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Abstract: Bartonella henselae is a Gram-negative bacterium causing a variety of clinical symptoms,
ranging from cat-scratch disease to severe systemic infections, and it is primarily transmitted by
infected fleas. Its status as an emerging zoonotic pathogen and its capacity to persist within host ery-
throcytes and endothelial cells emphasize its clinical significance. Despite progress in understanding
its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms
specific to the B. henselae strain Houston-1. Exploring these aspects is crucial for targeted therapeutic
strategies against this versatile pathogen. Using reverse-vaccinology-based subtractive proteomics,
this research aimed to identify the most antigenic proteins for formulating a multi-epitope vac-
cine against the B. henselae strain Houston-1. One crucial virulent and antigenic protein, the PAS
domain-containing sensor histidine kinase protein, was identified. Subsequently, the identification
of B-cell and T-cell epitopes for the specified protein was carried out and the evaluated epitopes
were checked for their antigenicity, allergenicity, solubility, MHC binding capability, and toxicity.
The filtered epitopes were merged using linkers and an adjuvant to create a multi-epitope vaccine
construct. The structure was then refined, with 92.3% of amino acids falling within the allowed
regions. Docking of the human receptor (TLR4) with the vaccine construct was performed and
demonstrated a binding energy of −1047.2 Kcal/mol with more interactions. Molecular dynamic
simulations confirmed the stability of this docked complex, emphasizing the conformation and
interactions between the molecules. Further experimental validation is necessary to evaluate its
effectiveness against B. henselae.

Keywords: Bartonella henselae; subtractive proteome analysis; reverse vaccinology; immune simulation;
in silico cloning
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1. Introduction

Bartonella henselae, a Gram-negative bacterium, causes cat-scratch disease (CSD) and
other clinical manifestations in humans. The attention drawn to this bacterium is due to its
ability to establish chronic intravascular infections and its complex interactions with both
the host and vector fleas [1]. Among the various strains of B. henselae, the Houston-1 strain
is of particular importance due to its association with severe disease outcomes and distinct
genetic characteristics [2].

Cat-scratch disease is predominantly transmitted to humans via bite or scratch injuries
caused by infected cats. The characteristic clinical manifestation of this illness is fever
accompanied by self-limiting lymphadenopathy [3]. However, the infection can cause
severe clinical manifestations in immune-compromised individuals and in rare instances,
in immune-competent patients, including bacillary angiomatosis, hepatic peliosis, and
bacillary splenitis. This spectrum of disease underscores the pathogenic potential of B.
henselae and the importance of understanding its virulence determinants [4]. Inconclusive
evidence exists regarding human infection with B. henselae via arthropod vectors; however,
fragmented studies have identified various species of Bartonella in arthropods that utilize
humans as atypical hosts [5]. Investigating the proteomic aspects of this strain holds
promise for unraveling the underlying mechanisms driving its pathogenicity and host
interaction [6]. Moreover, insights were gained based on its complete proteome and its
significant medical importance to develop improved therapeutic strategies and potential
vaccine candidates to combat B. henselae infection [7].

A subtractive proteomics approach is used to identify pathogen-specific proteins that
are essential for the pathogen’s survival but are absent in the host [8–10]. This approach in-
volves comparing the proteomes of the pathogens and the hosts to identify proteins unique
to the pathogens. By subtracting host-specific proteins, subtractive proteomics helps in
identifying potential drug targets or vaccine candidates specific to the pathogen [11]. It aids
in understanding the pathogen’s biology and virulence factors, while reverse vaccinology
is a novel bioinformatics-driven approach that has revolutionized vaccine development by
predicting new protein-based vaccine candidates which overcome the current vaccinology
limitations. This approach involves analyzing the entire proteome of a pathogen to predict
antigenic proteins that could serve as vaccine candidates [12]. By screening the pathogen’s
proteome for proteins that are surface-exposed, conserved among strains, and capable of
eliciting immune responses, reverse vaccinology identifies potential vaccine targets [13].
This approach has accelerated vaccine development by neglecting traditional methods of
isolating and culturing pathogens, allowing for the rapid identification of vaccine candi-
dates for various infectious diseases [14]. Subtractive proteomics and reverse vaccinology
have emerged as potent tools for pinpointing drug targets and vaccine candidates. While
these methodologies have traditionally been employed independently, they are now being
integrated to design innovative drugs and vaccines specifically targeting Gram-negative
bacteria [8]. In addition to the proteins, some factors contribute to the attachment of
bacteria, such as virulence factors and resistance determinants. Normally, cytoplasmic
proteins are targeted for drug development, while proteins found in the membrane or
secreted by bacteria are considered for vaccine development [15]. Previously, different
membrane-bound proteins have been used to determine antigenic, non-allergenic, and
non-toxic epitopes which are capable of being employed in the development of a chimeric
subunit vaccine [16]. Therefore, the current study aimed to use subtractive proteomics and
a reverse-vaccinology approach to identify novel drug targets and design a multi-epitope
vaccine to combat B. henselae infections.

2. Materials and Methods
2.1. Pathogen Proteome Retrieval and Exclusion of Repetitive Sequences

The entire set of proteins of B. henselae strain Houston-1 (Assembly GCF_000612965.1)
was collected in FASTA from the NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 11
August 2023) and then filtered by CD-HIT (http://weizhongli-lab.org/cd-hit/, accessed on
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13 August 2023), using a cut-off value of 0.6 (60%) to eliminate paralogous sequences from
the pathogen proteome [17]. Paralogous proteins were excluded and target non-paralogous
proteins were used for further study.

2.2. Identification of Non-Homologous Proteins

A BLASTp analysis was conducted using an E-value threshold greater than 10−5

to pinpoint non-homologous proteins in the pathogen that are distinct from human pro-
teins [18]. Following that, proteins exhibiting similarity to human proteins were eliminated
from the dataset.

2.3. Identification of Vital Proteins

To pinpoint the vital proteins of the pathogen, a BLASTp search against DEG (http:
//tubic.tju.edu.cn/deg/, accessed on 28 August 2023) [19] was performed. These vital
proteins perform a pivotal role in the pathogen’s survival and growth.

2.4. Evaluation of Unique Metabolic Pathways

To evaluate the unique metabolic pathways of B. henselae and its host (Homo sapiens),
the KEGG database was used for comparison (https://www.genome.jp/kegg/, accessed
on 05 September 2023). This analysis allowed the identification of pathogen-specific
pathways [20]. Then, the KAAS server (https://www.genome.jp/tools/kaas/, accessed on
12 September 2023) [21] was used to provide KO codes indicating the presence of particular
proteins in the specific pathways of the pathogen.

2.5. Subcellular Localization Analysis

The widely used PSORTb (https://www.psort.org/psortb/, accessed on 16 September
2023) was employed for the exploration of subcellular localization [22] of distinct essential
proteins that are present in the unique metabolic pathways of B. henselae.

2.6. Evaluation of Druggability in Essential and Unique Proteins

Proteins vital for B. henselae and non-homologous to humans were analyzed through a
BLASTp search against FDA-approved drug targets [23]. Targets that displayed a significant
similarity to FDA-approved drug targets were categorized as druggable.

2.7. Screening of Gut Microbiota Protein

A BLASTp analysis was conducted against gut flora proteins, employing an E-value
cut-off score of 1. Any proteins resembling gut flora proteins were subsequently elimi-
nated [24].

2.8. Prediction of Antigenic Membrane Protein

Extracellular membrane proteins were targeted for vaccine development due to their
potent epitopes’ ability to enhance immune responses [25]. Proteins with scores >0.4 were
considered antigenic, and those with scores <0.4 were labeled non-antigenic, leading to
further analysis for potent epitopes.

2.9. Protein–Protein Interaction

The String database (string-db.org, accessed on 30 September 2023) was employed,
utilizing a higher confidence score of 0.700, to assess the protein–protein interactions
associated with the target membrane protein [26].

2.10. Prediction of T-Cell MHC-I Epitope

NetCTL was utilized to predict CTL epitopes by combining MHC-binding peptide
prediction, proteasome cleavage site prediction, and TAP transport efficiency using an
e-value of 0.75 to predict MHC-I epitopes related to the chosen protein [27]. This server

http://tubic.tju.edu.cn/deg/
http://tubic.tju.edu.cn/deg/
https://www.genome.jp/kegg/
https://www.genome.jp/tools/kaas/
https://www.psort.org/psortb/
string-db.org
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selects epitopes based on a high integrated score, considering the intrinsic potential of each
peptide [28].

2.11. Analysis of Class I Immunogenicity, Antigenicity, Allergenicity, and Toxicity

To evaluate the capability of the epitope to elicit an immune response, the MHC class
I immunogenicity prediction tool (http://tools.immuneepitope.org/immunogenicity/,
accessed on 10 October 2023) was employed with its default parameter [29]. Epitopes
that yielded a positive value in the immunogenicity prediction and were highly antigenic,
non-allergic, and non-toxic were subsequently chosen for additional analysis.

2.12. Prediction of T-Cell MHC-II Epitopes

For the prediction of T-cell epitope linkages with MHC-II molecules based on IC50
values, the SMM method in IEDB (https://www.iedb.org/, accessed on 15 November 2023)
was used [30]. A lower IC50 value indicates a higher binding affinity of epitopes interacting
with MHC-II molecules [31]. The data were uploaded in FASTA format. HLA-DR was
selected as the species/locus pair, and alleles were chosen based on the typical length value
associated with each species/locus. Other variables remained at their default settings, and
the final output format was retrieved as an XHTML table. Allergic and toxic epitopes with
values less than 0.4 were excluded.

2.13. MHC-Restricted Alleles Clustering

The identification of clusters of MHC-restricted alleles and their corresponding pep-
tides was expedited by using the MHCcluster v2.0 server, offering additional validation to
our predictions [32]. This served as a complementary verification to the anticipated MHC-
restricted allele evaluation derived from IEDB. The server output encompasses a graphical
tree and a static heatmap, providing a visual representation of the active relationships
among peptides and alleles [33].

2.14. Prediction of B-Cell Epitopes

In addition to MHC-I and MHC-II epitopes for humoral immunity, B-cell epitopes
were predicted within the target protein. Humoral immunity is essential for bacterial
elimination, was targeted [34]. To find B-cell epitopes, the ABCpred (https://webs.iiitd.edu.
in/raghava/abcpred/, accessed on 28 November 2023) identifies linear epitopes with a 75%
accuracy rate. Shortlisted epitopes underwent evaluation using various tools, including
Kolaskar and Tongaonkar antigenicity, Emini surface accessibility, BepiPred linear epitope
prediction, Karplus and Schulz flexibility, and Chou and Fasman β-turn prediction [35–38].
The protrusion index (PI) scoring system, employed in this analysis, calculates the average
value over epitope residues based on an ellipsoidal approximation of the protein’s 3D
shape. Higher scores highlight increased solvent accessibility, indicating potentially crucial
regions for epitope recognition.

2.15. Design of the Multi-Epitope Vaccine Construct

The filtered epitopes were merged to construct a multi-epitope vaccine construct.
Initially, an adjuvant (β-defensin) was connected with the epitope by an EAAAK linker,
and MHC-I, MHC-II, and B-cell epitopes were linked by Gly-Pro-Gly-Pro-Gly (GPGPG)
linkers [39]. β-defensin served as an adjuvant to boost the immune response and linkers
were added to maintain the structural integrity and prevent self-binding [40].

2.16. Antigenicity, Allergenicity, and Solubility Evaluation of the Designed Vaccine Construct

For antigenicity analysis, VaxiJen (https://www.ddg-pharmfac.net/vaxijen/VaxiJen/
VaxiJen.html, accessed on 5 December 2023) was employed [41]. AllerTOP v2.0 (https:
//www.ddg-pharmfac.net/AllerTOP/, accessed on 5 December 2023) predicted allergenic-
ity [42], and SOLpro (https://scratch.proteomics.ics.uci.edu, accessed on 5 December 2023)
was used to assess and evaluate the water solubility of the constructed vaccine [43]. The

http://tools.immuneepitope.org/immunogenicity/
https://www.iedb.org/
https://webs.iiitd.edu.in/raghava/abcpred/
https://webs.iiitd.edu.in/raghava/abcpred/
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.ddg-pharmfac.net/AllerTOP/
https://www.ddg-pharmfac.net/AllerTOP/
https://scratch.proteomics.ics.uci.edu
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outcome was anticipated, achieving an accuracy of 74% with the corresponding probability
of ≥0.5.

2.17. Secondary and Tertiary Structure Predictions, Refinement, and Validation of the Designed
Vaccine Construct

PDBsum (https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html,
accessed on 12 December 2023) [44] was employed to predict the secondary structure of the
multi-epitope vaccine construct. The tertiary structure was predicted by the 3Dpro server
(https://scratch.proteomics.ics.uci.edu/casp6_results.html, accessed on 23 December 2023)
which incorporates predicted structural features and statistical terms based on data from
the Protein Data Bank (PDB) into its energy function [45]. Subsequently, the initial model
was refined through the GalaxyRefine tool (http://galaxy.seoklab.org/cgi-bin/submit.
cgi?type=REFINE, accessed on 28 December 2023) and further validated by using the
empirical R-factor for the validation of protein structures (ERRAT), Ramachandran plot,
and ProsaWEB.

2.18. Physiochemical Properties of the Designed Vaccine Construct

The physicochemical properties of the designed multi-epitope vaccine construct were
assessed using ProtParm (https://web.expasy.org/protparam/, accessed on 5 January
2024) [46].

2.19. Disulfide Engineering of the Designed Vaccine Constructs

To aid in protein folding and enhance structural stability, Disulfide by Design (DbD)
v2.13 was utilized (http://cptweb.cpt.wayne.edu/DbD2/, accessed on 9 January 2024)
for disulfide engineering of the designed vaccine construct [47]. This approach facilitates
the creation of a stable modeled structure for the vaccine construct. Residue pairs were
selected based on specific criteria: chi3 value of −87◦ or +97◦ ± 30 and energy value <2.2
kcal/mol [48].

2.20. Molecular Docking of the Designed Vaccine Construct with Human Toll-Like Receptor 4
(TLR4)

Molecular docking was employed using the ClusPro server (https://cluspro.org/,
accessed on 14 January 2024) to explore binding interactions within the vaccine construct
and human toll-like receptor 4 (TLR4) (PDB: 3FXI) [49]. ClusPro stands out as a comprehen-
sive protein–protein docking web-server, utilizing a hybrid docking method. This method
draws a hybrid docking algorithm from the experimental data of the substrate-binding sites
of protein and small-angle X-ray scattering. Through this approach, ClusPro generates ten
docking models. Molecular interactions within the vaccine–TLR4 complex were illustrated
using PDBsum (https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/, accessed on
20 January 2024).

2.21. Molecular Dynamics Simulation

Three systems were constructed, including the vaccine construct, toll-like receptor
4 (TLR4), and vaccine–TLR complex, and simulations were performed under constant
conditions of 300 K temperature and 1 bar pressure, employing the V-rescale thermostat
and the Parrinello–Rahman barostat. The systems were enclosed within cubic boxes and
immersed in a solvent of TIP3P water molecules, utilizing periodic boundary conditions.
To counterbalance the inherent positive charge of proteins, Na+ ions were introduced.
Covalent bond constraints were applied using the LINCS method with 2 fs integration
steps, and electrostatic interactions were computed via the particle-mesh Ewald method.
The energy minimization of proteins solvated in water and Na+ was performed with
the steepest descent algorithm, requiring approximately 50,000 steps that were adjusted
according to the specific needs of each system. Subsequently, the minimized protein
structures underwent a 1 ns canonical ensemble constant number of particles, volume,
and temperature (NVT) equilibration step, followed by a 5 ns canonical ensemble constant

https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
https://scratch.proteomics.ics.uci.edu/casp6_results.html
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://web.expasy.org/protparam/
http://cptweb.cpt.wayne.edu/DbD2/
https://cluspro.org/
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
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number of particles, pressure, and temperature (NPT) equilibration step. The equilibrated
system then proceeded to the production phase of 100 ns molecular dynamics (MD). All the
molecular dynamics simulations described in this article were performed with GROMACS
version 2023.2 [50]. The trajectory data of the system were analyzed using visual molecular
dynamics (VMD) [51] and ChimeraX (version 1.6.1) [52]. The root mean square deviation
(RMSD) and root mean square fluctuation (RMSF) plots were generated using Grace
(version 5.1.25) [53].

2.22. Discontinuous B-Cell Epitope Prediction

The ElliPro tool of the IEDB resource was utilized for precise prediction of conforma-
tional epitopes, notably discontinuous B-cell epitopes, accessible at http://tools.iedb.org/
ellipro/, accessed on 29 January 2024 [54].

2.23. Simulation of Immunity

The simulations were executed using the C-ImmSim tool (https://kraken.iac.rm.cnr.
it/CIMMSIM/, accessed on 5 February 2024) with its default parameters, to evaluate the
immunogenic value of the designed multi-epitope vaccine construct. This tool incorporates
real-life immune responses and interactions, as well as machine learning, through the use of
a position-specific scoring matrix (PSSM) [55]. The output of this tool is provided based on
the immunostimulatory activities in anatomical regions, comprising bone marrow, thymus,
and lymph nodes. The time steps in the C-ImmSim web tool (with default parameters) were
set at 1, 42, and 84, with each time step equivalent to 8 h, and the first step representing the
injection at time = 0. The time interval between two injections (a total of three injections)
was 4 weeks [56].

2.24. Codon Optimization of the Designed Multi-Epitope Vaccine Construct and Its Virtual
Cloning

The Java Codon Adaptation Tool (JCat) (https://www.jcat.de/, accessed on 10 Febru-
ary 2024) was pivotal in aligning the codon function of the designed multi-epitope vaccine
with that of the E. coli host strain [57]. The constructed vaccine underwent reverse trans-
lation to DNA, and adjustments were made to synchronize the codon usage with the
preferences of E. coli. This adaptation process relied on codon adaptation index values,
calculated through a specific algorithm. Following adaptation, the gene sequence of the
ultimate designed multi-epitope vaccine construct was inserted into the E. coli pET-28a
(+) vector using Snapgene, accessed on 12 February 2024 [58], ensuring the optimized
depiction of the designed vaccine construct.

2.25. Prediction of the mRNA Structure Encoding the Multi-Epitope Vaccine Construct

The predicted secondary structure of the mRNA of the designed vaccine construct
and minimum free energy (MFE) was predicted through the utilization of the RNAfold
server (http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi, accessed on 20
February 2024) [59]. The principal parameter of interest was the minimum free energy,
expressed in Kcal/mol, with lower values indicating greater stability in the mRNA folding
structure [60].

3. Results and Discussion
3.1. Pathogen Proteome RETRIEVAL, filtration, and Non-Host Homolog Protein Identification

A subtractive proteomics approach that involves analyzing the entire proteome using
various online databases and computational tools was utilized to predict drug targets and
vaccine candidates against B. henselae [61]. The entire proteome of B. henselae was retrieved
followed by the CD-HIT server [8] to exclude paralogous sequences. A collection of 1213
non-paralogous proteins were curated which are vital for pathogen survival [62]. These
proteins were subjected to a BLASTp search against the host (H. sapiens), identifying 827
non-homologous proteins essential for further analysis (Table 1).

http://tools.iedb.org/ellipro/
http://tools.iedb.org/ellipro/
https://kraken.iac.rm.cnr.it/CIMMSIM/
https://kraken.iac.rm.cnr.it/CIMMSIM/
https://www.jcat.de/
http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi
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Table 1. Attempted steps of subtractive proteomic analysis in B. henselae strain Houston-1.

S. No. Subtractive Approaches B. henselae Strain Houston-1

1 Complete set of proteins 1481

2 Mini proteins 268

3 Paralogous proteins in CD-HIT 1213

4 Non-homologs 827

5 Vital proteins in DEG 153

6 Unique metabolic pathways at KEGG 24

7 Number of vital proteins involved in KEGG and KAAS 20

8 Druggable proteins 9

9 Gut flora proteins 6

10 Cytoplasmic proteins 5

11 Membrane protein 1

3.2. Identification of Essential Proteins, Unique Metabolic Pathways, and Subcellular Localization

Essential proteins are crucial for sustaining fundamental cellular processes and patho-
gen viability in microorganisms. To find these essential proteins, a BLASTp search of
non-homolog proteins against the Database of Essential Genes (DEG) [63] was employed,
resulting in the determination of 153 proteins in B. henselae’s metabolic pathways. To
identify unique metabolic pathways, a comparison was performed between the metabolic
pathways of B. henselae and the host organism (H. sapiens) [64]. This comparison unveiled
24 metabolic pathways exclusive to B. henselae shown in Supplementary Table S1, with
20 unique proteins, demonstrating no similarity to the host (H. sapiens) metabolic pathways
shown in Supplementary Table S2. These unique metabolic pathways encompassed lysine
biosynthesis, peptidoglycan biosynthesis, lipopolysaccharide biosynthesis, two-component
systems, and phosphotransferase systems (PTSs) (Figure 1A), presenting potential tar-
gets for drug and vaccine development, offering promising avenues for combating this
pathogen [65]. By analyzing these proteins, vital processes of B. henselae can be potentially
disrupted, leading to the development of effective interventions against this pathogen.
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Determining the intracellular localization of proteins is pivotal for identifying poten-
tial drug targets and vaccine candidates. The PSORTb server was utilized [66] to identify
cytoplasmic proteins that are used as prospective drug targets for pharmacological applica-
tions and outer membrane proteins as promising candidates for vaccine development. Out
of the 20 target proteins, the subcellular localization predictions revealed that 12/20 (60%)
are cytoplasmic, 7/20 (35%) are present in a cytoplasmic membrane, and 1/20 (5%) were
unknown (WP_011180128.1 KpsF/GutQ family sugar-phosphate isomerase) in B. henselae
(Figure 1B).

3.3. Assessing Druggability, Virulency, and Screening of Gut Microbiota Proteins

To assess the druggability analysis, a BLASTp analysis of unique essential proteins
against FDA-approved drugs was performed [67]. Nine proteins from B. henselae were
predicted to be druggable, which are undecaprenyldiphospho-muramoylpentapeptide
beta-N-acetylglucosaminyltransferase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--
2,6-diaminopimelate ligase, 3-deoxy-8-phosphooctulonate synthase 3-deoxy-manno-
octulosonate cytidylyltransferase, UDP-N-acetylmuramate-L-alanine ligase, penicillin-
binding protein 1A, sigma-54 dependent transcriptional regulator, PAS domain-containing
sensor histidine kinase (ATP-binding protein), and phosphoenolpyruvate--protein phos-
photransferase. The screening of virulent proteins has emerged as a prominent approach for
predicting therapeutic targets. To check virulency, a BLASTp analysis of the nine predicted
target proteins was performed against the VFDB server [68]. Among the nine target pro-
teins, four proteins were virulent except undecaprenyldiphospho-muramoylpentapeptide
beta-N-acetylglucosaminyltransferase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-
diaminopimelate ligase, 3-deoxy-8-phosphooctulonate synthase, UDP-N-acetylmuramate-
L-alanine ligase, penicillin-binding protein 1A, and phosphoenolpyruvate--protein phos-
photransferase. Target proteins were BLASTp screened against gut metagenomic proteins
to exclude those from the human gut flora. Out of the nine target proteins, six exhib-
ited no similarity with the human host’s gut metagenome, establishing them as the final
target proteins (Table 2). The six target proteins included 3-deoxy-8-phosphooctulonate
synthase, UDP-N-acetylmuramate-L-alanine ligase, 3-deoxy-manno-octulosonate cytidylyl-
transferase, sigma-54 dependent transcriptional regulator, PAS domain-containing sensor
histidine kinase (ATP-binding protein), and phosphoenolpyruvate--protein phosphotrans-
ferase. These vital, non-homologous, and virulent target proteins represent promising
candidates for drug targeting and vaccine development.

3.4. Prediction of Antigenic Membrane Protein and Its Interactions with other Proteins

Among the six identified target proteins from gut flora [69], the PAS domain-containing
sensor histidine kinase protein was identified as an outer membrane-bound protein with
antigenic properties (Antigenicity score: 0.4060), which is found in the two-component
system pathway, a signaling mechanism commonly found in bacteria. It involves two key
components—a sensor kinase and a response regulator. The sensor kinase detects environ-
mental signals and phosphorylates itself, then transfers the phosphate group to the response
regulator, triggering a cellular response. The PAS domain-containing sensor histidine ki-
nase protein shows strong interactions with ompR, a regulator responsive to osmolarity
changes, modulating outer membrane protein expression [70], feuP (two-component sys-
tem regulatory protein), and other proteins like divk_1 and 2, ctrA, and various histidine
kinases (CDO46385.1, CDO46063.1, CD47015.1, CDO47413.1, and CDO46446.1). These
interactions are crucial for bacterial signal transduction and cell cycle regulation [71], po-
tentially influencing cyclic-di-GMP signaling [72] Supplementary Figure S1. These proteins
play a pivotal role in ensuring the survival of B. henselae and their significance is integral
to the bacterium’s viability. Hence, modulating PAS domain-containing sensor histidine
kinase proteins not only affects their functionality but also impacts the associated proteins.
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Table 2. List of target proteins, including non-host homologs, subcellular localization, virulency, druggability, allergenicity, and antigenicity features.

Protein ID Protein Name Drugbank ID Chemical
Formula Drug Name Drug Group Drugbank

Organism Localization Virulency Antigenicity
Score Antigenicity Allergenicity

WP_011180971.1
UDP-N-

acetylmuramate--L-
alanine ligase

DB01673
DB03909
DB04395

C23H36N4O20P2
C11H18N5O12P3
C10H17N6O12P3

Uridine-5’-Diphosphate-N-
Acetylmuramoyl-L-Alanine

Adenosine-5’- [beta, Gamma-
methylene]triphosphate

Phosphoaminophosphonic
Acid-Adenylate Ester

Experimental
Experimental
Experimental

Haemophilus
influenzae (strain

ATCC 51,907/DSM
11,121/KW20/Rd)

Cytoplasmic Non-
Virulent 0.3964 Non-

Antigenic
Non-

Allergic

WP_011180187.1
3-deoxy-manno-

octulosonate
cytidylyltransferase

DB04482 C17H26N3O15P Cmp-2-Keto-3-Deoxy-
Octulosonic Acid Experimental

Haemophilus
influenzae (strain

ATCC 51,907/DSM
11,121/KW20/Rd)

Cytoplasmic Virulent 0.3278 Non-
Antigenic

Non-
Allergic

WP_011180414.1

PAS
domain-containing

sensor histidine
kinase (ATP-binding

protein)

DB02071
DB03366

C4H7N2
C3H4N2

1-Methylimidazole
Imidazole

Experimental
Experimental

Investigational

Bradyrhizobium
diazofficiens strain
(JCM 10833/AM

13628)

Membrane-
Bound Virulent 0.4060 Antigenic Non-

Allergic

WP_011180514.1

sigma-54-dependent
Fis family

transcriptional
regulator

DB01857 C4H8NO7P Phosphoaspartate Experimental

Salmonella
Typhimurium strain
(CT2 1412/ATCC

700720)

Cytoplasmic Virulent 0.3676 Non-
Antigenic

Non-
Allergic

WP_011180500.1
3-deoxy-8-

phosphooctulonate
synthase

DB01819
DB02433
DB03113
DB03936

C3H5O6P
C9H23NO13P2

C3H6FO6P
C5H11O7P

Phosphoenolpyruvate
{[(2,2-Dihydroxy-Ethyl)
-(2,3,4,5-Tetrahydroxy-6-
Phosphonooxy-Hexyl)-

Amino]-Methyl}-Phosphonic
Acid

3-Fluoro-2-
(Phosphonooxy)Propanoic

Acid
1-Deoxy-Ribofuranose-5’-

Phosphate

Experimental
Experimental
Experimental
Experimental

Shigella flexneri Cytoplasmic Virulent 0.3274 Non-
Antigenic

Non-
Allergic

WP_034454605.1
Phosphoenolpyruvate-

-protein
phosphotransferase

DB08357 C8H18O3 Diethylene glycol diethyl ether Experimental
Acinetobacter baylyi

strain ATCC
33305/ADP1)

Cytoplasmic Non-
Virulent 0.3740 Non-

Antigenic
Non-

Allergic
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3.5. Prediction of MHC-I Epitopes, Class I Immunogenicity, Antigenicity, and Non-Toxicity
Analysis for Designing the Multi-Epitope Vaccine Construct

The NetCTL revealed 14 epitopes within the PAS domain-containing sensor histidine
kinase (ATP-binding protein) which are shown in Supplementary Table S3 [73]. Out of 14,
7 epitopes were highly antigenic, non-allergic, and non-toxic. The affinity of binding among
the MHC complex and TCR4 was analyzed to evaluate their immunogenic potential, with
a high antigenicity score indicating a potent capability to activate inexperienced T cells
and provoke a cellular immune response [74]. Subsequently, the class I immunogenicity
showed that out of the 7 epitopes, 4 exhibited positive values, and these were targeted for
additional analysis (Table 3).

Table 3. Predicted MHC class I epitopes antigenicity, allergenicity, toxicity, and class I immunogenicity
for the design of a multi-epitope vaccine construct.

T-Cell Epitopes Antigenicity Score Allergenicity Toxicity SVM Class I Immunogenicity

AAIRFVSIY 0.8849 (Antigenic) Non-Allergic Non-toxic −1.36 0.18628

ILALLYAYY 1.2102 (Antigenic) Non-Allergic Non-toxic −0.77 0.01812

VTDEEELHL 1.0484 (Antigenic) Non-Allergic Non-toxic −0.65 0.30924

TADGCWLKI 0.7581 (Antigenic) Non-Allergic Non-toxic −0.21 0.06195

3.6. Prediction of MHC-II Epitopes for Designing the Multi-Epitope Vaccine Construct

Beyond MHC-I epitope prediction, the selected proteins underwent MHC-II binding
prediction [75]. Out of the 55 MHC-II epitopes which are presented in Supplementary
Table S4, a subset of 5 epitopes was selected. Epitopes were subsequently screened for
toxicity, allergenicity, and antigenicity to finalize their selection for further analysis (Table 4).

Table 4. Predicted MHC class II epitopes. The table shows the asterisk (*) in HLA-DRB signifies a
specific allele variant within the HLA-DRB gene, commonly used in HLA nomenclature to denote
subtype. Furthermore, the epitopes were checked for antigenicity, allergenicity, and toxicity for the
design of a multi-epitope vaccine construct.

MHC-II Peptide Start HLA Alleles Antigenicity Score Allergenicity Toxicity

ALLYAYYKTDSISEK 39 HLA-DRB1 * 04:05 0.4707 (Antigenic) Non-Allergic Non-Toxic

IALSHTYISEKTQEI 21 HLA-DRB3 * 01:01 0.4331 (Antigenic) Non-Allergic Non-Toxic

KTDSISEKIRAMYEM 46 HLA-DRB1 * 13:02 0.6838 (Antigenic) Non-Allergic Non-Toxic

LLYAYYKTDSISEKI 40 HLA-DRB1 * 04:05 0.5207 (Antigenic) Non-Allergic Non-Toxic

YKTDSISEKIRAMYE 45 HLA-DRB1 * 13:02 0.4995 (Antigenic) Non-Allergic Non-Toxic

3.7. Assessment of MHC Restriction and Cluster Analysis

A comprehensive analysis was carried out on MHC-I and MHC-II restricted alleles,
considering their IC50 values. All predicted epitopes underwent individual scrutiny for
MHC interaction analysis [76], encompassing four MHC-I epitopes and five MHC-II epi-
topes. Subsequently, the alleles participating in these interactions underwent meticulous
reassessment through cluster analysis, resulting in the generation of a heatmap illustrat-
ing MHC-I and MHC-II as shown in Supplementary Figure S2 interactions, along with a
dynamic tree [77]. Red zones on the heat map signify stronger interactions, while yellow
zones indicate weaker interactions among clusters of MHC molecules.

3.8. Identification of B-Cell Epitopes for Designing the Multi-Epitope Vaccine Construct

The ABCpred identified 19 linear B-cell epitopes of 20 lengths each, with a precision
of 75% as shown in Supplementary Table S5. From these, 7 antigenic, non-allergenic, and
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non-toxic epitopes were selected for the construction of the multi-epitope vaccine (Table 5).
The chosen epitopes were determined using Chou and Fasman β-turn prediction, Emini
surface accessibility, Karplus and Schulz flexibility, Kolaskar and Tongaonkar antigenicity,
and linear B-cell epitope prediction using BepiPred [78]. The predicted B-cell epitopes for
the PAS domain-containing sensor histidine kinase protein are in Supplementary Figure S3.

Table 5. Predicted linear B-cell epitopes, their antigenicity, allergenicity, and toxicity analysis.

B-Cell Peptide Antigenicity
Score Antigenicity Allergenicity Toxicity

KSSAQNHKARTKHINP 0.6231 Antigenic Non-Allergic Non-toxic

TSIRQTADGCWLKINE 0.6391 Antigenic Non-Allergic Non-toxic

LAAIRFVSIYDLRHTI 0.6559 Antigenic Non-Allergic Non-toxic

KLEIISKEMKGTTVTI 0.6320 Antigenic Non-Allergic Non-toxic

KEMKGTTVTITMPIKQ 0.4484 Antigenic Non-Allergic Non-toxic

NQLTKTHTGSGLGLAI 1.0892 Antigenic Non-Allergic Non-toxic

RHTIDKNTRSTITLLA 2.2375 Antigenic Non-Allergic Non-toxic

3.9. Formulation of the Epitope-Based Subunit Vaccine

Adjuvant is an essential component of vaccines that enhances the immune response [79].
The inclusion of β-defensin as an adjuvant in the vaccine aims to leverage its immunomod-
ulatory properties [80], enhancing antigen presentation and immune responses, thereby
improving vaccine efficacy. An EAAAK linker was used to connect the adjuvant with
the vaccine construct. The chosen four MHC-I epitopes, five MHC-II epitopes, and seven
B-cell epitopes were connected by GPGPG linkers [81]. The resulting vaccine construct is
367 amino acid residues in length.

3.10. Allergenicity, Solubility, Antigenicity, and Physiochemical Features of the Designed
Multi-Epitope Vaccine Construct

The construct was generated and assessed for antigenicity, solubility, and allergenic-
ity [82]. Our findings reveal a high antigenicity with a score of 0.9948 [83] and predict the
construct as non-allergenic [84]. Physicochemical properties were analyzed [85], revealing a
hypothetical isoelectric point (pI) of 9.34, a Gravy value of −0.377, and a molecular weight
of 38.84 kDa [86]. The system demonstrated structural stability with an instability index of
32.68 and a thermostable aliphatic index of 75.59. The vaccine has a half-life exceeding 20 h
in yeast cells and over 10 h in E. coli (in vivo). SOLpro predicts a high solubility (0.9195),
indicating favorable heterologous expression in E. coli (Table 6).

Table 6. Physiochemical properties of the designed multi-epitope vaccine construct.

Physiochemical Features Evaluation

Amino acid residue 367

Molecular weight 38.84 kDa

Theoretical PI 9.34

Total number of negatively charged residue
(Asp + Glu) 28

Total number of positively charged residues
(Arg + Lys) 44

Formula C1737H2748N472O509S13

Extinction coefficients 97,000 M−1 Cm−1
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Table 6. Cont.

Physiochemical Features Evaluation

Estimated half-life
30 h (mammalian reticulocytes, in vitro)

>20 h (Yeast, in vitro)
>10 h (Escherichiaa coli, in vivo)

Instability index 32.68 (stable)

Aliphatic index 75.59

Gravy −0.377

3.11. Secondary Structure Prediction of the Designed Multi-Epitope Vaccine Construct

The PDBsum tool was used to determine the secondary structure of the designed
vaccine construct, the distribution of α-helices, extended strands, β-turns, and random
coils within the predicted secondary structure are shown in Supplementary Table S6 and
(Figure 2) [87].
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3.12. In Silico Tertiary Structure Prediction, Its Refinement, and Validation.

The 3D structure of the designed vaccine construct was generated using 3Dpro
(Figure 3A). In 3DPro, energy functions incorporate statistical terms based on predicted
structural features and Protein Data Bank knowledge. During protein modeling, a set of
fragment replacements and random perturbations is used to model the target protein [88].
The modeling strategy employs simulated annealing with linear cooling and decisions are
made accordingly based on these strategies. As a result, multiple models were generated
using random seeds, and their energies were calculated [89]. Finally, the model with the
lowest energy was selected and then underwent refinement. The refined construct demon-
strated a GDT-HA 0.9775, RMSD 0.334, MolProbity 2.013, Clash score of 12.6, Poor rotamers
0.4 and Rama favored 94.0, and a ProSA-web Z score of −3.98, surpassing the mean Z score
observed in similar natural protein (Figure 3C). ProSA-web affirmed the construct’s accu-
racy by analyzing energy as a role of amino acids in the protein structure (Figure 3D). For
comprehensive validation, PROCHECK conducted a Ramachandran analysis, confirming
that 92.3% of residues occupied the most favorable (red) region, 7.4% were in the additional
allowances (yellow) region, and 0.4% were in the generous allowances (pale yellow) area
(Figure 3B). ERRAT assessed the total quality of the vaccine’s 3D structure, assigning it a
score of 81.4% (Figure 3E). These assessments collectively contribute to the validation and
enhancement of the structural vaccine construct.

3.13. Disulfide Engineering for Structural Stability of Vaccine Constructs

To stabilize the structural integrity of the modeled vaccine construct, inter and intra-
chain disulfide bonds were evaluated by DbD2. A total of 32 residue pairs were identified
as suitable candidates for disulfide modifications [90]. Only two residue pairs were selected
based on specific criteria, including an energy score of less than 2.2 kcal/mol and a χ3

angle between −87◦ to +97◦. Consequently, four mutations were introduced in the residue
pairs. For the TYR174-LYS194 residue pair, the energy score was 1.61 kcal/mol with a χ3

angle of +89.87◦. Conversely, for the GLY276-ALA290 residue pair, the energy score was
1.76 kcal/mol, and the χ3 angle was −89.39◦ (Supplementary Figure S4).

3.14. Molecular Docking and Interaction of the Multi-Epitope Vaccine Construct with the
TLR4 Receptor

Examining the antigenic potential and triggering immune response requires an ex-
ploration of the molecular interaction between the constructed vaccine and its targeted
human immune receptor [91]. The TLR4 immune receptor is essential for recognizing
pathogenic proteins and inducing inflammatory cytokines against various infections. In
this study, molecular docking was performed using ClusPro [49]. ClusPro is a widely
used protein–protein docking server that predicts the binding modes of protein complexes
based on the structures of individual proteins and the interaction between the vaccine
construct and the TLR4 receptor [92]. The program generates 30 various clusters and ranks
them by energy level. There were −1047.2, −1040.4, −1024.4, −978.6, −971.9, −965.0,
−937.8, −929.8, and −903.2 kcal/mol of energy in the ten top clusters. The best group with
the lowest energy of −1047 kcal/mol was selected (Figure 4) showing a high affinity for
attachment. In-depth analysis revealed specific interactions, including 3 salt bridges, 21
hydrogen bonds, and 225 nonbonding interactions with the constructed TLR4 complex [93].
These results underscore a potential vaccine construct that can specifically link with the
immune receptors and potentially trigger an immune response against cat-scratch disease.
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Figure 3. (A) Amino acid sequences of the vaccine construct. The adjuvant is colored red, MHC−I
epitopes are colored blue, and MHC−II epitopes are colored brown, B-cell epitopes are colored
purple, and linkers are colored green. (B) Three−dimensional (3D) structure of the vaccine construct.
(C) In the Ramachandran plot of the refined 3D model generated by the PROCHECK, the red-colored
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and generously allowed regions, and the white regions are the disallowed regions. (D,E) The Z-score
plot of the refined 3D model generated by ProSA-web. (F) The region in the structure are rejected at
the 99% level are shown in red color, also the regions of the structure rejected at 95% confidence level
are shown in yellow color which is generated by ERRAT.
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3.15. Molecular Dynamic Simulation

Continuous advancements in simulation algorithms have positioned molecular dy-
namics (MD) simulations as indispensable tools in the development of innovative thera-
peutic approaches [94]. In this investigation, MD simulations were applied to the three
systems consisting of the vaccine construct, TLR4 receptor, and vaccine–TLR structure
complex in an explicit water environment, extending each for 100 ns. To ascertain the
equilibration at 300 K, the deviation of backbone atoms was assessed through the root mean
square deviation (RMSD) (Figure 5A). The outcomes showed that the complex simulation
adequately achieved equilibration after 22 ns and remained in equilibrium until 100 ns,
showing consistent stability in backbone behavior. To gain insights into the significance
of specific residues within the three systems, the root mean square fluctuation (RMSF)
was examined. The analysis, presented in (Figure 5B), revealed substantial fluctuations in
Residues 240–290 of the vaccine construct. This observation implies that the conformational
changes in these specific residues may play a pivotal role in binding to the TLR receptor.
These findings elucidate the dynamic nature of the vaccine–TLR complex.
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(RMSF) plot of the vaccine–TLR4 complex. (C) Radius of gyration (Rg) plot for the vaccine–TLR4
complex. The left panel from 0 ns indicates the initial structure of the moieties, and the rightmost
100 ns panel indicates the final conformation of the moieties. (D) Represents 0 ns and 100 ns frames
from vaccine construct simulation; (E) Represents 0 ns and 100 ns frames from TLR4 simulation;
(F) Represents 0 ns and 100 ns frames from vaccine–TLR4 simulation.

3.16. Prediction of Discontinuous B-Cell Epitopes

Antibodies target conformational epitopes, notably discontinuous B-cell epitopes,
which are crucial for pathogen neutralization. Ellipro identified four discontinuous B-cell
epitopes, encompassing a total of 184 residues with scores varying from 0.61 to 0.80 [95] as
shown in Figure 6 and Supplementary Table S7.
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Figure 6. The figure depicts four Ellipro-predicted discontinuous B-cell epitopes present in the vaccine
construct: (A) 35 residues (AA259-AA294) with score 0.804; (B) 45 residues (AA316-AA361) with
score 0.728; (C) 80 residues (AA1-AA142) with score 0.694; (D) 24 residues (AA211-296) with score
0.617; the highlighted orange-colored cartoon illustrates the vaccine construct and the light-yellow
spheres show discontinuous B-cell epitopes.
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3.17. Simulation of Immunity

C-ImmSim revealed a favorable Th2-biased immune response following a single injec-
tion without the addition of lipopolysaccharide (LPS) for 1000 antigen molecules [96]. This
simulation aimed to determine whether a single dosage could sustain responses for the first
month following vaccination [97]. These settings helped to verify that the designed vaccine
candidate could induce immune responses persistently in the absence of a booster dose [98]
(Figure 7). In Figure 7A, C-ImmSim results revealed an extraordinary development of
antibody levels (IgG1, IgM, IgG2) during secondary and tertiary reactions, correlating with
diminishing antigen concentrations. Figure 7B illustrates the humoral immune reaction
presented by raised levels of IgM and memory B cells enduring B-cell isotypes, confirm-
ing the development of memory B cells and their switching capability [99]. The memory
development in T-helper and cytotoxic T-cell populations, essential for complementing
the immune response, is evident in Figure 7C. There is a clear increase in macrophage
activity, coupled with a valuable proliferation of dendritic cells after the immunological
response which is shown in Figure 7D. Figure 7E shows enhanced levels of IFN-γ and
IL-2. The rise in cytokine scales resulted in higher risks according to the Simpson Index
D, posing challenges during the immune response [100]. Notably, these predictions were
found compatible with the induced quantity of IFN-γ formed upon immunotherapy by the
designed multi-epitope chimera as predicted by C-ImmSim.
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B-cell types and class−switching potential. (C) Population results per state of B cells. (D) Evolution
of T−helper cells, and (E) Population per state of T−helper cells. (F) Generation of cytotoxic T cells.
(G) Population of macrophages per state. (H) Induction of cytokines and interleukins, with increased
IFN−γ and IL−2 formation after vaccination. (I) Th1−implemented immune response.
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3.18. Codon Optimization and Virtual Cloning

The expressive capability of the designed vaccine construct was assessed [101]. Ac-
cording to the JCat results for the refined cDNA, the vaccine construct showed CIA values
of 1.0 and a GC content ranging from 54.42%, falling within the ideal range for favorable ex-
pression in the E. coli K12 vector [102]. The elevated gene sequence of the vaccine construct
was anticipated to efficiently integrate into the widely employed pET-28a (+) plasmid, with
an overall length of 3651 bp (Figure 8).
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Figure 8. The reverse translated primary DNA sequence of the final multi-epitope vaccine construct
was conjoined into the E. coli vector (pET-28a +) through in silico cloning. The vaccine construct is
represented in a red color, while the black color indicates the plasmid.

3.19. Prediction of mRNA Structure Durability in the Designed Vaccine Construct

The RNAfold and JCat analyses revealed a shared centroid secondary structure confor-
mation with minimum free energy (MFE) for the designed vaccines’ mRNA structures [103]
(Figure 9). Significantly, the opposing energy values, particularly for the B. henselae vaccine
(−346.40 kcal/mol), affirm the stability and resilience of the vaccines’ in vivo mRNA forms.
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Figure 9. Predicted secondary structure of vaccine construct mRNA, featuring the (A) minimum
free energy (MFE) structure and (B) mountain plot. This presentation highlights the relative corre-
lation between MFE, the thermodynamic ensemble, and the centroid structure of the constructed
vaccine mRNA.

4. Conclusions

This study employed subtractive proteomics and reverse-vaccinology approaches to
identify key target proteins for the identification of novel drug targets and design of a multi-
epitope vaccine against Bartonella henselae. Initially, the proteome of the B. henselae strain
Houston-1 was retrieved and assisted in shortlisting based on their non-redundancy, non-host
homology, essentiality, and druggability. Five druggable target proteins were identified as
novel, including 3-deoxy-8-phosphooctulonate synthase, UDP-N-acetylmuramate-L-alanine
ligase, 3-deoxy-mannooctulosonate cytidylyltransferase, sigma-54 dependent transcriptional
regulator, and phosphoenolpyruvate--protein phosphotransferase, and one membrane protein
(the PAS domain-containing sensor histidine kinase protein was identified for multi-epitope
vaccine construction). B-cell and T-cell epitopes were predicted from the target membrane
protein to induce humoral and cell-mediated immunity. Adjuvants and linkers were strate-
gically incorporated to enhance stability, effectiveness, and immunogenicity. The proposed
vaccine demonstrated favorable structural, physicochemical, and immunological attributes,
including stable binding with TLR-4 receptors. In silico immune simulations indicated a
promising in vivo immunogenicity. Reverse translation and codon optimization facilitated
effective declaration and stability in E. coli. Further experimental validation is vital to ensure
the assurance and efficacy of the designed vaccine in animal models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11050505/s1, Table S1: Unique metabolic path-
ways of B. henselae strain Houstan-1; Table S2: List of proteins in unique metabolic pathways of
B. henselae strain Houstan-1; Table S3: The predicted 14 MHC-I epitopes within the PAS domain-
containing sensor histidine kinase protein; Table S4: The predicted 55-MHC-II epitopes within the PAS
domain-containing sensor histidine kinase protein; Table S5: The predicted 19 LBL epitopes within
the PAS domain-containing sensor histidine kinase protein; Table S6: The distribution of α-helices,
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extended strands, β-turns, and random coils within the predicted secondary structure of vaccine
construct by PDBsum tool; Table S7: Discontinuous B-cell epitope predicted by Ellipro in the designed
model vaccine; Figure S1: The protein-protein interaction network of the PAS domain-containing
sensor histidine kinase protein using the STRING database. Nodes within the network represent
proteins, while edges represent protein-protein interactions. In the visualization, CD046481.1 is
PAS domain-containing sensor histidine kinase protein which is highlighted in red. Empty nodes
indicate proteins whose 3D structure is unknown, whereas filled nodes represent proteins with
known or predicted 3D structure; Figure S2: The clustering analysis of MHC-I and MHC-II molecules
is visually represented by heatmaps in Figures A and B, respectively. In these heatmaps, the X-axis
represents individual MHC alleles, while the Y-axis denotes distinct MHC variants. Areas shaded in
red indicate higher similarity among MHC alleles in anchoring epitopes with strong affinity, while
regions shaded in yellow represent areas where the similarity in epitope affinity is more distant. The
color intensity corresponds to the predictive capability of epitopes across various MHC types; Figure
S3: Identification of B cell epitopes. (A) Linear B cell epitopes prediction by Bepipred method, (B) β
variants of structural polyproteins were predicted utilizing the Chou and Fasman β metamorphosis
prediction method, (C) Surface accessibility analysis was conducted using the Emini surface accessi-
bility scale, D) Flexibility analysis was performed based on the Karplus and Schultz flexibility scale,
(E) Antigenic determinants were forecasted utilizing the Kolaskar and Tongaonkar method, (F) Parker
hydrophilicity was employed for the prediction of hydrophilicity. The X-axis represents the sequence
position, while the Y-axis represents antigenic propensity. Regions surpassing the threshold value
are deemed antigenic and are highlighted in yellow; Figure S4: Disulfide engineering of the vaccine
construct. Showing total 2 mutated residues pairs (A) original form and (B) mutant form. Two pairs of
amino acids represented in the yellow stick (shown in a black circle) in purple and grey color. These
residues were selected based on their energy, chi3 value, and B-factor.
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