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Abstract: Disabled older adults exhibited a higher risk for cognitive impairment. Early identification
is crucial in alleviating the disease burden. This study aims to develop and validate a prediction
model for identifying cognitive impairment among disabled older adults. A total of 2138, 501, and
746 participants were included in the development set and two external validation sets. Logistic
regression, support vector machine, random forest, and XGBoost were introduced to develop the
prediction model. A nomogram was further established to demonstrate the prediction model directly
and vividly. Logistic regression exhibited better predictive performance on the test set with an area
under the curve of 0.875. It maintained a high level of precision (0.808), specification (0.788), sensitivity
(0.770), and F1-score (0.788) compared with the machine learning models. We further simplified and
established a nomogram based on the logistic regression, comprising five variables: age, daily living
activities, instrumental activity of daily living, hearing impairment, and visual impairment. The
areas under the curve of the nomogram were 0.871, 0.825, and 0.863 in the internal and two external
validation sets, respectively. This nomogram effectively identifies the risk of cognitive impairment in
disabled older adults.

Keywords: cognitive impairment; prediction model; nomogram; disabled older adults; machine
learning; logistic regression

1. Introduction

Cognitive impairment (CI) is a neurodegenerative disorder ranging from mild cogni-
tive impairment (MCI) to dementia. CI primarily characterizes memory decline, orientation
dysfunction, and other deteriorations of cognitive function, and it tends to be more preva-
lent among the older population [1–3]. With the accelerated aging process, CI has arisen as
a pressing global concern, particularly in low- and middle-income countries [4]. A recent
meta-analysis indicated that the global prevalence of MCI is as high as approximately
15.56% [5]. More seriously, 152 million people are expected to be living with dementia
globally by 2050 [6]. Notably, around three-quarters of dementia patients have not been
definitively diagnosed, which could be 90% in low- and middle-income countries [7]. Iden-
tifying high-risk populations for CI based on primary healthcare contexts is an urgent
issue globally.

Aging not only affects the decline of cognitive function but also increases the risk
of physical disability [8]. Disabled older adults are unable to live independently and are
associated with a higher risk of CI [9,10]. Previous investigations demonstrated that the
prevalence of CI was higher in disabled older adults [8,11,12]. Moreover, evidence sug-
gested that CI and dementia stood as significant factors in disability among older adults [13].
Disability also accelerated cognitive decline, while both CI and disability were indepen-
dently associated with all-cause mortality [14,15], further compounding the existing disease
burden. Unfortunately, current therapies or medications have limited effectiveness in treat-
ing CI [16–18]. Given this limitation, effectively identifying high-risk populations early and
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implementing interventions are crucial for controlling disease progression. Furthermore,
disabled older adults often necessitate care from nursing facilities and family members,
imposing substantial economic and societal burdens [7]. They are facing challenges in
accessing timely medical services and examinations, particularly in developing countries
where medical resources are deficient [19]. Therefore, developing an easy-to-use, reliable,
and widely used predictive tool is imperative to identify the population at high risk for CI
among the disabled population.

Prediction models are commonly employed to estimate the possibility that individ-
uals with specific features will be associated with certain outcomes [20]. In the past five
years, several prediction models for identifying CI have been developed in various popula-
tions (older adults, middle-aged and older adults, older inpatients, and older adults with
hypertension) [21–27]. However, most of the established models lacked external valida-
tion [21–25,27], and the predictors in these models were partly derived from biomarkers [21]
or numerous complicated neuropsychological examinations [22], which pose measurement
difficulties for disabled older adults relying on community-based healthcare services. Fur-
thermore, heterogeneity exists in risk factors for CI between those influencing the disabled
older population and other populations [28,29], and it remains unclear whether previous
models can accurately identify CI among disabled older adults. Therefore, developing
and validating population-specific prediction models for CI is paramount. Moreover, ma-
chine learning (ML) algorithms have emerged as valuable tools in predicting dementia
diseases [30]. ML can identify complex relationships between variables from real-world
data [31] and perform greater flexibility in handling large datasets. Several prediction
models have been constructed for MCI or Alzheimer’s disease by random forest (RF) [3],
support vector machines (SVM) [32,33], and extreme gradient boosting (XGBoost) [34] with
good performance. However, few studies focused on developing prediction models of
CI among disabled older populations and assessing the predictive ability of ML in this
group. To address this gap, this study aims to construct and validate a predictive tool for
determining CI among the disabled older population. The study will provide a reliable,
efficient, and easy-to-use tool to support the screening or early diagnosis of CI in the
disabled older population.

2. Materials and Methods

This study strictly adhered to the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD) [20].

2.1. Data and Participants

We obtained data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS),
a comprehensive nationwide survey designed to investigate the health conditions of the
older population [35]. The CLHLS has been systematically conducted in eight waves since
1998, covering 23 provinces representing 85% of the Chinese population. The development
set was constructed on the eighth wave, which comprised 15,874 participants enrolled
between 2017 and 2018. Furthermore, two external validation sets were constructed from
the CLHLS conducted during the seventh wave in 2014 and the sixth wave in 2011. These
datasets comprised 7192 and 9765 participants, respectively. The CLHLS deployed well-
trained investigators to conduct measurements and collect a wide range of information by
questionnaires, including demographics, socio-economic information, physical and mental
function, and other health-related aspects.

Following previous studies, disabled older adults were assessed using the activities of
daily living (ADL) scale across six items: bathing, dressing, toileting, mobility, continence,
and eating. Older adults who were partially or completely unable to fulfill at least one of
the six items independently were considered disabled [36–38].

This study’s inclusion criteria were (1) participants aged 60 or older; and (2) partic-
ipants with ADL disability. We excluded the non-disabled older adults and participants
with missing data (Figure 1).
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2.2. Assessment of Cognitive Impairment

Cognitive function was assessed by the Mini-Mental State Examination (MMSE), with
total scores ranging from 0 to 30 [39]. Its reliability and validity have been demonstrated in
diagnosing CI and dementia within the Chinese population in clinical and epidemiological
studies [40–42]. Considering the variations in MMSE scores among older individuals with
different educational backgrounds, for participants with no formal education (<1 year),
primary education (1–6 years), and higher education (>6 years), cut-off scores of 18, 21, and
25 were established, respectively. These thresholds were determined based on previous
studies [18,43].

2.3. Candidate Predictors

Socio-demographic variables included age, gender, education level, place of residence,
and marital status.

Health-related variables included smoking, drinking, daily exercise, routine medical
checkup, kyphosis, ADL scores (scoring 1 for independent completion, 2 for partially
dependent completion, and 3 for entirely dependent completion), instrumental activities
of daily living (IADL) scores (including: visiting neighbors, shopping, cooking, washing
clothes, walking 1 km, lifting 5 kg goods, crouching and standing up three times, and
taking public transportation; it was calculated in the same manner as ADL scores), visual
impairment (VI) (assessed through the following question: “Can the interviewee see a break
in the circle on the cardboard sheet without glasses when lit by a flashlight and distinguish
where the break is located?”, the interviewee who was unable to see the given graph and
blind was defined as VI [44]), hearing impairment (HI) (assessed through the interviewer
to examinate if they could clearly hear what the interviewer was saying, and four options
were provided for interviewers: (1) yes, without hearing aids; (2) yes, but need hearing
aids; (3) partially hear, despite using hearing aids; (4) cannot hear. Participants identified as
having HI included those who could only partially hear despite using hearing aids or could
not hear anything at all [44]), wearing hearing aids, chronic diseases (the self-reported
question identified six common chronic diseases: “Are you suffering from any of the
following diseases which have been identified by doctors” including hypertension, diabetes,
heart disease, stroke or cerebrovascular disease, glaucoma, and respiratory diseases),
history of falls, wearing dentures, number of natural teeth, tooth cleaning behavior, and
childhood famine experiences.

Several variables based on physical measurement were included in the candidate
predictors set. Calf circumference (CC), waist circumference (WC), and hip circumference
(HC) were measured by trained interviewers using standard methods and tools. Other
details can be found on the official website: “https://opendata.pku.edu.cn/dataverse/
CHADS” (accessed on 1 November 2022). Additionally, body mass index (BMI), waist-
to-hip ratio (WHR), waist-to-height ratio (WHtR), and waist-to-calf ratio (WCR) were
calculated to investigate the predictive potential of these variables.

Lifestyle and daily activities variables, including daily housework, garden work,
reading newspapers or books, raising domestic animals or pets, playing cards or mah-
jongg, and watching TV or listening to the radio, were also incorporated into the candidate
predictors set.

2.4. Statistical Analyzing

All statistical analyses were performed by R (version 4.2.3). Continuous variables of
the development set and external validation sets were presented as means ± standard devi-
ations (SD) or median (interquartile range, IQR), and categorical variables were presented
as numbers (proportions). Mean ± SD was used to report normally distributed variables,
and median (IQR) was used to report non-normally distributed variables. Fisher’s exact
analysis, chi-square tests, t-tests, and the Mann–Whitney U-test were used to assess sig-
nificant differences (p-value < 0.05) between CI and non-CI participants based on the data
distribution in the development set. We initially depicted histograms of all continuous

https://opendata.pku.edu.cn/dataverse/CHADS
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variables. When the histograms were skewed or did not clearly show whether the data
conformed to a normal distribution, we used the Shapiro–Wilk test to further evaluate
normality. To ensure the reliability and precision of our analysis, we assessed the impact
of missing data and excluded samples with missing values for any variables. The Least
Absolute Shrinkage and Selection Operator (LASSO) regression was used for variable
selection in this study. LASSO is a type of regularized regression that effectively addresses
the challenges of multicollinearity and overfitting by applying penalty terms to the re-
gression coefficients to encourage model shrinkage of the coefficients. It further excludes
variables with high multicollinearity and eliminates variables weakly associated with the
dependent variable. The lowest lambda value and corresponding predicting variables were
determined using 3-fold cross-validation.

Regarding selecting model-developing methods, logistic regression (LR) is often em-
ployed to establish prediction models. ML also demonstrated good performance in the
prediction of dementia-related outcomes as well. Therefore, we referred to the recom-
mended ML algorithms in “Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research: A Multidisciplinary View” [45]. Four algo-
rithms (LR, SVM, RF, and XGBoost) were finally chosen to develop the prediction models.
Following previous practices [46,47], the development set was randomly divided into three
parts: a 2/3 training set for model training, a 1/6 validation set for parameter tuning, and a
1/6 test set for evaluating the internal predictive performance of different algorithms. Hy-
perparameters of the machine learning algorithms were fine-tuned using loop statements
and grid search on the validation set to balance the performance and generalizability. The
four models were comprehensively compared and assessed using AUC, accuracy, precision,
specification, sensitivity, and F1-score. We designated AUC as the primary indicator for
predictive performance assessment [48].

Additionally, the criteria for evaluating the classification ability of the prediction
models were used in this study. An AUC of more than 0.9 was categorized as excellent,
0.8 to 0.9 was categorized as very good, 0.7 to 0.8 as good, and below 0.7 was categorized
as poor or not useful [49]. The calibration curve, validated by 1000 bootstrap methods,
was used to evaluate the consistency between the predicted probabilities and the results.
Decision curve analysis (DCA) was also employed to investigate net benefits. In addition,
we reported the R-squared, Akaike information criterion (AIC), and Bayesian information
criterion (BIC) for LR to more fully describe the model’s fit. In the modeling process of
LR models and ML models construction, CI was used as an objective variable (response
variable), and predictors were used as explanatory variables (features). Continuous vari-
ables in the predicators as numeric, objective variables, and categorical variables of the
predictors as factors were inputted into the model. Quantitative relationships or estimates
were calculated by ML algorithms and LR.

A nomogram will be developed for direct application and enhanced convenience if
LR exhibits superior predictive performance compared to the other three ML methods. We
will use stepwise regression, stopping until the minimum AIC is obtained, and eliminate
non-significant variables to minimize biased estimation while maintaining the predictive
performance and interpretability of the nomogram. If SVM, XGBoost, or RF is selected to
construct the predictive model, the importance ranking of predictors will be calculated and
interpreted using Shapley Additive Explanation (SHAP) values.

3. Results
3.1. Participant Characteristics

In total, 2138 participants were included in the development set, with 1130 (52.9%)
identified as CI patients and 1008 (47.1%) as non-CI participants. External validation set-1
(CLHLS 2014) and set-2 (CLHLS 2011) comprised 501 and 746 participants, respectively
(Supplementary Table S1). The prevalence of CI for the two datasets was 43.7% and 39.1%,
respectively. Statistically significant differences (p < 0.05) were observed between the CI
and non-CI groups for 31 variables in the development set, including gender, age, place of
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residence, marital status, education level, ADL score, IADL score, smoking, daily exercise,
routine medical checkup, kyphosis, VI, HI, wearing hearing aids, chronic diseases, wearing
dentures, number of natural teeth, tooth cleaning behavior, childhood famine experiences,
CC, WC, HC, BMI, WHtR, WCR, daily housework, garden work, reading newspapers or
books, raising domestic animals or pets, playing cards or mah-jongg, and watching TV or
listening to the radio. Drinking (p = 0.097), history of falls (p = 0.230), and WHR (p = 0.165)
were examined for non-significant differences (Table 1).

Table 1. The characteristics of participants in the development dataset.

Variable Categories CI
(N = 1130)

Non-CI
(N = 1008)

Total
(N = 2138)

Statistical
Test p-Value

Gender, n (%)
Male 327 (29%) 411 (41%) 738 (35%)

χ2 test <0.001Female 803 (71%) 597 (59%) 1400 (65%)
Age, mean (SD) 97.5 (7.0) 91.9 (9.5) 94.8 (8.7) t-test <0.001

Place of residence, n (%)
Urban 663 (59%) 661 (66%) 1324 (62%)

χ2 test 0.001Rural 467 (41%) 347 (34%) 814 (38%)

Marital status, n (%)
Married 114 (10%) 255 (25%) 369 (17%)

χ2 test <0.001Others 1016 (90%) 753 (75%) 1769 (83%)

Education level, n (%)

Absence of formal
education (<1 year) 825 (73%) 612 (61%) 1437 (67%)

χ2 test <0.001Primary education
(1~6 years) 202 (18%) 250 (25%) 452 (21%)

Higher education
(over 6 years) 103 (9%) 146 (14%) 249 (12%)

ADL score, mean (SD) 11.4 (3.3) 9.1 (2.4) 10.4 (3.1) t-test <0.001
IADL score, mean (SD) 22.8 (2.5) 19.3 (5.0) 21.2 (4.2) t-test <0.001

Smoking, n (%) No 1056 (93%) 901 (89%) 1957 (92%)
χ2 test <0.001Yes 74 (7%) 107 (11%) 181 (8%)

Drinking, n (%) No 1050 (93%) 916 (91%) 1966 (92%)
χ2 test 0.097Yes 80 (7%) 92 (9%) 172 (8%)

Daily exercise, n (%) No 1037 (92%) 796 (79%) 1833 (86%)
χ2 test <0.001Yes 93 (8%) 212 (21%) 305 (14%)

Routine medical
checkup, n (%)

No 637 (56%) 429 (43%) 1066 (50%)
χ2 test <0.001Yes 493 (44%) 579 (57%) 1072 (50%)

Kyphosis, n (%) No 438 (39%) 531 (53%) 969 (45%)
χ2 test <0.001Yes 692 (61%) 477 (47%) 1169 (55%)

VI, n (%)
No 509 (45%) 757 (75%) 1266 (59%)

χ2 test <0.001Yes 621 (55%) 251 (25%) 872 (41%)

HI, n (%)
No 338 (30%) 775 (77%) 1113 (52%)

χ2 test <0.001Yes 792 (70%) 233 (23%) 1025 (48%)
Wearing hearing aids, n

(%)
No 656 (58%) 724 (72%) 1380 (65%)

χ2 test <0.001Yes 474 (42%) 284 (28%) 758 (35%)

Chronic diseases, n (%)

0 582 (52%) 355 (35%) 937 (44%)

χ2 test <0.001
1 313 (28%) 333 (33%) 646 (30%)
2 136 (12%) 200 (20%) 336 (16%)
≥3 99 (8%) 120 (12%) 219 (10%)

History of falls, n (%) No 754 (67%) 698 (69%) 1452 (68%)
χ2 test 0.230Yes 376 (33%) 310 (31%) 686 (32%)

Wearing dentures, n (%) No 805 (71%) 566 (56%) 1371 (64%)
χ2 test <0.001Yes 325 (29%) 442 (44%) 767 (36%)

Number of natural teeth,
median (Q1, Q3) 0 (0, 3) 1 (0, 7) 0 (0, 4)

Mann–
Whitney

U-test
<0.001

Tooth cleaning behavior,
n (%)

Rarely brush teeth 694 (61%) 398 (39%) 1092 (51%)
χ2 test <0.001Regular

toothbrushing 436 (39%) 610 (61%) 1046 (49%)

Childhood famine
experiences, n (%)

No 228 (20%) 283 (28%) 511 (24%)
χ2 test <0.001Yes 902 (80%) 725 (72%) 1627 (76%)
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Table 1. Cont.

Variable Categories CI
(N = 1130)

Non-CI
(N = 1008)

Total
(N = 2138)

Statistical
Test p-Value

CC (cm), mean (SD) 28.0 (6.7) 30 (6.0) 28.9 (6.5) t-test <0.001
WC (cm), mean (SD) 80.5 (12.5) 84.3 (12.1) 82.3 (12.4) t-test <0.001
HC (cm), mean (SD) 87.5 (12.6) 91.1 (11.7) 89.2 (12.3) t-test <0.001

BMI (kg/m2), mean (SD) 18.8 (7.1) 21.1 (5.9) 19.9 (6.7) t-test <0.001
WHR (%), mean (SD) 0.9 (0.1) 0.9 (0.1) 0.9 (0.1) t-test 0.165
WHtR (%), mean (SD) 0.5 (0.2) 0.5 (0.1) 0.5 (0.1) t-test <0.001
WCR (%), mean (SD) 3.0 (1.1) 2.9 (0.6) 3.0 (1.0) t-test 0.003

Daily housework, n (%)
Always 34 (3%) 129 (13%) 163 (8%)

χ2 test <0.001Sometimes 21 (2%) 91 (9%) 112 (5%)
Never 1075 (95%) 788 (78%) 1863 (87%)

Garden work, n (%)
Always 22 (2%) 71 (7%) 93 (4%)

χ2 test <0.001Sometimes 14 (1%) 39 (4%) 53 (3%)
Never 1094 (97%) 898 (89%) 1992 (93%)

Reading newspapers or
books, n (%)

Always 27 (2%) 102 (10%) 129 (6%)
χ2 test <0.001Sometimes 27 (2%) 62 (6%) 89 (4%)

Never 1076 (96%) 844 (84%) 1920 (90%)

Raising domestic
animals or pets, n (%)

Always 11 (1%) 48 (5%) 59 (3%)
χ2 test <0.001Sometimes 13 (1%) 29 (3%) 42 (2%)

Never 1106 (98%) 931 (92%) 2037 (95%)

Playing cards or
mah-jongg, n (%)

Always 10 (1%) 42 (4%) 52 (2%)
χ2 test <0.001Sometimes 20 (2%) 57 (6%) 77 (4%)

Never 1100 (97%) 909 (90%) 2009 (94%)

Watching TV or listening
to the radio, n (%)

Always 223 (20%) 481 (48%) 704 (33%)
χ2 test <0.001Sometimes 123 (11%) 190 (19%) 313 (15%)

Never 784 (69%) 337 (33%) 1121 (52%)

ADL: activities of daily living; IADL: instrumental activities of daily living; CC: calf circumference; WC: waist
circumference; HC: hip circumference; BMI: body mass index; WHR: waist-to-hip ratio; WHtR: waist-to-height
ratio; WCR: waist-to-calf ratio.

3.2. Predictors Selection

Predictors were selected using LASSO regression and three-fold cross-validation, with
the lambda value of 0.016 corresponding to the smallest error. The detailed process is
illustrated in Figure 2. From the original 34 variables, a final set of 12 variables was selected,
including age, education level, marital status, number of natural teeth, wearing dentures,
ADL score, VI, chronic diseases, HI, tooth cleaning behavior, IADL score, and watching
TV/listening to the radio.
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coefficients, thus contributing to the possibility that the coefficients of the model variables may be
reduced to zero, corresponding to the elimination of certain predictor variables one by one from
the figure. (b) Three-fold cross-validation LASSO regression. Misclassification error was plotted
versus log(λ). The red line is the log(λ) and the corresponding variable for obtaining the minimum
value of the misclassification error, and the blue line is the log(λ) one standard error away from
the minimum value of the misclassification error. The λ value corresponding to the red line is the
optimal regularization parameter, which represents the best model fit and is considered a criterion
for determining the combination of variables.

3.3. Model Development and Comparison

Hyperparameters of RF, SVM, and XGBoost were tuned to optimize their performance
on the validation set. The default and best parameters were comprehensively reported in
Table 2. The hyperparameter combination that demonstrated the best performance in ML
algorithms was selected for developing the prediction models.

Table 2. Hyperparameters of machine learning models based on validation set.

Algorithms Parameters Default
Parameters

Optimal
Parameters

Area Under the Curve Accuracy

Default
Parameters

Optimal
Parameters

Default
Parameters

Optimal
Parameters

RF

ntree 500 800

0.819 0.822 0.747 0.750
mtry 2 1

maxnodes Default Default
nodesize 1 6

SVM

cost 1 5

0.772 0.835 0.706 0.753
gamma 0.5 0.01
kernel RBF POLY
degree 3 4
coef0 0 1

XGBoost

eta 0.3 0.2

0.781 0.824 0.708 0.747

gamma 0 0.8
max_depth 6 9
min_child

weight 1 1

subsample 1 0.85
colsample_bytree 1 1

nrounds 50 7

maxnodes: representing the maximum number of nodes for each tree. In the R package “randomForest”, it was
not set (“Default”), and trees could unlimitedly grow to the maximum possible; kernel: representing the kernel
function of SVM. “RBF” meant radial basis function, and “POLY” meant polynomial kernel function.

Based on the results obtained from the test set, LR outperformed other ML methods
in terms of predictive performance. It achieved the highest AUC of 0.875 and the highest
accuracy of 0.778. Furthermore, LR consistently exhibited a high level of precision (0.808),
specificity (0.788), sensitivity (0.770), and F1-score (0.788). After a comprehensive evaluation
across different algorithms, LR was chosen as the final prediction model. All the details can
be found in Table 3.

Table 3. The predictive performance of four algorithms on test set.

Algorithms AUC Accuracy Precision Specification Sensitivity F1-Score

LR 0.875 0.778 0.808 0.788 0.770 0.788
RF 0.829 0.762 0.773 0.735 0.785 0.779

SVM 0.833 0.745 0.768 0.743 0.747 0.757
XGBoost 0.836 0.762 0.826 0.789 0.741 0.781

AUC: area under the curve; LR: logistic regression; RF: random forest; SVM: support vector machine.
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3.4. Development and Validation of the Nomogram

A nomogram was developed based on the LR results. Stepwise LR was employed,
achieving an AIC of 1417, and non-significant variables were subsequently excluded
to further simplify the nomogram. The BIC of the nomogram was 1490 and the R-
squared was 0.475. The final nomogram comprised five predictors: age, ADL score,
IADL score, HI, and VI (Figure 3). Increasing age (OR = 1.034, 95% CI = 1.016–1.051,
p < 0.001), ADL score (OR = 1.138, 95% CI = 1.084–1.195, p < 0.001), IADL score (OR = 1.145,
95% CI = 1.095–1.197, p < 0.001), HI (OR = 4.434, 95% CI = 3.411–5.760, p < 0.001), and VI
(OR = 1.785, 95% CI = 1.370–2.326, p < 0.001) demonstrated to be associated with higher
odds for CI. Complete details are provided in Table 4.
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Table 4. The relationship between predictors and CI in nomogram based on the development dataset
by logistic regression.

Variables β OR 95% CI p-Value

Age 0.033 1.034 (1.016, 1.051) <0.001
ADL score 0.129 1.138 (1.084, 1.195) <0.001
IADL score 0.135 1.145 (1.095, 1.197) <0.001
HI

No Reference 1
Yes 1.489 4.434 (3.411, 5.760) <0.001

VI
No Reference 1
Yes 0.580 1.785 (1.370, 2.326) <0.001

Intercept −8.265 0.001 (0.001, 0.001) <0.001
OR: odds ratio; CI: confidence interval; ADL: activities of daily living; IADL: instrumental activities of daily living.
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We conducted validation using the test set and two external validation sets. The
results showed that the nomogram performed well in the internal test set (AUC = 0.871)
and showed stable predictive performance in external validation set-1 (AUC = 0.825)
and set-2 (AUC = 0.863) (Figure 4). In addition, ROC curves were measured, and AUC
values were calculated for each predictor in the three validation sets to further explore
the individual predictive ability of these predictors (Figure 4). Moreover, DCA analysis
indicated that the nomogram exhibited substantial net benefits across various threshold
probabilities from approximately 0.12 to 0.99. The calibration curve displayed excellent
performance for predicting CI in internal and external sets (Figure 5).
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4. Discussion

In this study, we developed and validated a prediction model for identifying the risk
of CI in disabled older adults. The predictive performance of LR and three ML algorithms
were compared, and we found that LR outperformed. Therefore, a nomogram was further
established based on the results of LR comprising five predictors: age, ADL score, IADL
score, HI, and VI. These predictors are easily accessible through basic information and
simple assessments, which have the advantages of low cost and ease of use.

We evaluated the discriminative ability of the prediction model based on ROC curves
and AUC. LR models had stable AUCs of more than 0.8 in all internal and external val-
idation sets, implying “very good” predictive performance [48]. Comparisons with the
predictive performance of previous prediction models related to CI constructed in other
populations demonstrated that the AUC of the internal validation (AUC = 0.871) set was
higher than that of the previous model [21,23–25,27] and the model had a wide range of
benefits and excellent calibration. This further suggested the validity and reliability of
our model in identifying CI among disabled older adults. Among the five predictors, we
investigated their independent predictive ability for CI. In the internal validation set, HI
demonstrated outstanding predictive ability, followed by ADL, IADL, and age. VI had the
weakest predictive ability. In both external validation sets, IADL demonstrated the best
predictive ability. In external validation set-2, HI and IADL had comparable AUC, but VI
both demonstrated the weakest predictive ability.

Age is an unmodifiable factor and stood as one of the predictors in our study. Our
findings supported previous studies. Extensive evidence pointed out that aging is a
significant contributor to CI and a primary cause of neurodegenerative disorders [32,50].
A CI predicting study revealed age was an individual predictor, resulting in a C-index of
0.67 [18]. In our study, the AUC for age varied from 0.695 to 0.7 across three validation sets.
Notably, most models integrated age as a predictor in models for CI diagnosis [21–26]. As
a core factor in aging disorders, screening for dementia has been undertaken in multiple
countries [51]. Being 75 years of age could be a risk stratification indicator, with evidence
suggesting that about 80 percent of individuals with dementia were aged 75 years or
older [52]. However, the cost-effectiveness of screening for all ages and of large-scale
screening for specific age groups above 75 years remained unclear.

ADL score and IADL score were important predictors in our model. The ADL and
IADL scales were the most commonly used to measure the patient’s ability to live inde-
pendently. These scales reflect the level of disability, with higher scores associated with
poorer ability to live independently [53,54]. Dysfunction was significantly associated with
cognitive decline in older adults [55,56]. This association may stem from the simultaneous
decline in physical and cognitive functioning caused by aging related to changes in brain
circuitry and pathology [57,58]. There may also be a bidirectional relationship between
somatic functional and cognitive decline [59–62]. A cohort with an average age of 72 years
found that declines in physical function predicted a decline in cognitive function. This
association occurred at the same time interval but was not significant at the dissimilar
interval [63]. Furthermore, while the concepts of ADL score and IADL score are inter-
related, they are not complete substitutes. ADL primarily captures the loss of physical
function, whereas IADL is based primarily on psychosocial and executive function [64]. A
study on older adults from middle-income countries found that both ADL and IADL were
predictors of dementia and MCI. Notably, IADL may have a more sensitive measurement
effect [56]. A possible explanation is that the IADL scale involves memory and execution.
When these functions are impaired, the IADL can be quickly identified. ADL declines as
dementia progresses, eventually affecting even basic activities [65,66]. However, when
physical function is poor, IADL may have a floor effect that fails to capture the loss of
further daily function and does not accurately predict cognitive function in this population
group. Therefore, both ADL and IADL should be included in the prediction model for
a comprehensive measurement. The issue of how to slow the progression of disability
is essential in the care of the disabled older population [67]. A study conducted among
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nursing home residents in the United States revealed that disability deterioration exhibited
significant heterogeneity across groups with various functional levels. This heterogeneity
posed challenges in identifying high-risk populations through progression trajectory analy-
sis [68]. Dynamic features of ADL scores seem to capture the progression of disability. A
study of repeated-measurement ADLs found short-term fluctuations in disability, which
were significantly associated with mortality. Moreover, ADL fluctuations progressively
increased towards the end of life [69]. Targeted care can improve the living quality of
people with late-life disability.

VI and HI were predictors of the model and demonstrated strong individual dis-
crimination. VI and HI are components of sensory impairment. Studies have shown that
sensory impairment can accelerate cognitive decline and is significantly associated with CI
and dementia [70,71]. A cohort study revealed that HI effectively predicted cognitive de-
cline [72]. However, there is no consensus on the mechanism between HI and CI. They were
currently explained by the sensory deprivation hypothesis, resource allocation hypothesis,
and cognitive load on perception hypothesis [73]. A prospective cohort study found that
social participation mediated the association. This could be because eye disease reduces
patients’ social activity. Long-term visual impairment impaired their social functioning,
affecting the central region of the visual system in the brain [74]. Similar mediators include
loneliness and depression [75,76]. Furthermore, a systematic review indicated that the
relationship between VI and CI or dementia was similar across studies using different
measurements of vision and cognition [77]. This may stem from CI and VI having similar
pathologic processes, increasing the risk of CI with aging [78]. Additionally, VI and HI are
also significant risk factors in ADL and IADL disabilities, and multiple dysfunctions further
exacerbate CI [79]. Notably, improving hearing function has been demonstrated to decrease
dementia risk. Hearing restoration devices were associated with a 19 percent lower risk of
CI [80]. However, a multicenter randomized controlled trial revealed differences in benefits
across populations. Hearing interventions improved cognitive function for only 3 years in
an older group with cognitive decline. The effect was insignificant in a group with normal
cognitive function [81]. Additionally, screening and improvement of VI have been shown to
be effective in public health practice [82]. Vision assessment is a widely accessible, low-cost
test. Vision-related training (e.g., visual field training) can also be performed with devices
such as mobile phones [83,84].

We compared predictors of CI in older adults with and without disabilities. Pre-
vious predictors in CI prediction models for non-disabled older populations include
age [21,24–26], education level [23–27], gender [25,26], place of residence [25,26], reading
books [25,27], physical exercise [23,26,27], smoking [23,27], drinking [23], cardiovascular
disease [21,23], and BMI [21]. Predictors in the model developed for the disabled older
adults in this study included age, ADL score, IADL score, HI, and VI. We found that pre-
dictors in the non-disabled older adult population were mainly socio-demographic factors
(e.g., gender, education level, place of residence), and common negative health behaviors
and diseases. In contrast, impairments in somatic and sensory functioning predicted CI
more sensitively in disabled older adults. This difference may stem from two reasons. First,
impairments in sensory functioning are associated with physiological alterations in an
individual’s brain function, which have a more direct negative impact [85,86]. Secondly, the
social isolation and loneliness resulting from reduced social participation due to impaired
ability and independence in daily living significantly contribute to cognitive decline [87].
Preventing further deterioration in physical and sensory function is essential for managing
cognitive decline in disabled older adults.

We developed the first model and nomogram for CI among the disabled population,
which could be further applied in CI diagnosis. Using nationally representative datasets to
develop and validate the model, this study can significantly reduce the selection bias and
limitations of single centers and small samples. While ML showed outstanding diagnostic
performance in other populations and different types of dementia, LR performed better
in disabled older adults. The nomogram based on the LR results can assist in identifying
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the disabled population at risk during screening for CI. It can also increase the accuracy
of the assessment and further improve convenience in public health practice. A review
suggested that low- and middle-income countries were most prone to experience the impact
of dementia. Public health systems need to introduce early diagnosis and person-centered
prevention practices [88]. This model is a reliable tool for primary healthcare institutions to
identify the high-risk population with CI by collecting simple examinations and low-cost
questionnaires. It applies in rural China and other low- and middle-income areas with poor
facilities. Disabled older adults with difficulty completing a standard cognitive function
assessment can also request their caregivers to complete it as a proxy. We took an example to
illustrate how to use this nomogram. If a disabled older adult who is 75 years old (34 points)
with an HI (99 points), no VI (54 points), an ADL score of 16 (76 points), and an IADL
score of 22 (58 points) for a total of 321 points, this suggests that the probability of CI is
approximately 58%. This case demonstrates that users can easily complete a risk assessment
and seek timely medical and nursing services. In addition, China’s long-term care insurance
provides coverage for people with disabilities [89]. This insurance will determine cognitive
function when assessing whether or not they can be reimbursed for their level of care.
The nomogram can effectively help identify the probability of CI to reduce the assessment
process, support decision-making, and inform other healthcare policies.

Several limitations need to be acknowledged in this study. First, despite constructing
validation groups from internal and external sets, further validation in public health practice
needs to confirm the robustness and generalizability. Second, our data were obtained
through patient self-reported questionnaires, which relied on participants’ memory for
specific questions, potentially introducing recall bias into the study. Third, it is important
to note that our model was constructed on Chinese disabled older adults, and its suitability
should be assessed by other researchers considering different populations. Despite these
limitations, this study holds value in identifying CI among the disabled older population.

5. Conclusions

This study developed and validated the first CI prediction model among disabled
older adults and further developed a nomogram that was more vivid and convenient
for use. With only five low-cost and easily measurable variables included (age, ADL
score, IADL score, HI, and VI), this prediction model can effectively predict the risk of
CI among the disabled older population, and the information could be easily accessed by
questionnaires. This provides a reliable tool for CI screening and diagnosis among the
disabled older population within community and primary healthcare contexts, particularly
beneficial in low- and middle-income countries and resource-limited areas.
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