Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Morphological Parameters and Fruit Quality Analyses
2.3. Antioxidant Compounds Extraction and Analyses
2.4. HPLC/DAD/TOF
2.5. Gas Chromatography/Mass-Spectrometry
2.6. Sensory Test
2.7. Statistics
3. Results
3.1. Morphological Parameters
3.2. Fruit Quality Analyses
3.3. Antioxidant Compounds Extraction and Analyses
HPLC/DAD/TOF
3.4. GC/MS
3.5. Sensory Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.; Ardenghi, N.M.G.; Astuti, G.; Bacchetta, G.; Ballelli, S.; Banfi, E. An Updated Checklist of the Vascular Flora Native to Italy. Plant Biosyst. 2018, 152, 179–303. [Google Scholar] [CrossRef]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Albano, A.; Alessandrini, A.; Bacchetta, G.; Ballelli, S.; et al. An Updated Checklist of the Vascular Flora Alien to Italy. Plant Biosyst. 2018, 152, 556–592. [Google Scholar] [CrossRef]
- Bartolucci, F.; Galasso, G.; Peruzzi, L.; Conti, F. Report 2020 on Plant Biodiversity in Italy: Native and Alien Vascular Flora. Nat. Hist. Sci. 2021, 8, 41–54. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; de Haan, S.; Jones, A.D.; Creed-Kanashiro, H.; Tello, M.; Carrasco, M.; Meza, K.; Plasencia Amaya, F.; Cruz-Garcia, G.S.; Tubbeh, R. The Biodiversity of Food and Agriculture (Agrobiodiversity) in the Anthropocene: Research Advances and Conceptual Framework. Anthropocene 2019, 25, 100192. [Google Scholar] [CrossRef]
- Labianca, M. Towards the New Common Agricultural Policy for Biodiversity: Custodian Farmers for Sustainable Agricultural Practices in the Apulia Region (South of Italy). Belgeo 2022. 4, 57113. [CrossRef]
- Ministero delle Politiche Agricole e Forestali. Linee Guida per La Conservazione e La Caratterizzazione Della Biodiversità Vegetale Di Interesse per l’agricoltura; Gigli, M., Ed.; INEA: Roma, Italy, 2013; pp. XVI–XVII. [Google Scholar]
- Cogill, B. Contributions of Indigenous Vegetables and Fruits to Dietary Diversity and Quality. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): International Symposium on Promoting the Future of Indigenous Vegetables Worldwide, Brisbane, Australia, 17 August 2014; ISHS Acta Horticulturae: Leuven, Belgium, 2014. [Google Scholar]
- Zimmerer, K.S.; De Haan, S. Agrobiodiversity and a Sustainable Food Future. Nat. Plants 2017, 3, 17047. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Cantini, C.; Guarnieri, M.; Nepi, M.; Hausman, J.-F.; Guerriero, G.; Romi, M.; Cai, G. Nutraceutical Characteristics of Ancient Malus x domestica Borkh. Fruits Recovered across Siena in Tuscany. Medicines 2019, 6, 27. [Google Scholar] [CrossRef]
- Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and in Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef] [PubMed]
- Draga, S.; Palumbo, F.; Miracolo Barbagiovanni, I.; Pati, F.; Barcaccia, G. Management of Genetic Erosion: The (Successful) Case Study of the Pear (Pyrus communis L.) Germplasm of the Lazio Region (Italy). Front. Plant Sci. 2023, 13, 1099420. [Google Scholar] [CrossRef] [PubMed]
- Bergonzoni, L.; Alessandri, S.; Domenichini, C.; Dondini, L.; Caracciolo, G.; Pietrella, M.; Baruzzi, G.; Tartarini, S. Characterization of Red-Fleshed Pear Accessions from Emilia-Romagna Region. Sci. Hortic. 2023, 312, 111857. [Google Scholar] [CrossRef]
- Ferradini, N.; Lancioni, H.; Torricelli, R.; Russi, L.; Ragione, I.D.; Cardinali, I.; Marconi, G.; Gramaccia, M.; Concezzi, L.; Achilli, A.; et al. Characterization and Phylogenetic Analysis of Ancient Italian Landraces of Pear. Front. Plant Sci. 2017, 8, 751. [Google Scholar] [CrossRef] [PubMed]
- Livraghi Verdesca Zain, G. Tre Santi e Una Campagna. Culti Magico-Religiosi Nel Salento Di Fine Ottocento; Laterza: Bari, Italy, 1994. [Google Scholar]
- Cordella, M.F. La Cucina Salentina: Fra i Piatti Della Tradizione. L’Idomeneo 2015, 20, 213–224. [Google Scholar]
- Savino, V.N.; Palasciano, M.; Lipari, E.; Mazzeo, A.; Pacucci, C.; Todisco, M.C.; Losciale, P.; Gaeta, L.; Minonne, F.; Biscotti, N. Atlante Dei Frutti Antichi Di Puglia, 1st ed.; Lillo, A., Ed.; CRSFA Centro di Ricerca e Formazione in Agricoltura Basile Caramia: Locorotondo, BA, Italy, 2018. [Google Scholar]
- Regione Puglia. Bollettino Ufficiale Della Regione Puglia-n. 160 Del 23-12-2021; Regione Puglia: Bari, Italy, 2021. [Google Scholar]
- Musacchi, S.; Iglesias, I.; Neri, D. Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review. Agronomy 2021, 11, 1765. [Google Scholar] [CrossRef]
- Negro, C.; Tommasi, L.; Miceli, A. Phenolic Compounds and Antioxidant Activity from Red Grape Marc Extracts. Bioresour. Technol. 2003, 87, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Frontini, A.; De Bellis, L.; Luvisi, A.; Blando, F.; Allah, S.M.; Dimita, R.; Mininni, C.; Accogli, R.; Negro, C. The Green Leaf Volatile (Z)-3-Hexenyl Acetate Is Differently Emitted by Two Varieties of Tulbaghia violacea Plants Routinely and after Wounding. Plants 2022, 11, 3305. [Google Scholar] [CrossRef] [PubMed]
- NIST (National Institute of Standards and Technology). Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101; NIST (National Institute of Standards and Technology): Gaithersburg, MD, USA, 2022. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Li, Z.G.; Tian, W.L.; Fang, X.M.; Su, S.K.; Peng, W.J. Differential Volatile Organic Compounds in Royal Jelly Associated with Different Nectar Plants. J. Integr. Agric. 2016, 15, 1157–1165. [Google Scholar] [CrossRef]
- Min Allah, S.; Dimita, R.; Negro, C.; Luvisi, A.; Gadaleta, A.; Mininni, C.; De Bellis, L. Quality Evaluation of Mustard Microgreens Grown on Peat and Jute Substrate. Horticulturae 2023, 9, 598. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.R-project.org/ (accessed on 1 October 2020).
- Kolniak-Ostek, J.; Oszmiański, J. Characterization of Phenolic Compounds in Different Anatomical Pear (Pyrus communis L.) Parts by Ultra-Performance Liquid Chromatography Photodiode Detector-Quadrupole/Time of Flight-Mass Spectrometry (UPLC-PDA-Q/TOF-MS). Int. J. Mass Spectrom. 2015, 392, 154–163. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Areche, C.; Sepúlveda, B. Fast Detection of Phenolic Compounds in Extracts of Easter Pears (Pyrus communis) from the Atacama Desert by Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC-Q/Orbitrap/MS/MS). Molecules 2016, 21, 92. [Google Scholar] [CrossRef]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.C.; Ribeiro, C.; Simôes, R.; Alegria, M.J.; Mateus, N.; de Freitas, V.; Pérez-Gregorio, R.; Soares, S. Characterization of the Effect of a Novel Production Technique for ‘Not from Concentrate’ Pear and Apple Juices on the Composition of Phenolic Compounds. Plants 2023, 12, 3397. [Google Scholar] [CrossRef] [PubMed]
- The Good Scents Company. Providing Information for the Flavor, Fragrance, Food and Cosmetic Industries. Available online: http://www.thegoodscentscompany.com/ (accessed on 7 March 2024).
- Lee, B.R.; Cho, J.H.; Wi, S.G.; Yang, U.; Jung, W.J.; Lee, S.H. The Sucrose-to-Hexose Ratio Is a Significant Determinant for Fruit Maturity and Is Modulated by Invertase and Sucrose Re-Synthesis during Fruit Development and Ripening in Asian Pear (Pyrus pyrifolia Nakai) Cultivars. Hortic. Sci. Technol 2021, 39, 141–151. [Google Scholar] [CrossRef]
- Cascia, G.; Bulley, S.M.; Punter, M.; Bowen, J.; Rassam, M.; Schotsmans, W.C.; Larrigaudière, C.; Johnston, J.W. Investigation of Ascorbate Metabolism during Inducement of Storage Disorders in Pear. Physiol. Plant. 2013, 147, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Arzani, K. Postharvest Physicochemical Changes and Properties of Asian (Pyrus serotina Rehd.) & European (Pyrus communis L.) Pear Cultivars. Hort. Environ. Biotechnol. 2008, 49, 244–252. [Google Scholar]
- Lindo-García, V.; Muñoz, P.; Larrigaudière, C.; Munné-Bosch, S.; Giné-Bordonaba, J. Interplay between Hormones and Assimilates during Pear Development and Ripening and Its Relationship with the Fruit Postharvest Behaviour. Plant Sci. 2020, 291, 110339. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, I.; Wrolstad, R.E. Variation of Sugars and Acids During Ripening of Pears and in the Production and Storage of Pear Concentrate. J. Food Sci. 1980, 45, 499–501. [Google Scholar] [CrossRef]
- Iqbal, K.; Khan, A.; Khattak, M.M.A.K. Biological Significance of Ascorbic Acid (Vitamin C) in Human Health—A Review. Pak. J. Nutr. 2004, 3, 5–13. [Google Scholar] [CrossRef]
- Gundewadi, G.; Reddy, V.R.; Bhimappa, B. Physiological and Biochemical Basis of Fruit Development and Ripening—A Review. J. Hill Agric. 2018, 9, 7. [Google Scholar] [CrossRef]
- Kaur, S.; Singh Gill, M.; Gill, P.P.S.; Jawandha, S.K.; Prem Singh, N. Influence of Harvest Date on Storage Quality of Asian Pear (Pyrus Pyrifolia) Fruit. Erwerbs-Obstbau 2023, 65, 1331–1339. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, G.; Han, Z.; Li, Q.; Chen, Y.; Li, D. Effect of Ozone on the Antioxidant Capacity of “Qiushui” Pear (Pyrus pyrifolia Nakai cv. Qiushui) during Postharvest Storage. J. Food Qual. 2013, 36, 190–197. [Google Scholar] [CrossRef]
- Wang, J.; Lv, M.; He, H.; Jiang, Y.; Yang, J.; Ji, S. Glycine Betaine Alleviated Peel Browning in Cold-Stored ‘Nanguo’ Pears during Shelf Life by Regulating Phenylpropanoid and Soluble Sugar Metabolisms. Sci. Hortic. 2020, 262, 109100. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial Activity and Mechanism of Action of Chlorogenic Acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Thakur, K.; Sharma, V.; Saini, M.; Sharma, D.; Vishwas, S.; Kakoty, V.; Pal, R.S.; Chaitanya, M.V.N.L.; Babu, M.R.; et al. Exploring the Multifaceted Potential of Chlorogenic Acid: Journey from Nutraceutical to Nanomedicine. S. Afr. J. Bot. 2023, 159, 658–677. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Commisso, M.; Bianconi, M.; Poletti, S.; Negri, S.; Munari, F.; Ceoldo, S.; Guzzo, F. Metabolomic Profiling and Antioxidant Activity of Fruits Representing Diverse Apple and Pear Cultivars. Biology 2021, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Hudina, M.; Stampar, F. Effect of Fruit Bagging on Quality of “Conference” Pear (Pyrus communis L.). Eur. J. Hort. Sci. 2011, 76, 176–181. [Google Scholar]
- Preti, R.; Tarola, A.M. Study of Polyphenols, Antioxidant Capacity and Minerals for the Valorisation of Ancient Apple Cultivars from Northeast Italy. Eur. Food Res. Technol. 2021, 247, 273–283. [Google Scholar] [CrossRef]
- De Oliveira, L.D.L.; De Carvalho, M.V.; Melo, L. Health Promoting and Sensory Properties of Phenolic Compounds in Food. Rev. Ceres. 2014, 61, 764–779. [Google Scholar] [CrossRef]
- Diehl, D.C.; Sloan, N.L.; Bruhn, C.M.; Simonne, A.H.; Brecht, J.K.; Mitcham, E.J. Exploring Produce Industry Attitudes: Relationships between Postharvest Handling, Fruit Flavor, and Consumer Purchasing. Horttechnology 2013, 23, 642–650. [Google Scholar] [CrossRef]
- Yi, X.K.; Liu, G.F.; Rana, M.M.; Zhu, L.W.; Jiang, S.L.; Huang, Y.F.; Lu, W.M.; Wei, S. Volatile Profiling of Two Pear Genotypes with Different Potential for White Pear Aroma Improvement. Sci. Hortic. 2016, 209, 221–228. [Google Scholar] [CrossRef]
- Scutareanu, P.; Bruin, J.; Posthumus, M.A.; Drukker, B. Constitutive and Herbivore-Induced Volatiles in Pear, Alder and Hawthorn Trees. Chemoecology 2003, 13, 63–74. [Google Scholar] [CrossRef]
- Zierer, B.; Schieberle, P.; Granvogl, M. Aroma-Active Compounds in Bartlett Pears and Their Changes during the Manufacturing Process of Bartlett Pear Brandy. J. Agric. Food Chem. 2016, 64, 9515–9522. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yin, H.; Wu, X.; Shi, X.; Qi, K.; Zhang, S. Comparative Analysis of the Volatile Organic Compounds in Mature Fruits of 12 Occidental Pear (Pyrus communis L.) Cultivars. Sci. Hortic. 2018, 240, 239–248. [Google Scholar] [CrossRef]
- Mahmoud, E.; Ramadan, M.; Ismail, M.; Fadel, M.; Abass, M. Production of Flavors from Agro Waste of Ocimumbasilicum L. by Different Microorganisms Using Solid-State Fermentation. Egypt. J. Chem. 2022, 65, 259–273. [Google Scholar] [CrossRef]
- Jou, Y.J.; Hua, C.H.; Lin, C.S.; Wang, C.Y.; Wan, L.; Lin, Y.J.; Huang, S.H.; Lin, C.W. Anticancer Activity of γ-Bisabolene in Human Neuroblastoma Cells via Induction of P53-Mediated Mitochondrial Apoptosis. Molecules 2016, 21, 601. [Google Scholar] [CrossRef] [PubMed]
- Wendt, L.M.; Ludwig, V.; Thewes, F.R.; Soldateli, F.J.; Batista, C.B.; Fukui, C.M.; Gonçalves dos Santos, G.; Katsurayama, J.M.; Brackmann, A.; Both, V. Effect of Dynamic Controlled Atmosphere on Volatile Compound Profile and Quality of Pears. Sci. Hortic. 2024, 328, 112910. [Google Scholar] [CrossRef]
- Qin, G.; Tao, S.; Cao, Y.; Wu, J.; Zhang, H.; Huang, W.; Zhang, S. Evaluation of the Volatile Profile of 33 Pyrus ussuriensis Cultivars by HS-SPME with GC-MS. Food Chem. 2012, 134, 2367–2382. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; El-Tantawi, M.E.; Kirollos, F.N.; Hammam, W.E. Chemical Composition, in Vitro Cytotoxic and Antimicrobial Activities of Volatile Constituents from Pyrus communis L. and Malus domestica Borkh. Fruits Cultivated in Egypt. J. Essent. Oil-Bear. Plants 2018, 21, 1642–1651. [Google Scholar] [CrossRef]
Cultivar | Length (cm) | Diameter (cm) | Fresh Weight (g) |
---|---|---|---|
Petrucina | 5.3 ± 1.3 b | 4.3 ± 0.7 b | 39.2 ± 5.1 b |
Conference | 12.0 ± 0.6 a | 6.8 ± 0.4 a | 261.3 ± 33.5 a |
Cultivar | Stage | Dry Weight (%) | Total Soluble Solids (°Brix) | Total Titratable Acidity (g Malic Acid/L) | Firmness (N) |
---|---|---|---|---|---|
Petrucina | t0 | 15.1 ± 1.1 ab | 14.5 ± 0.2 d | 1.8 ± 0.1 a | 45.1 ± 6.6 a |
t7 | 18.2 ± 1.5 a | 17.0 ± 0.3 b | 1.6 ± 0.1 b | 26.3 ± 4.4 bc | |
t14 | 18.8 ± 1.9 a | 19.5 ± 0.6 a | 1.2 ± 0.1 c | 16.7 ± 2.3 cd | |
Conference | t0 | 11.2 ± 0.9 c | 10.2 ± 0.1 f | 1.5 ± 0.1 b | 44.3 ± 4.9 a |
t7 | 14.1 ± 1.2 bc | 13.2 ± 0.2 e | 1.2 ± 0.2 c | 32.1 ± 4.1 b | |
t14 | 15.6 ± 1.5 ab | 15.5 ± 0.4 c | 0.9 ± 0.1 d | 9.0 ± 2.0 d |
Variety | DPPH (EC50, µg FW) | ABTS (µmol TE/100 g FW) | FRAP (µmol TE/100 g FW) | |
---|---|---|---|---|
Petrucina | t0 | 135.4 ± 5.4 d | 177.0 ± 7.6 a | 231.1 ± 5.3 a |
t7 | 141.4 ± 4.2 d | 197.4 ± 6.5 a | 243.3 ± 8.7 a | |
t14 | 156.1 ± 3.1 d | 197.2 ± 9.4 a | 233.9 ± 4.8 a | |
Conference | t0 | 238.1 ± 12.1 c | 128.4 ± 7.3 b | 174.6 ± 8.8 b |
t7 | 282.6 ± 8.5 b | 79.2 ± 5.8 c | 98.9 ± 5.3 c | |
t14 | 340.0 ± 13.6 a | 66.8 ± 2.1 c | 74.4 ± 12.7 d |
N | RT | Name | m/z Exp | m/z Calc | Δ ppm | [M-H]− | Ref. | Pet | Con |
---|---|---|---|---|---|---|---|---|---|
1 | 0.589 | Quinic acid | 191.0213 | 191.0197 | 5.49 | C7H11O6 | [27,28,29] | + | + |
2 | 2.598 | Hydroxybenzoic acid | 137.0244 | 137.0244 | 0.59 | C7H5O3 | [28] | + | − |
3 | 4.006 | Caffeoylquinic acid | 353.0886 | 353.0878 | −1.35 | C16H17O9 | [27,28,29,30] | + | + |
4 | 4.535 | Procyanidin dimer | 577.1348 | 577.1351 | 0.97 | C30H25O12 | [27,28,29,30] | + | + |
5 | 4.987 | Coumaroylquinic acid | 337.0926 | 337.0929 | 2.57 | C16H17O8 | [27,28,29] | + | − |
6 | 5.31 | (+)-Catechin | 289.0716 | 289.0718 | 0.35 | C15H13O6 | [26,27,28,29] | + | + |
7 | 7.14 | Feruloyl quinic acid | 367.1029 | 367.1035 | −1.19 | C17H20O9 | [26,27,28,29] | + | + |
8 | 7.423 | Gallocatechin-3-O-glucose | 481.0962 | 481.0988 | 0.22 | C21H21O13 | [28] | + | − |
No. | RI | Compound Name | Peak Area (%) | |
---|---|---|---|---|
Petrucina | Conference | |||
1 | 996 | Ethyl hexanoate | 0.7 | |
2 | 1011 | Hexyl acetate | 9.5 | 2.8 |
3 | 1093 | Ethyl 2,4-hexadienoate | 0.8 | |
4 | 1156 | 1-octene, 3-(methoxymethoxy)- | 3.0 | |
5 | 1187 | Butyl hexanoate | 2.6 | |
6 | 1196 | Ethyl octanoate | 1.0 | |
7 | 1227 | Hexyl 2-methyl butyrate | 0.5 | 1.1 |
8 | 1246 | Ethyl-(E)-2-octenoate | 0.6 | |
9 | 1376 | Copaene | 0.9 | |
10 | 1380 | Cyclohexanebutanol, 2-methyl-3-oxo-, cis- | 0.8 | |
11 | 1394 | Methyl (E,Z)-2,4-decadienoate 1 | 2.2 | 10.5 |
12 | 1428 | Unknown | 0.5 | |
13 | 1457 | Ethyl (E,Z)-2,4-decadienoate isomer 1 2 | 2.2 | 0.7 |
14 | 1463 | Unknown | 2.6 | 0.9 |
15 | 1471 | Ethyl (E,Z)-2,4-decadienoate isomer 2 2 | 21.4 | 8.1 |
16 | 1498 | α-bergamotene | 2.2 | 1.0 |
17 | 1510 | α-farnesene 3 | 40.9 | 65.9 |
18 | 1517 | α-himachalene | 0.8 | |
19 | 1534 | (+)-ledene | 0.5 | |
20 | 1549 | Unknown | 0.5 | |
21 | 1557 | Unknown | 0.4 | |
22 | 1562 | γ-bisabolene isomer 1 4 | 1.3 | 0.8 |
23 | 1595 | γ-bisabolene isomer 2 4 | 2.6 | |
24 | 1837 | Unknown | 0.8 | |
25 | 1928 | Methyl palmitate | 0.5 | |
26 | 1990 | Ethyl palmitate | 0.5 | |
27 | 2140 | Oleic acid | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frontini, A.; Negro, C.; Accogli, R.; Minonne, F.; Luvisi, A.; De Bellis, L. Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’). Foods 2024, 13, 1528. https://doi.org/10.3390/foods13101528
Frontini A, Negro C, Accogli R, Minonne F, Luvisi A, De Bellis L. Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’). Foods. 2024; 13(10):1528. https://doi.org/10.3390/foods13101528
Chicago/Turabian StyleFrontini, Alessandro, Carmine Negro, Rita Accogli, Francesco Minonne, Andrea Luvisi, and Luigi De Bellis. 2024. "Valorization of a Local Italian Pear (Pyrus communis L. cv. ‘Petrucina’)" Foods 13, no. 10: 1528. https://doi.org/10.3390/foods13101528