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Abstract: Tunable properties prompt the development of different “tailor-made” functional ionic
liquids (FILs) for specific tasks. FILs with an ether group are good solvents for many organic
compounds and enzymatic reactions. However, ionic composition influences the solubility by
affecting the physiochemical properties of these FILs. To address the structure effect, a series of
novel FILs with a mono-ether group (ME) based on imidazole were prepared through cationic
functionalization and anionic exchange reactions, and characterized by NMR, mass spectroscopy,
and Thermogravimetric analysis (TGA). The effect of ionic composition (cationic structure and anions)
on density, viscosity, ionic conductivity, electrochemical window, and thermal properties of these
ME-FILs were systematically investigated. In general, the viscosity and heat capacity increases with
the bigger cationic volume of ME-FILs; in particular, the 2-alkyl substitution of imidazolium enhances
the viscosity remarkably, whereas the density and conductivity decrease on the condition of the same
[NTf2]− anion; For these ME-FILs with the same cations, the density follows the order of [NTf2]−

> [PF6]− > [BF4]−. The viscosity follows the order of [PF6]− > [BF4]− > [NTf2]−. Ion conductivity
follows the order of [NTf2]− ≈ [BF4]− > [PF6]−. It is noted that the dynamic density has a good
linear relationship with the temperature, and the slopes are the same for all ME-FILs. Furthermore,
these ME-FILs have broad electrochemical windows and glass transition temperatures in addition
to a cold crystallization and a melt temperature for ME-FIL7. Therefore, the cationic structure and
counter anion affect the physicochemical properties of these ME-FILs together.

Keywords: functional ionic liquids; ionic conductivity; heat capacity; phase behavior

1. Introduction

During the last 20 years, ionic liquids (ILs), broadly defined as organic salts with a melting
point lower than 100 ◦C, have gained recognition as environmentally benign alternatives to volatile
organic solvents and have been applied in catalysis [1,2], separation [3], material synthesis [4,5],
and electrochemistry [6,7] because they possess advantageous physicochemical properties including
negligible vapour pressure, non-flammability, wide liquid range, and good solvating ability for both
organic and inorganic substrates [8,9]. Moreover, the properties of ILs can be modulated by changing the
cationic structure or the combination of cation and anion. This tunability has prompted the development
of different “tailor-made” ILs for specific tasks, and these functionalized ILs display many often-praised
properties [10,11]. For example, Davis et al. first reported a new task-specific IL consisting of an
imidazolium cation to which a primary amine moiety is covalently tethered. This novel IL readily and
reversibly sequesters CO2 at a molar adsorption ratio of 1:2 (mol CO2:mol IL) [12,13]. In order to enhance
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the adsorption ratio, Brennecke et al. introduced a new kind of task-specific ILs, which are entirely
comprised of amino acid anions and phosphonium cations, for CO2 capture. The adsorption ratio in
these cases is nearly equal to 1:1 [14]. Very recently, Dai and Wang synthesized some superbase-derived
protic ILs (PILs) and applied these for CO2 capture. These anion-functionalized PILs are not only an
excellent system for the rapid and reversible capture of CO2 with high capacity (more than 1 mol per
mol of IL), but they can also act as switchable solvents to simplify the separation processes in organic
reactions [15]. Similarly, ILs with chiral groups were utilized as chiral organocatalysts and chiral ligands
in asymmetric synthesis [16,17]. ILs with terminal thiol groups were used to stabilize nano-Au in the
process of particle fabrication [18,19]. The employment of the ILs with metal ion-ligating groups in the
extraction of metal ions from wastewater has also been extensively explored [20]. Indeed, ILs with
different functional groups can meet specific requirements for many potential applications [21,22].

Ether-functionalized ILs, having covalently tethered ether functional groups on the cation, were
synthesized firstly by Kimizuka for dissolving carbohydrates such as β-d-glucose, α-cyclodextrin,
glucose oxidase, and a glycosylated protein [23,24]. Later, Salunkhe extended the application
of 1-methoxyethyl-3-methyl imidazolium methanesulfonate IL ([MOEMIm][OMs]) to nucleoside
chemistry, and the good solubility of nucleosides in the IL facilitated the synthesis reaction [25].
Almost at the same time, Itoh and Zhao reported that the poly(oxyethylene) alkyl-functionalized ILs are
good additives, as well as solvents for enzymatic reactions due to their good biocompatibility [26–28].
Recently, we reported that mono-ether functionalized ILs (ME-FILs) have good biocompatibility
for lipase in catalyzing the kinetic resolution of secondary alcohols [29]. However, to the best
of our knowledge, there is no systematic investigation of the physicochemical properties of
ether-functionalized ILs as a function of anion or ether group position.

Herein, we report our recently developed series of imidazolium-based ME-FILs containing
bis(trifluoromethyl-sulfonyl)imide ([NTf2]−), ([BF4]−) and ([PF6]−) anions as summarized in Scheme 1,
and the effect of cationic structure and counter anions on physicochemical properties such as density,
viscosity, electrical window, ionic conductivity, thermal stability and phase behavior of these ME-FILs
were investigated and discussed in detail.
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Scheme 1. Structures of synthesized mono-ether functional ionic liquids (ME-FILs).

2. Results and Discussion

ME-FILs were synthesized through mono-ether functionalized cation formation and anion
exchange and purified as reported previously [30–32]. The structures of ME-FILs were characterized
by 1H, 19F, and 13C-NMR and mass spectroscopy. The single decomposition peak in the TGA profiles
implies that the synthesized ME-FILs were not mixed compounds, which coincides with NMR data
and mass spectra (see Supplementary Figures S2, S3 and S4). Yields of 84−97% were obtained for
all ME-FILs, and the water concentration were lower than 20 ppm for most of them except ME-FIL1
(32 ppm) and ME-FIL7(<100 ppm), and ME-FIL6 is moisture unstable.
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2.1. Density and Viscosity

The density and viscosity of these ME-FILs at 25 ◦C are listed in Table 1. It can be seen that both
cations and anions have a significant effect on the physicochemical properties. For example, ME-FILs
containing [NTf2]− possess the highest density compared to [BF4]− and [PF6]− salts provided that the
cationic structures are the same, and the lowest viscosity among ME-FIL2, ME-FIL6, and ME-FIL7.
Bearing the same anion ([NTf2]−), their densities follow the sequence (at 25 ◦C) of 1 > 2 > 4 > 3 > 5,
whereas the viscosity is nearly in the reverse order of 4 > 3 > 5 > 2 > 1. The abnormal higher viscosity
of ME-FIL4 compared to ME-FIL3 and ME-FIL5 suggests that the inhibition towards the rotational
freedom of the main chain is caused by a methyl substituent at the 2-position of imidazolium [33–35].
A similar trend was also observed for ME-FIL2 and ME-FIL5; i.e. that a longer alkyl chain at the
3-position of imidazolium results in lower density and higher viscosity. Similarly, a longer ether
chain at the 1-position of imidazolium of ME-FIL3 leads to a higher viscosity (113 cP) than ME-FIL2
(44.9 cP). In comparison with non-ether-functionalized ILs with the same structure, it is noteworthy
that the introduction of a mono-ether group leads to a definite reduction in viscosity (µ(ME-FIL2)
= 44.9 cP vs. µ([BMIm][NTf2]) = 59.82 cP) [36], which is encouraging for a variety of applications.
Furthermore, Figure 1a shows the dynamic density of ME-FILs with typical structures. With the
increase of temperature, an almost linear decrease of density was observed for all studied ME-FILs.
In addition, despite structural differences, they have nearly the same slope, indicating an approximate
rate of decline of density for ME-FILs in the range of tested temperature, and these linear lines fit to the
following equation:

dT = −1.007 × 10−3T/K + C (1)

where dT is the dynamic density (g/mL), T (K) is the temperature, and C is a constant (in which C is the
difference for different ME-FILs).
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Figure 1. Temperature dependence of the physicochemical property of ME-FILs. (a) Dynamic density;
(b) dynamic viscosity.

The dynamic viscosity of ME-FILs is depicted in Figure 1b. It is obvious that the viscosities of
ME-FIL1 and ME-FIL2 are far lower than others at 25 ◦C. However, the wide gaps gradually diminished
after the temperature was elevated in the following processes. Finally, the viscosity differences become
much less significant at 90 ◦C, suggesting similar intra- or inter- molecular factors control viscosity
in the ME-FILs at higher temperatures. ME-FIL1 and ME-FIL2 show markedly less temperature
dependence than the other ME-FILs, indicating good temperature stability.

2.2. Electrochemical Window

The electrochemical stability of all of these ME-FILs was analyzed with cyclic voltammetry at
25 ◦C (Table 1). They show wide electrochemical windows, comparable to that of 1-alkyl-2-methyl
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pyrrolinium bis(trifluoromethanesulfonyl)amide (5.0 V) [37]. It is noteworthy that ME-FIL1 and
ME-FIL2 are electrochemically stable in the potential range from −2.3 V to 2.4 V and −2.5 V to 2.5 V
versus the Ag/AgCl electrode, respectively, indicating potential electrolyte applications comparable
to non-ether FIL such as [BMIm][NTf2] (4.2 V) [38]. In comparison with ME-FIL1 and ME-FIL2,
the narrower electrochemical stability window of ME-FIL3 may result from the unremoved low content
of Cl− and Na+. Figure 2b depicts the electrochemical behavior of ME-FIL4. It is obvious that an
irreversible oxidation can be observed at 1.5 V, and a reduction peak can be seen at −2.12 V. Therefore,
ME-FIL4 is stable in the potential range from −2.10 V to 1.25 V versus the Ag/AgCl electrode. Figure 2a
is a typical cyclic voltammogram of ME-FIL1, and the electrochemical window is about 5.0 V.

Table 1. Density, viscosity, electrochemical window, and ionic conductivity of ME-FILs at 25 ◦C.

ME-FIL Density (g/mL) Viscosity (cP) Electrochemical Window (V) Ionic Conductivity (S/m)

1 1.501 41.8 4.7 2.6 × 10−1

2 1.459 44.9 5.0 2.2 × 10−1

3 1.420 113 3.9 7.3 × 10−2

4 1.445 158 4.8 5.9 × 10−2

5 1.400 109 4.8 6.4 × 10−2

6 1.270 116 4.5 2.1 × 10−1

7 1.413 181 4.6 6.4 × 10−2
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Figure 2. Typical cycle voltammograms of ME-FILs. (a) ME-FIL1; (b) ME-FIL4.

2.3. Ionic Conductivity

The dynamic conductivities have been measured in the temperature range from 25 ◦C to 70 ◦C
for ME-FIL1–5, which have a typical group in the 1-, 2-, and 3-position of imidazolium cation,
and ME-FIL6–7 with different anions (Figure 3). It can be seen that these plots show typical Arrhenius
behaviors, suggesting an ionic association within the ME-FILs. Table 1 indicates that ME-FIL1 possesses
the highest ionic conductivity (0.26 S/m) at 25 ◦C among all the examined ME-FILs. This might be
attributed to the smaller size of the cation and lower viscosity, resulting in the higher rate of ionic mobility.
In comparison with ME-FIL3 (0.073 S/m), the slower mobility of the bigger cation may result in lower
conductivity (0.064 S/m) of ME-FIL5, although with lower viscosity. However, high space resistance
enhances the viscosity dramatically, resulting in the lowest conductivity of ME-FIL4 (0.059 S/m) among
the ME-FILs with an [NTf2]− anion, although the cationic size is not the largest. The effect of the anion
on ionic conductivity was compared among ME-FIL2, ME-FIL6, and ME-FIL7. ME-FIL2 combining
the [NTf2]− anion has a higher ionic conductivity (0.22 S/m), which is close to the value of ME-FIL6
with a [BF4]− anion (0.21 S/m), than ME-IL7 with a [PF6]− anion (0.064 S/m), and lower than the value
(0.406 S/m) of non-ether-functionalized ILs [BMIm][NTf2] [39]. This significant difference in ionic
conductivity caused by anions may be related to the different hydrogen bond interactions between
the anion and cation of ME-FILs, and the stronger interaction limit, the freeer the mobility of both the
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cation and anion [40]. Therefore, both cations and anions play important roles in determining the ionic
conductivity of ME-FILs.
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2.4. Thermal Stability

Thermogravimetric analysis was carried out to analyze the thermal stability of ME-FIL1–7, and the
decomposition temperatures are listed in Table 2. The results show that these ME-FILs are all stable to
at least 250 ◦C, while ME-FIL1 only shows the onset of decomposition at 441 ◦C. ILs with the same anion
([NTf2]−) showed a general trend that a longer alkyl chain substitution (at the 1 or 3 positions) on the
imidazolium ring tend to have lower thermal stability than shorter alkyl chain substituted analogues.
Moreover, anions also play a significant role in affecting the thermal stability of ME-FILs in the order of
decomposition temperatures: [NTf2]− > [PF6]− > [BF4]−, which is consistent with the density trend
(ME-FIL2 > ME-FIL7 > ME-FIL6), and the thermal decomposition temperature Td = 430 ◦C of ME-FIL2
is near to [BMIm][NTf2] (421 ◦C) [41,42], which has a similar structure to ME-FIL2 but without ether
functionalization. The higher thermal stability of ME-FILs with [NTf2]− may be attributed to stronger
Van Der Waals forces between the cation and anion [43]. Figure 4 showed the typical TGA curves
of ME-FILs.
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Table 2. Thermal stability and phase behavior of ME-FILs.

ME-FIL Td
a(◦C) Tcc

b(◦C) Tg
c(◦C)/∆Cp

d (J/g/◦C) Tm
e (◦C)

1 441 −81.53/0.15
2 430 −81.25/0.24
3 307 −78.64/0.77
4 410 −68.73/1.0
5 298 −76.18/0.89
6 269 −75.61/0.18
7 330 −21.75 −74.58/0.16 7.95

a decomposition temperature; b cold crystallization temperature; c glass transition temperature; d ∆Cp is the heat
capacity change during the glass transition; e melting temperature.

2.5. Heat Capacity and Heat Storage Density

Heat capacities (Cp) are vital for the design of physicochemical processing and reaction units, and
the application of ILs as thermal fluids. In order to determine the Cp of a material, a three-step method
is necessary [44]. Therefore, the heat capacity scans of these ME-FILs were completed from −40 ◦C to
40 ◦C (see Supplementary Figure S6), a region in which there is no obvious phase change. The thermal
analysis data are presented in Table 3.

As can be seen from Table 3, the heat capacity values of ME-FILs with the [NTf2]− anion increase
as the ether chain length of the cation increases. For example, the heat capacity of ME-FIL1, which has
the shortest ether chain on the cation among all tested ME-FILs, is much lower than that of ME-FIL3
(488.4 J·K−1mol−1 < 668.6 J·K−1mol−1) at 25 ◦C (see Supplementary Figure S6). Similarly, the anions
affect the Cp of ME-FILs by the same order as other ILs previously reported in the literature [45–47].
For example, the Cp values of ME-FIL2, ME-FIL6, and ME-FIL7 (which have the same cation) decrease
in the order of [NTf2]− > [PF6]− > [BF4]− at 25 ◦C. The high sensible heat storage densities indicate that
these ME-FILs could potentially be used as excellent heat transfer fluids.

Table 3. Heat capacity (Cp) and heat storage density (Dh) for some ILs.

ILs ME-FIL1 ME-FIL2 ME-FIL3 ME-FIL4 ME-FIL5 [BMIm][BF4] b

Cp (J/g/◦C) 1.2 1.24 1.37 1.25 1.39 1.60
Dh

a 180.0 181.4 194.5 178.8 194.6 192.0
a Dh = ρ·Cp·∆T, ∆T = 100; b Ref [46].

2.6. Phase Behavior

The phase behavior of ME-FILs was further investigated by differential scanning calorimetry
(DSC). From the DSC traces (Figure 5 and Supplementary Figure S22), we can see that the ME-FILs
have similar glass transition temperatures (Tg) between −68 ◦C and −81 ◦C, which may be related
to their similar intra- or inter- molecular interactions. It is obvious that the smaller the size of the
cation, the lower the Tg for the ME-FILs containing a [NTf2]− anion. This tendency is the same for
viscosity. A heat capacity change corresponding with the glass transition for all of ME-FILs with a
[NTf2]− anion can be seen during either cooling from 100 ◦C to −130 ◦C or heating from −130 ◦C to
100 ◦C. ME-FIL6 displays a heat capacity change at −76.71 ◦C on heating, and the glass transition
temperature is −75.46 ◦C (Table 2). ME-FIL7, however, shows a type of behavior that differs from
the above, and its thermal scan is presented in Figure 5b. It can be seen that this IL does not show
a tendency to crystallize on cooling; however, the glass transition, cold crystallization, and melting
temperatures can be inferred on heating. As expected, the glass transition temperature of ME-FIL7
(−74.58 ◦C) is near to that of ME-FIL2 (−81.25 ◦C) (Table 2), which has the same cation as ME-FIL6 and
ME-FIL7. Therefore, both cations and anions affect the phase behaviors of ME-FILs.
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Figure 5. Typical DSC curves of ME-FILs. (a) ME-FIL2; (b) ME-FIL7. vEXO represents the exothermic
direction; Tons represents the onset of heat capacity change for Tg, or the onset of an endothermic
change for Tm, or the onset of an exothermic change for Tcc.

3. Materials and Methods

3.1. Materials

The compounds 2-bromoethyl methyl ether, 2-bromoethyl ethyl ether, 1-bromo-6-chlorohexane
(99%), lithium bis(trifluoromethylsulfonyl)imide (98+%), and silver bis(trifluoromethylsulfonyl)imide
(97+%) were purchased from Sigma Aldrich, China. Ethanol (AR), methylimidazole (AR),
1,2-dimethylimidazole (AR), butylimidazole (AR), sodium tetrafluoroborate (AR), ammonium
hexafluorophosphate (AR) and other chemicals (AR) were purchased from Fluka.

3.2. Methods

NMR measurements were recorded on a Brüker AV-400 Fourier transform NMR spectrometer
using an inner capillary filled with CD3OD for 1H, 13C, and 19F-NMR. Chemical shifts were reported
in parts per million (ppm, δ). High resolution mass spectra were recorded on a GC model 6890 N
(Agilent Technologies, Waldbrom, Germay) fitted with a split/splitless injector and equipped with
a MSD model 5975B (Agilent Technilogies, Tokyo, Japan). IL/methanol solutions (1 µL) were injected
in each case automatically by an Autosampler model 7683 (Agilent).

Density measurements were performed using an Anton Paar DMA 5000 density meter with an
uncertainty of ±0.00005 g·cm−3 for all ME-FILs from room temperature (25 ◦C) to 70 ◦C. The viscosity
was measured using an Anton PaarAMVn viscometer (Austria) for all ME-FILs from 25 ◦C to 70 ◦C.

The ionic conductivity was evaluated using alternating current (AC) impedance spectroscopy in
the frequency range of 0.1 Hz to 10 MHz using a dip cell. The measurements were performed with
a frequency response analyzer (Solartron1296, Britain) driven by Solectron impedance measurement
software version 3.2.0. For all ME-FILs, the temperature range was 25 ◦C to 70 ◦C.

The cyclic voltammetry curve was detected by using a CHI 660A Electrochemical Work Station at
25 ◦C in the glove box. A 3 mm diameter platinum working electrode, a platinum wire counter electrode,
and an Ag/AgCl reference electrode were used in detection, in which the reference electrode consisted
of a silver electrode immersed in [BMIm][NTf2] saturated with silver bis(trifluoromethylsulfonyl)imide,
and was separated from the tested ME-FILs by ceramic chips [48].

Thermogravimetric analysis (TGA) was performed with a Simultaneous Thermal Analysis
(STA) 409EP. The samples for TGA were placed in an aluminum crucible. Thermal analysis and
temperature-dependent mass changes were examined in the range of 30 ◦C to 600 ◦C. The thermal
decomposition temperature (Td) was recorded with 10% mass loss of ME-FILs with a scan rate of
10 ◦C/min under N2 atmosphere.
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The phase transitions of all ME-FILs were performed on a thermal analysis (TA) Instruments
DSC2010 differential scanning calorimeter in the temperature range of −130 ◦C to 100 ◦C at a scan
rate of 10 ◦C/min. In each performance, about 5 mg ME-FILs was sealed in an aluminum pan to test.
The melting temperature (Tm) was taken as the onset of an endothermic peak on heating. The glass
temperature (Tg) was taken as the onset of heat capacity change; the cold crystallization temperature
(Tcc) was taken as the onset of an exothermic peak on heating from a subcooled liquid state to
a crystalline solid state.

4. Materials and Methods

4.1. General Procedures for the Preparation of ME-FILs

The imidazolium-based ME-FILs were prepared according to the previously reported
procedure [30,31] with little modification and their abbreviations are summarized in Scheme 1.
Except for ME-FIL3, all others were prepared by consecutive neutralization and anion exchange
reactions (see Supplementary Figure S1). Taking ME-FIL3 as an example, the detailed synthesis
process was as follows: under vigorous stirring, 0.50 g sodium metal was consecutively added into a
50 mL flask containing 20 mL anhydrous ethanol. The mixture was stirred at room temperature until
no further hydrogen was released. The excess ethanol was removed by evaporation. Then, 3.97 g
(0.02 mol) 1-bromo-6-chlorohexane was added into the above sodium ethoxide under vigorous stirring
and refluxing conditions. After the reaction was completed, the solid by-product, sodium bromide,
was removed by filtration. The filtrate was collected and transferred into a 100 mL flask. Afterward,
1.64 g 1-methylimidazole (0.02 mol) was added into the filtrate. The mixture was stirred at 70 ◦C for
8 h, and the bottom product was separated from the upper residue. After separation, 100 mL of an
aqueous solution containing 5.74 g (0.02 mol) lithium bis(trifluoromethylsulfonyl)imide was added to
the product, followed by agitation for 4 h at room temperature. The mixture was then kept at room
temperature until the interface between the IL and the water phase was observed. The IL phase was
collected and washed several times with distilled water, followed by removal of water in vacuum at
120 ◦C for at least 24 h, then treated with anhydrous CaCl2 pellets, which produced 9.34 g ME-FIL3
(94.0 % yield).

4.2. Water Content Quantification

The water content in all ME-FILs was quantified before each experiment by using Karl–Fischer
coulometric titration (C10SX from Mettler-Toledo, Switzerland). Before the titration, each ME-FIL was
rotary evaporated in a vacuum at 120 ◦C for at least 24 h and treated with anhydrous CaCl2 pellets.
Then, 3 g ILs were used as titration samples (H2O concentration detection limit = 4 ppm/0.3 mM).

5. Conclusions

Mono-ether functionalized ionic liquids with different structures have been successfully prepared
through consecutive reactions of cationic functionalization and anionic exchange. These ME-FILs
possess low viscosity, broad electrochemical windows, good ionic conductivity, and high thermal
stability. Cationic structure and counter anions affect the physicochemical properties of these ME-FILs,
and the good biocompatibility highlights their use as a potential medium or additives for biochemical
reactions with a wide range of applications [26–31].

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/17/3112/s1,
Figures S1–S17: 1H, 13C, and 19F spectra of ME-FIL1, 2,3,4,6, and 7, respectively; Figures S18–S21: Cationic
and anionic Mass spectra of typical ME-FIL1 and 3, respectively; Figure S22: DSC curves of MEF-IL1, 3, and 4;
Figure S23: CV curves of MEF-IL2 and 3; Figure S24: “Three-step” method for the determination of heat capacities.
Table S1: Water content of different ME-FILs.

http://www.mdpi.com/1420-3049/24/17/3112/s1
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