −
(

1 + α

[
x

θ − x

]β
)−k

, (18)

fL-EOR−U (x) =
kαβθxβ−1

(θ − x)β+1

(
1 + α

[
x

θ − x

]β
)−k−1

. (19)

The hazard rate function is elucidated as follows, showcasing the distribution’s behav-
ior in failure rate modeling:

hL-EOR−U (x) =
kαβθxβ−1

(θ − x)β+1

(
1 + α

[
x

θ − x

]β
)−1

. (20)

Figure 1 displays the pdf and hrf visualizations for the L-EOR–U distribution, showing
a diverse array of curve shapes including monotonically decreasing trends, as well as left-
and right-skewed, and various bell-shaped patterns. In parallel, the hrf of the L-EOR–U
distribution illustrates a spectrum of growth trends including consistent increases and
distinct bathtub profiles, emphasizing the model’s versatility. Further demonstrating this
flexibility, Figures 2 and 3 present the skewness and kurtosis across different parameter
settings for the L-EOR–U distribution, highlighting the broad adaptability and shape
variability of this model. The skewness plots show that the distributions can be left or right
skew and the kurtosis plot shows that the peak and tails can have various shapes.

0 1 2 3
x

0.0

0.5

1.0

1.5

f L
EO

R
U
(x

)

=1.0, =1.4,k=1.0, =2.5
=0.9, =1.2,k=2.3, =2.0
=4.8, =6.4,k=0.2, =2.0
=2.1, =1.0,k=1.1, =1.4
=0.1, =2.6,k=1.4, =3.0

0 1 2 3
x

0.0

0.5

1.0

1.5

h L
EO

R
U
(x

)

=0.2, =0.2,k=4.2, =3.1
=8.1, =3.0,k=0.1, =3.3
=5.4, =1.2,k=0.7, =2.8
=0.2, =1.7,k=1.0, =2.5
=0.4, =0.7,k=1.0, =2.0

Figure 1. The pdf (left) and hrf (right) plots for the L-EOR–U distribution with various parameters.
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Figure 2. Skewness and kurtosis plots for the L-EOR–U distribution. The parameters α and β are
varied, while keeping k = 1 and θ = 1.

Figure 3. Skewness and kurtosis plots for the L-EOR–U distribution. The parameters β and θ are
varied, while keeping α = 1 and k = 2.

4.2. Lomax-Exponentiated Odds Ratio–Exponential Distribution

When the baseline distribution G(x, ψ) follows an exponential distribution with pa-
rameter γ > 0, i.e., g(x; γ) = γe−γx and G(x; γ) = 1 − e−γx, we obtain the Lomax-
exponentiated odds ratio–exponential (L-EOR–E) distribution. Its cdf and pdf are given by
the following:

FL-EOR−E(x) = 1 −
(

1 + α(eγx − 1)β
)−k

, (21)

fL-EOR−E(x) = kαβγ
(1 − e−γx)β−1

(e−γx)β

(
1 + α(eγx − 1)β

)−k−1
. (22)

Figure 4 illustrates the pdf for five combinations of the L-EOR–E distribution, demon-
strating a range of skewness profiles. The hrf for the L-EOR–E distribution reveals a
variety of behaviors, including consistent declines, assorted growth trends, and inverted
U-shaped curves. Furthermore, variations in skewness and kurtosis across different param-
eter settings for the L-EOR–E distribution are detailed in Figures 5 and 6, highlighting the
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distribution’s flexibility in shape under varied conditions. The skewness and kurtosis plots
show that the distributions can have different symmetry and tail shapes.

0 1 2 3
x

0.0

0.5

1.0

1.5

f L
EO

R
E(

x)

=1.0, =1.0,k=1.0, =1
=1.5, =2.9,k=1.3, =0.8
=0.4, =3.9,k=0.5, =0.5
=0.6, =3.4,k=1.1, =0.7
=1.5, =4.7,k=8.4, =0.2

0 1 2 3
x

0.0

0.5

1.0

1.5

h L
EO

R
E(

x)

=1.2, =1.0,k=1.0, =1.0
=0.3, =1.4,k=0.7, =1.6
=0.5, =4.5,k=0.2, =1.1
=6.2, =0.7,k=1.5, =0.3
=0.5, =1.3,k=0.7, =1.6

Figure 4. The pdf (left) and hrf (right) plots for the L-EOR–E distribution with various parameters.

Figure 5. Skewness and kurtosis plots for the L-EOR–E distribution. The parameters α and β are
varied, while keeping k = 1 and γ = 1.

Figure 6. Skewness and kurtosis plots for the L-EOR–E distribution. The parameters k and γ are
varied, while keeping α = 1, and β = 1.5.
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4.3. Lomax-Exponentiated Odds Ratio–Weibull Distribution

Considering a Weibull baseline distribution with parameters λ, γ > 0, the Lomax-
exponentiated odds ratio–Weibull (L-EOR–W) distribution emerges. Its cdf and pdf, show-
casing a rich array of behaviors across different parameter values, are defined as follows:

FL-EOR−W (x) = 1 −
(

1 + α
(

eλxγ − 1
)β
)−k

, (23)

fL-EOR−W (x) = kαβλxγ−1 (1 − e−λxγ
)β−1

(e−λxγ)β

(
1 + α

(
eλxγ − 1

)β
)−k−1

. (24)

Figure 7 presents the pdf for various configurations of the L-EOR–W distribution,
including a wide range of curve characteristics from left- and right-skewed to nearly
symmetrical and declining profiles. Notably, the pdf illustrates a distinct stretched M
shape featuring dual peaks. Correspondingly, the hrf for these distributions unveils a
variety of shapes, including different forms of U-shaped, inverted U-shaped, and concave-
upward trends. Further detailing the distribution’s adaptability, Figures 8 and 9 explore
the skewness and kurtosis across assorted parameter settings for the L-EOR–W distribu-
tion, showcasing its shape versatility under varying conditions. Diverse skewness and
kurtosis plots indicate that the L-EOR–W distributions can have different symmetry and
tail characteristics.
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=0.1, =2.0,k=1.7,k=0.4,l=0.8

Figure 7. The pdf (left) and hrf (right) plots for the L-EOR–W distribution with various parameters.

Figure 8. Skewness and kurtosis plots for the L-EOR–W distribution. The parameters α and λ are
varied, while keeping k = 1, γ = 1 and β = 1.
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Figure 9. Skewness and kurtosis plots for the L-EOR–W distribution. The parameters k and γ are
varied, while keeping α = 1, β = 2, and λ = 1.

4.4. Lomax-Exponentiated Odds Ratio–Kumaraswamy Distribution

With the Kumaraswamy distribution as the baseline, characterized by parameters
a, b > 0, we explore the Lomax-exponentiated odds ratio–Kumaraswamy (L-EOR–K)
distribution. This variant is particularly notable for its flexibility in modeling data with
diverse behaviors through its cdf and pdf:

FL-EOR−K (x) = 1 −
(

1 + α
[
(1 − xa)−b − 1

]β
)−k

, (25)

fL-EOR−K (x) = kαβabxa−1 (1 − (1 − xa)b)β−1

(1 − xa)bβ+1

(
1 + α

[
(1 − xa)−b − 1

]β
)−k−1

. (26)

Figure 10 features the pdf for five notable instances within the L-EOR–K distribution
framework, exhibiting a spectrum of shapes from unimodal to bathtub configurations. The
hrf for these distributions further diversifies the analysis, showcasing U-shaped and varied
ascending patterns. Additionally, Figures 11 and 12 delve into the skewness and kurtosis
across multiple parameter settings of the L-EOR–K distribution, revealing its capacity to
span a broad range from negative to positive values in skewness, emphasizing the model’s
extensive flexibility in statistical shape representation. The skewness and kurtosis plots
suggest that the L-EOR–K distributions can have different symmetry and tail shapes.
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Figure 10. The pdf (left) and hrf (right) plots for the L-EOR–K distribution with various parameters.
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Figure 11. Skewness and kurtosis plots for the L-EOR–K distribution. The parameters α and β are
varied, while keeping k = 1, a = 1, and b = 1.

Figure 12. Skewness and kurtosis plots for the L-EOR–K distribution. The parameters β and a are
varied, while keeping α = 1, k = 1, and b = 1.

This exploration of special cases within the L-EOR–G distribution framework not only
emphasizes its theoretical significance but also shows its practical potential in modeling
real-world data with varying characteristics.

5. Methods of Estimation

This section provides an in-depth examination of the diverse estimation methodologies
applicable to the Lomax-exponentiated odds ratio–G distribution. The array of approaches,
from maximum likelihood estimation to the Anderson–Darling approach, demonstrates the
distribution’s efficacy in statistical modeling. This exploration highlights the adaptability
and robust nature of the L-EOR–G model through various estimation strategies, affirming
its utility in diverse analytical scenarios.

5.1. Maximum Likelihood Estimation

The maximum likelihood estimator (MLE) method is widely recognized for its efficacy
in parameter estimation within distributions. Let ∆ = (α, β, k, ψ)T , then the likelihood for
∆ is given by the following:
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ℓ( f n
L-EOR–G

(∆)) = n(log(k) + log(α) + log(β)) +
n

∑
i=1

log[g(xi, ψ)]

+(β − 1)
n

∑
i=1

log[G(xi, ψ)]− (β + 1)
n

∑
i=1

log[G(xi, ψ)]

−(k + 1)
n

∑
i=1

log

(
1 + α

[
G(xi, ψ)

G(xi, ψ)

]β
)

. (27)

The MLE can be obtained by solving the nonlinear equations
(

∂ℓ
∂α , ∂ℓ

∂β , ∂ℓ
∂k , ∂ℓ

∂ψk

)
= 0 employ-

ing numerical methods, such as the Newton–Raphson approach.

5.2. Least Squares and Weighted Least Squares Estimation

Both (weighted) least squares estimation (LS or WLS) methodologies provide estima-
tors for model parameters, with the LS estimation formulated as follows:

LS(σ) =
n

∑
i=1

(
FL-EOR–G (xi, σ)− i

n + 1

)2
. (28)

The WLS estimation, on the other hand, seeks to minimize the following:

WLS(σ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

(
FL-EOR–G (xi, σ)− i

n + 1

)2
. (29)

LS or WLS can be derived by solving the nonlinear equations
(

∂LS
∂k , ∂LS

∂α , ∂LS
∂β , ∂LS

∂ψs

)
= 0

using numerical methods like the Newton–Raphson approach.

5.3. Maximum Product Spacing Approach of Estimation

The maximum product spacing approach of estimation (MPS) approach proves es-
pecially valuable when confronting unknown or intricate distributions, as highlighted
by [20].

The geometric mean of MPS spacings is defined as follows:

MPS(σ) =

{
n+1

∏
i=1

Ti(xi, σ)

} 1
n+1

(30)

where

Ti(xi, σ) =


FL-EOR–G (x1, σ), i = 1

FL-EOR–G (xi, σ)− FL-EOR–G (xi−1, σ), i = 2, 3, · · · , n

1 − FL-EOR–G (xn, σ), i = n + 1

Therefore, the objective is to maximize the following:

MPS(σ) =


1 −

1 + α

[
G(x1, ψ)

G(x1, ψ)

]−β
−k


1 + α

[
G(xn, ψ)

G(xn, ψ)

]−β
−k

×
n

∏
i=2


1 + α

[
G(xi−1, ψ)

G(xi−1, ψ)

]−β
−k

−

1 + α

[
G(xi, ψ)

G(xi, ψ)

]−β
−k




1
n+1

(31)
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Equivalently, we can maximize the function L(σ) = log[MPS(σ)]

L(σ) =
1

n + 1

n+1

∑
i=1

log[Ti(xi, σ)]

=
1

n + 1

−k log

(
1 + α

[
G(xn, ψ)

G(xn, ψ)

]−β
)
+ log

1 −
(

1 + α

[
G(x1, ψ)

G(x1, ψ)

]−β
)−k

+
n

∑
i=2

log

(1 + α

[
G(xi−1, ψ)

G(xi−1, ψ)

]−β
)−k

−
(

1 + α

[
G(xi, ψ)

G(xi, ψ)

]−β
)−k (32)

The MPS is achievable by solving the nonlinear equations
(

∂L
∂k , ∂L

∂α , ∂L
∂β , ∂L

∂ψs

)
= 0 via numer-

ical methods. The MPS approach is particularly useful when dealing with unknown or
complex distributions, enhancing the robustness of the estimation process.

5.4. Cramér–von Mises Approach of Estimation

We can employ the Cramér–von Mises criterion to derive estimators by minimizing
the function CVM(x, σ) with respect to σ, where

CVM(x, σ) =
1

12n2 +
1
n

n

∑
i=1

(
FL-EOR–G (xi, σ)− 2i − 1

2n

)2

=
1

12n2 +
1
n

n

∑
i=1

1 −

1 + α

[
G(xi, ψ)

G(xi, ψ)

]−β
−k

− 2i − 1
2n


2

(33)

5.5. Anderson–Darling Approach of Estimation

The Anderson–Darling approach of estimation can be determined by minimizing the
function AD(σ) with respect to σ, where

AD(σ) = −n − 1
n

n

∑
i=1

(2i − 1)[log FL-EOR–G (xi, σ)− log FL-EOR–G (xn+1−i, σ)]

= −n − 1
n

n

∑
i=1

(2i − 1)

k log

1 + α

[
G(xn+1−i, ψ)

G(xn+1−i, ψ)

]−β


+ log

1 −

1 + α

[
G(xi, ψ)

G(xi, ψ)

]−β
−k


 (34)

The AD approach enables the refinement of estimations, contributing to the accurate
characterization of the L-EOR–G distribution.

5.6. Simulation Study

In this subsection, we incorporate a simulation study to show the practical application
of the estimation techniques explored. By integrating Monte Carlo simulations with various
estimation strategies, we aim to estimate the parameters of Lomax-exponentiated odds
ratio–exponential distribution with predefined settings, such as α = 1.5, β = 2.9, γ = 1.3,
and k = 0.8. Sample sizes of N = 50, 100, 250, 500, and 1000 were utilized to generate
random samples, with each experiment replicated N = 500 times to ensure robustness.
Subsequently, both the bias and mean squared error (MSE) were computed for each dataset
to evaluate the estimators’ performance. The outcomes, illustrated in Table 1 and Figure 13
within this paper, reveal that MSE tends toward zero as sample size increases, affirming the
reliability and stability of the estimations across different scenarios. This empirical analysis
not only validates the effectiveness of the estimation methods but also demonstrates their
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applicability in real-world data analysis, thereby enhancing the L-EOR–G distribution’s
utility in statistical modeling.
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Figure 13. MSE of parameters in Table 1.

Table 1. Different estimations for α = 1.5, β = 2.9, γ = 1.3, and k = 0.8.

MLE LS WLS MPS CVM AD

N Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50
α 0.2091 0.9735 0.3720 2.2962 0.2598 1.1849 0.2434 0.9079 0.3662 2.3236 0.2490 1.1354
β 0.0441 0.1371 0.0350 0.2031 0.0282 0.1458 −0.0237 0.1171 0.0628 0.2122 0.0334 0.1845
γ −0.0095 0.0386 −0.0241 0.0696 −0.0076 0.0425 0.0029 0.0338 −0.0267 0.0693 −0.0071 0.0401
k 0.0903 0.1508 0.3308 4.5287 0.0954 0.1825 0.0514 0.0982 0.3091 2.5795 0.0520 0.0767

100
α 0.0467 0.3151 0.1472 0.7532 0.0774 0.3883 0.0741 0.3101 0.1439 0.7573 0.0721 0.3628
β 0.0213 0.0568 0.0295 0.0934 0.0181 0.0636 −0.0142 0.0523 0.0434 0.0959 0.0174 0.0806
γ −0.0149 0.0184 −0.0130 0.0285 −0.0116 0.0195 −0.0083 0.0167 −0.0141 0.0284 −0.0115 0.0186
k 0.0536 0.0563 0.0796 0.1760 0.0503 0.0601 0.0374 0.0465 0.0831 0.1887 0.0324 0.0346

250
α 0.0955 0.3022 0.1288 0.6041 0.1002 0.3550 0.1197 0.2980 0.1253 0.6043 0.1041 0.3519
β 0.0321 0.0468 0.0197 0.0718 0.0202 0.0501 0.0006 0.0426 0.0314 0.0733 0.0247 0.0660
γ 0.0008 0.0160 −0.0104 0.0266 −0.0021 0.0179 0.0063 0.0150 −0.0114 0.0266 −0.0007 0.0172
k 0.0258 0.0396 0.0766 0.1720 0.0355 0.0520 0.0132 0.0341 0.0793 0.1776 0.0195 0.0285

500
α 0.0396 0.1609 0.0987 0.3446 0.0595 0.2073 0.0572 0.1585 0.0964 0.3442 0.0628 0.2077
β 0.0141 0.0319 0.0199 0.0513 0.0131 0.0370 −0.0072 0.0301 0.0273 0.0520 0.0158 0.0483
γ −0.0041 0.0093 −0.0028 0.0165 −0.0026 0.0110 −0.0003 0.0089 −0.0034 0.0165 −0.0017 0.0108
k 0.0216 0.0234 0.0339 0.0479 0.0224 0.0281 0.0137 0.0212 0.0352 0.0487 0.0133 0.0177

1000
α 0.0231 0.0853 0.0417 0.1410 0.0292 0.0965 0.0345 0.0850 0.0405 0.1409 0.0274 0.0961
β 0.0041 0.0162 0.0023 0.0236 0.0018 0.0172 −0.0078 0.0158 0.0061 0.0237 0.0015 0.0231
γ −0.0020 0.0054 −0.0026 0.0082 −0.0015 0.0058 −0.0002 0.0052 −0.0029 0.0082 −0.0020 0.0058
k 0.0106 0.0118 0.0167 0.0198 0.0105 0.0126 0.0063 0.0111 0.0173 0.0199 0.0073 0.0085

6. Applications

In this section, we delve into applying our proposed model to datasets from the real
world, aiming to illustrate its efficiency and flexibility. We test the Lomax-exponentiated
odds ratio–exponential distribution (LEORE) against a selection of established models,
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including the exponentiated generalized Gumbel type-two (EGG2) [21], exponentiated
Weibull logistic (EWL) [22], Lomax–Gumbel type-2 (LGT) [23], Kumaraswamy–Weibull
(KW) [24], and type-2 Gumbel (T2G) [25].

Our comparative analysis employs a comprehensive set of metrics for evaluating
model performance, such as the −2 log-likelihood, Cramér–von Mises (W∗), Anderson–
Darling (A∗), Akaike information criterion (AIC), Bayesian information criterion (BIC),
consistent Akaike information criterion (CAIC), Hannan–Quinn information criterion
(HQIC), and the Kolmogorov–Smirnov (K-S) statistic with its p-value, to determine the
most suitable model for capturing the intricacies of the observed data.

6.1. Analysis of Carbon Fiber Strength Data

This section examines the breaking strength data of carbon fibers, each with a length
of 50 mm, based on a study with a sample size of n = 66, as detailed by Nichols et al. [26].
We present a detailed comparison of parameter estimates and goodness-of-fit statistics
in Table 2. Furthermore, Figure 14 displays the empirical distribution of the observed
data alongside the estimated density functions of several fitted models. Among these, the
LEORE distribution emerges as the superior fit for this dataset, evidenced by its exemplary
goodness-of-fit statistics and the most favorable K-S test p-value, as tabulated in Table 2.

Table 2. MLEs and goodness-of-fit statistics for carbon fiber data.

Model
Estimates (SE) Statistics

−2 log L AIC CAIC BIC HQIC W∗ A∗ K-S p-Value

α β γ k
LEORE 0.0096 1.7716 0.8069 1.9784 170.0125 178.0125 178.6683 186.7711 181.4735 0.0542 0.3236 0.0667 0.9305

(0.0080) (0.6433) (0.4434) (1.3153)

α a b ν
EGG2 12.3804 184.3605 0.5694 0.7059 181.4496 189.4496 190.1054 198.2082 192.9106 0.2132 1.1734 0.1403 0.1487

(2.4007) (22.9474) (0.2141) (0.1196)

α β γ θ
EWL 0.6300 1.2131 0.4114 8.2735 170.8907 178.8907 179.5464 187.6493 182.3516 0.0630 0.3780 0.0737 0.866

(0.5545) (25.6944) (8.7128) (8.2943)

α β θ k
LGT 20.0873 0.0079 12.1283 0.4017 183.1803 187.1549 187.8107 195.9135 190.6159 0.1936 1.0469 0.1225 0.2753

(16.4838) (0.0039) (1.0021) (0.0586)

λ a b c
KW 0.5018 0.6201 0.1625 3.9198 171.1142 179.1142 179.77 187.8729 182.5752 21.0186 131.3839 0.9969 <2.2 × 10−16

(0.0065) (0.0795) (0.0216) (0.0083)

α ν
T2G 3.2262 1.6480 - - 242.3898 246.3898 246.5803 250.7691 248.1203 0.0917 0.6079 0.1120 0.5864

(0.4193) (0.1226)

In addition, Figure 15 presents a collection of diagnostic plots, including the Kaplan–
Meier (K-M) survival curve, juxtapositions of the theoretical and empirical cumulative
distribution functions (TCDF and ECDF), and a scaled total time on test (TTT) plot. The
congruence between theoretical forecasts and empirical observations reaffirms the suitabil-
ity of the LEORE distribution in accurately modeling the dataset, particularly highlighting
its capacity to capture non-monotonic hazard rate behaviors.
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Figure 14. (left) Fitted density superposed on the histogram and observed probability for the carbon
fiber data. (right) Expected probability plots for the carbon fiber data.
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Figure 15. Fitted K-M survival curve, theoretical and ECDF, the TTT statistics, and the hrf for the
carbon fiber data.

6.2. Survival Analysis of Guinea Pigs

This dataset encompasses survival durations of guinea pigs following injections with
tubercle bacilli, explored in the study by Kundu et al. [27]. Parameter estimations along
with goodness-of-fit metrics are detailed in Table 3. Figure 16 shows the histogram of
actual survival times against the density curves of several fitted models. The LEORE
distribution distinctly outperforms its counterparts, as evidenced by its superior goodness-
of-fit indicators and the most significant K-S test p-value.
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Additionally, a set of illustrative plots—including the K-M survival curve, both TCDF
and ECDF, and the TTT plot—are presented in Figure 17. The remarkable alignment be-
tween empirical data and theoretical predictions reinforces the LEORE model’s accuracy in
fitting the data. The TTT plot, in particular, suggests the model’s proficiency in delineating
a monotonic hazard rate structure, further confirming its applicability.
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Figure 16. (left) Fitted density superposed on the histogram and observed probability for the carbon
fiber data. (right) Expected probability plots for the Guinea data.
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Figure 17. Fitted K-M survival curve, theoretical and ECDF, the TTT statistics, and the hrf for the
Guinea data.
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Table 3. MLEs and goodness-of-fit statistics for the Guinea data.

Model
Estimates (SE) Statistics

−2 log L AIC CAIC BIC HQIC W∗ A∗ K-S p-Value

α β γ k
LEORE 0.0172 0.7963 5.8969 0.2199 183.4629 191.4629 192.0599 200.5695 195.0883 0.0452 0.2668 0.0728 0.8396

(0.0151) (0.7221) (5.8743) (0.0753)

α a b ν
EGG2 6.0290 122.1410 1.0156 0.3620 190.2207 198.2207 198.8177 207.3274 201.8461 0.0882 0.5873 0.1009 0.4562

(1.3408) (130.8008) (0.6569) (0.1289)

α β γ θ
EWL 3.8502 0.4699 0.4699 188.2497 196.7943 204.7943 205.3913 213.9009 208.4197 0.2387 1.4030 0.1139 0.3077

(0.7350) (8.9080) (8.9083) (147.1816)

α β θ k
LGT 18.0769 0.0133 8.4828 0.2597 189.0739 197.0739 197.6709 206.1806 200.6993 0.0899 0.5729 0.0956 0.5254

(37.9855) (0.0114) (2.0439) (0.0892)

λ a b c
KW 0.7667 3.1078 1.7284 0.9920 188.1312 196.1312 196.7283 205.2379 199.7566 23.0962 143.1579 0.9994 <2.2 × 10−16

(0.7008) (3.8532) (5.4959) (1.0412)

α ν
T2G 1.0687 1.1731 - - 236.332 240.332 240.5059 244.8854 242.1447 0.5267 3.3523 0.1966 0.0076

(0.1324) (0.0843)

6.3. Analysis of Chemotherapy Treatment Data

This section examines the survival times (in years) of patients undergoing chemother-
apy as part of a study reported by Bekker et al. [28]. Parameter estimations and goodness-of-
fit assessments are systematically tabulated in Table 4. Additionally, Figure 18 offers a visual
comparison between the empirical distribution and fitted density functions, alongside the
expected probabilities. According to the comparative analysis in Table 4, the LEORE dis-
tribution emerges as the most accurate model, demonstrating the lowest goodness-of-fit
values and the most substantial p-value in the K-S test.

Table 4. MLEs and goodness-of-fit statistics for chemotherapy data.

Model
Estimates (SE) Statistics

−2 log L AIC CAIC BIC HQIC W∗ A∗ K-S p-Value

α β γ k
LEORE 3.2596 2.1545 3.5389 0.0907 113.6159 121.6159 122.6159 128.8425 124.3099 0.0368 0.2895 0.0675 0.9777

(5.4519) (1.2061) (3.4657) (0.1109)

α a b ν
EGG2 5.2436 11.9916 0.1971 0.5806 116.0689 124.0689 125.0689 131.2956 126.7629 0.0487 0.3764 0.0874 0.852

(0.0546) (0.1520) (0.0344) (0.0521)

α β λ θ
EWL 5.5941 0.3379 0.4619 604.6459 138.8585 146.8585 147.8585 154.0851 149.5525 0.3160 1.9875 0.1831 0.0859

(1.2435) (12.2857) (16.7974) (761.9120)

α β θ k
LGT 17.9903 0.0196 7.0332 0.1503 116.3564 124.3564 125.3564 131.5831 127.0504 0.0610 0.4270 0.0892 0.835

(24.8990) (0.0298) (1.9777) (0.0459)

λ a b c
KW 9.5499 2.4518 0.1118 0.9081 114.8207 122.8207 123.8207 130.0474 125.5148 15.8038 90.4623 0.9889 <2.2 × 10−16

(0.1925) (1.1598) (0.0499) (0.1267)

α ν
T2G 0.4987 0.8672 - - 127.6381 131.6381 131.9238 135.2515 132.9851 0.1430 0.9790 0.1382 0.3253

(0.0979) (0.0928)

Figure 19 further provides a suite of plots, including the Kaplan–Meier survival curve,
TCDF and ECDF, and a TTT plot. The match between empirical and theoretical observations
indicates the efficacy of the proposed model in capturing the dataset’s characteristics.
Notably, the scaled TTT plot reveals the model’s capability to accurately represent a non-
monotonic hazard rate structure, affirming its suitability for complex survival data analysis.
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Figure 18. (left) Fitted density superposed on the histogram and observed probability for the
chemotherapy data. (right) Expected probability plots for the chemotherapy data.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4

x

S
u

r
v

iv
a

l 
F

u
n

c
ti

o
n

LEORE
Kaplan−Meier estimate

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
x

F
(x

)

LEORE

ECDF

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

S
c

a
le

d
 T

T
T

−
T
r
a

n
s

fo
r
m

0.5

0.7

0.9

0 1 2 3 4
x

h
(x

) 
o

f 
L

E
O

R
E

Figure 19. Fitted K-M survival curve, theoretical and ECDF, the TTT statistics, and the hrf for the
Chemotherapy data.

7. Conclusions

The exploration and unveiling of the Lomax-exponentiated odds ratio–G distribution
within this study marks a new advancement in the field of statistical analysis. This work—
aimed at transcending the limitations of conventional statistical distributions in capturing
the complex nature of modern datasets—rigorously explores the L-EOR–G distribution’s
theoretical properties, parameter estimation methodologies, and empirical applicability.
Our analysis evidences the distribution’s unparalleled flexibility and efficiency in modeling
a wide spectrum of data behaviors, setting it apart from many existing models.

The empirical analysis demonstrates the L-EOR–G distribution’s superiority in fitting
a diverse array of data distributions more adeptly than traditional counterparts. This
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is substantiated by consistently superior goodness-of-fit measures and K-S test p-values
across various datasets, illustrating not only the model’s exceptional fitting prowess but
also its potential to significantly enhance scientific research and informed decision-making
processes. In summation, the introduction of the L-EOR–G distribution signifies a leap
forward in bridging the divide between theoretical sophistication and practical utility in
statistical modeling.

Supplementary Materials: Detailed proofs of all the theorems and lemmas presented in this
manuscript can be found in the Supplementary Information, which is accessible at https://github.
com/shusenpu/LEORG/blob/8f2f214fad950627216556df0158f2ca6d03554d/SI.pdf (accessed on 17
May 2024). Furthermore, additional examples of skewness and kurtosis for special cases are presented
in the Supplementary Information.
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cdf cumulative distribution function
pdf probability density function
hrf hazard rate function
MLE maximum likelihood estimate
MPS maximum product spacing estimate
LS least square estimates
WLS weighted least square estimate
CVM Cramér–von Mises estimate
AD Anderson–Darling estimate
MSE mean squared error
L-EOR-U Lomax-exponentiated odds ratio–uniform
L-EOR-W Lomax-exponentiated odds ratio–Weibull
L-EOR-E Lomax-exponentiated odds ratio–exponential
L-EOR-K Lomax-exponentiated odds ratio–Kumaraswamy
T2G type-2 Gumbel
CAIC consistent Akaike information criterion
BIC Bayesian information criterion
HQIC Hannan–Quinn Criterion
W∗ Cramér–von Mises statistic
A∗ Anderson–Darling statistic
K-S Kolmogorov–Smirnov statistic
TCDF theoretical cumulative distribution function
ECDF empirical cumulative distribution function
TTT total time on test
K-M Kaplan–Meier
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