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Abstract: The single-crystal X-ray diffraction structure characterizing a new 4-methylbenzamidinium
salt of chloroselenite [C8H11N2][ClSeO2] is reported. This is only the second crystal structure report
on a ClSeO2

− salt. The structure contains an extended planar hydrogen bond net, including a double
interaction with both O atoms of the anion (an R2

2(8) ring in Etter notation). The anion has the
shortest Se–Cl distances on record for any chloroselenite ion, 2.3202(9) Å. However, the two Se–O
distances are distinct at 1.629(2) and 1.645(2) Å, attributed to weak anion–anion bridging involving
the oxygen with the longer bond. DFT computations at the RB3PW91-D3/aug-CC-pVTZ level of
theory reproduce the short Se–Cl distance in a gas-phase optimized ion pair, but free optimization of
ClSeO2

− leads to an elongation of this bond. A good match to a known value for [Me4N][ClSeO2] is
found, which fits to the Raman spectroscopic evidence for this long-known salt and to data measured
on solutions of the anion in CH3CN. The assignment of the experimental Raman spectrum was
corrected by means of the DFT-computed vibrational spectrum, confirming the strong mixing of the
symmetry coordinate of the Se–Cl stretch with both ν2 and ν4 modes.

Keywords: halochalcogenite(IV) ion; crystallography; H-bonding; chalcogen bonding; π-holes;
DFT-computed vibrational spectra

1. Introduction

The chloroselenite ion, ClSeO2
−, is found in several salts crystallized from the addition

of chloride ions to selenium(IV)oxide in non-aqueous solutions [1]. Conceptually, chlorose-
lenite ions are donor–acceptor adducts between the halogen and the chalcogen dioxide
(Scheme 1) and they were first identified by direct addition reactions in aprotic solvents.
The Cambridge Structural Database (release 2023.2.0) [2] currently lists just one crystal
structure [Me4N][ClSeO2], assigned the CSD Refcode BIRHOZ, but to our knowledge,
no atom coordinates are available for this structure in publications or databases. This
structure is most consistent with type A in Scheme 1, described as having ‘monomeric
pyramidal anions’ with d(Se–Cl) = 2.453(1); d(Se–O) = 1.632(2) Å [3–6]. The Se–Cl bond
length, almost 14% longer than the sums of the covalent radii, is consistent with a weak
donor–acceptor bond (for further details on this structure, see the Supplementary Materi-
als). A 2,2′-bipyridium salt [C10H9N2][ClSeO2] is indexed in Chemical Abstracts (Registry
number [27380-14-9]), but its crystal structure is apparently only available in an unpub-
lished thesis [7]. The anion has been identified in various solvents via liquid-phase Raman
spectroscopy as well as in isolated Me4N+ and Ph4As+ salts, largely through the systematic
work of the Canadian chemist John Milne (1934–2022) [1]. The 77Se NMR spectrum of
solid [Me4N][ClSeO2] was noteworthy for having anisotropic shielding of >1000 ppm [8].
The dominance of 1:1 adducts between Cl− ions and SeO2 in several aprotic solvents was
originally established using UV-vis absorption spectroscopy [9], but the non-existence of
the parent acid ClSe(O)OH in aqueous solutions of SeO2 in either dilute or concentrated
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HCl has been attested [10,11]. Similarly, there is no evidence for stable salts of simple metal
cations M[ClSeO2] despite reported attempts to obtain these [12].
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Scheme 1. Donor–acceptor bonding in halochalcogenite(IV) ions and schematics of the structure
types A–G known from SC-XRD data; Ch = chalcogen (S, Se, Te); X = halide (F, Cl, Br, I).

The nature and scope of weak chemical bonds has become a major focus of research
in recent years [13]. Chloroselenites are currently of interest in relation to the speciation
and extraction of Se(IV) and Se(VI) for environmental concerns [14]. The electron affini-
ties of SeOn clusters have been evaluated for similar motivations [15] and fundamental
spectroscopy on SeO2 rotational lines remain of interest for astronomic detection [16–18].
Selenium compounds are central to the surge in interest in chalcogen bonding [19–23].
Importantly, SeO2 itself has also been identified as having electrostatic ‘π-holes’ [24], which
may be of direct relevance to the formation of the halogen adducts [XChO2]− (X = halogen;
Ch = chalcogen). New attention to the higher oxochloroselenates, after a long hiatus, is
bearing fruit with the report of an inclusion compound of Cl2 in a tetramethylamino salt of
[Se2O2Cl7]3− [25], which harkens back to a much older structure [26]. The thermochemical
properties of the fluoroselenite ion have been assessed in a large prospective study [27].
Less is known about the heavier halide adducts of SeO2, and halotellurites remain rare.
However, there is active research on all the halosulfites due to the recognition of the impor-
tance of SO2 as a Lewis acid relative to is capability as a solvent medium and environmental
hazard, with important structural [28–30] and computational studies [31]. The application
of modern speciation, structural, and theoretical techniques makes the study of weakly
bonded adducts, such as those encountered amongst the halochalcogenites [XChO2]−,
more feasible than ever before.

Despite their simple constitution, there is a dearth of confirmed structural evidence on
[XChO2]− salts, all of which so far are from single-crystal X-ray diffraction (SC-XRD) data.
Since the literature is very scattered, the current state of knowledge is briefly reviewed.
FSO2

− salts are the best represented, with nine known structures, consistent with the
accepted wisdom that this is the most stable member of its class (the order of X–Ch bond
strength is believed to be F > Cl < Br < I, but this may be Ch-dependent) [32,33]. A
phosphonium ylid salt of FSO2

− was the first reported structure (CSD refcode: LIHWAA)
but it suffers from serious F/O positional disorder [34]. Another, aprotic, imidazolium salt
(CSD refcode: TOSXEE), also displays a disordered anion [35]. This theme continues for
the metal salts K[FSO2], Rb[FSO2] [36] and the α- and β- polymorphs of Cs[SO2F] [30]. The
recognition of O/F positional disorder led to a determined but only partially successful
attempt to overcome the phenomenon with the preparation and structures of [(Me2N)3S]+,
[(Me2N)3SO]+ and [(Me4N)4N]+ salts (CSD refcodes: ADEJOI, ADEJUO and ADEKAN,
respectively) [29]. The structure type that best describes all the FSO2

− salts is B in Scheme 1,
due to the positional exchange of the very similar-sized O and F, and further positional
disorder that often lends a pseudo-tetrahedral appearance to the anion in these structures
(the value of x can range from 0 to 0.5).

Two chlorosulfite, ClSO2
−, ion structures are in the CSD. The oldest structure (refcodes:

POMBEY [37]) contains an isolated ion of type A with an S–Cl bond that is 23% longer than
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the sums of the covalent radi. Much more recently, structure XEGCAQ [38] was reported,
wherein one oxygen coordinates to Li+, lending it structure type F. Fascinatingly, there
are also two structures in the database, KIGZEF [39] and LAQYOR [40], which contain
infinite chains in which the chloride ions bridge the SO2 molecules more or less equally,
i.e., structure type C. Similar, though far more symmetrical, chain structures of type C are
displayed by [Et4N][BrSO2], LAYTUC [28] and by [Me4N][BrSeO2], BIRHUF [3–5].

The remainder are ISO2
− salts, and these are the most structurally diverse of all. The

[Ph3PBz]+ salt BZTPPI [41] and WUKQUR [42] are both of type A (with S–I lengths 38%
and 24% longer than sums of the covalent radii), although WUKQUR has a positional
disorder that reduces the accuracy of the derived parameters. Structures MPICSO [43] and
MPTPIS [44] are of type E in which SO2 forms an adduct to a metal-coordinated iodide ion.
The iodide adduct in WUQMED is another with oxygen coordinated to a metal, type F,
whereas WUQLUS is a variant on this theme with both oxygen atoms of the SO2 attached
to separate metals, type G [42]. Finally, in DOTXOA, there is a discrete I2SO2

2− ion of
structure type D [45].

In summary, there are still relatively few known structures for this class, many of
which are problematic, and there is a very wide structural diversity, particularly with
regards to the X–Ch bond lengths. This situation is consistent with what may be anticipated
from weak donor–acceptor bonding. Thus, when we happened on a good quality structure
containing a chloroselenite ion, quite by accident, we immediately recognized its impor-
tance. Our structure is the first of its kind where paradigmatic hydrogen bonding to the
ClSeO2

− ion has been established, as well as having the shortest Cl–Se bond for chlorose-
lenites. Herein, we provide a full report on this interesting structure and analyze the anion
geometry and bonding through extensive B3PW91/aug-cc-pVTZ density functional theory
(DFT) computations.

2. Results
2.1. Formation of the Salt from a Hydrolysis Reaction

In our work on heterocyclic thiazyls and selenazyls, we have explored the synthesis of
1,2,4,6-thiatriazinyl radicals via the reduction of 1-chloro-1,2,4,6-thiatriazines [46,47] and are
now extending this work to the selenium analogues. Attempts to recrystallize extremely in-
soluble selenatriazine 1 for purification used boiling acetonitrile (Scheme 2). 1 is analogous
to 1,1-dichloro-3,5-diphenyl-4H-1,2,4,6-selenatriazine, which displays H-bonding in its crys-
tal structure (CSD refcode: DUVDUT), likely the origin of the insolubility [48]. Colorless
crystals of 2 were the only identifiable product of the reaction mixture, which has been un-
ambiguously characterized by SC-XRD. This interesting reaction, producing at once the rare
chloroselenite ion and the 4-methylbenzamidinium cation, may be contrasted with our ear-
lier observation that hydrolysis of 1-chloro-3-phenyl-5-trifluoromethyl-1λ4,2,4,6-thiatriazine
3 [46] in the presence of air forms the covalent (imino(phenyl)methyl)sulfamyl(VI) chloride
4. Thus, in the formation of 2, selenium demonstrates its well-known resistance to adopting
the highest group oxidation state, a characteristic that is usually attributed to the Scandide
contraction [49]. The two products provide an appealing contrast, yet both are remarkable
for retaining a Ch–Cl bond and are evidently stabilized by similar H-bonding networks
(see below). The full structural and computational characterization of salt 2 follows. For a
depiction of the interesting molecular structure of 4, including its H-bonds, see Appendix B.

2.2. Crystallographic Characterization

From the SC-XRD data, a structure model for 2 with restrained full refinement of
the hydrogen atom positions and displacements was developed by applying Hirsfeld
atom refinement (HAR). This method employs custom aspherical atomic scattering factors,
computed on the fly by density functional theory (DFT) methods, under the control of
the NoSpherA2 package [50] within Olex2 release 1.5 [51]. This approach is particularly
useful when H-bonding is present, as it avoids having to normalize E–H bond lengths as
otherwise required with XRD structures [52]. Full details of the refinement strategy are
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provided in the Experimental section. The ion pair structure in 2 is shown in Figure 1,
the extended H-bond network and inter-anion contacts are shown later. The derived
interatomic parameters have been placed in Table 1, while the H-bond and short contact
data are presented in Table 2.
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Figure 1. (a) Displacement ellipsoids plots (50% probability) for the molecular structures of 2 as found
in the crystal lattice. The second component of the CH3 rotational disorder model is omitted. H-bonds
are shown with red dotted lines. (b) Tubes plot, showing the DFT-computed dipole moment (blue vec-
tor; IUPAC convention) of an isolated ion pair in 2 from an RB3PW91-D3/aug-CC-pVTZ calculation.

The ion pair structure obtained for 2 (Figure 1a) consists of ClSeO2
− ions that are

doubly hydrogen-bonded to the toluamidinium H atoms H1b and H2b. There is, to date,
only one set of comparison data in the literature, the aforementioned BIRHOZ structure of
[Me4N][ClSeO2] from an apparently very accurate 143 K crystal structure [3]. The Se–Cl
bond length of 2.453(1) Å in BIRHOZ is significantly longer than that found in 2, but the
apparently equal Se–O distances of 1.632(2) Å agree well with the average of Se1–O1 and
Se1–O2 (1.637(1) Å). The accuracy of this report has been confirmed through a personal
communication of the structure details (see the Supplementary Materials), so that the
divergence between the two geometries will be considered in detail [6]. Krebs et al. further
describe this structure in a review article, mentioning that an X-X deformation density anal-
ysis has been undertaken on the same salt at 120 K, but these data also remain unpublished:
“deformation density maps clearly reveal the presence of lone-pair (E) density (maximum
of 0.40 ± 0.04 e−/Å−1 at a distance of ca. 0.75 Å from Se) consistent with model predictions
for a pseudo-tetrahedral SO2ClE arrangement with additional π density in the Se–O bonds
and with a rather polar Se–Cl bond” [4]. From the HAR/NoSpherA2, we were able to
extract a deformation density map (Figure 2) that corroborates this verbal description.
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Table 1. Interatomic distances (Å) and angles (◦) in the crystal structure of 2 and for ClSO2
− by DFT 1.

Atoms dExperiment dComputed Atoms ∠Experiment ∠Computed

Se1–Cl1 2.3202(9) 2.491 O1–Se1–Cl1 100.86(9) 102.75
Se1–O1 1.645(2) 1.630 O2–Se1–Cl1 101.55(9) 102.75
Se1–O2 1.629(2) 1.630 O2–Se1–O1 104.90(11) 110.58
N1–C1 1.323(4) N2–C1–N1 119.1(3)
N2–C1 1.317(4) C2–C1–N1 120.8(3)
C1–C2 1.472(4) C2–C1–N2 120.1(3)
C2–C3 1.404(4) C3–C2–C1 120.5(3)
C2–C7 1.395(4) C7–C2–C3 118.1(3)
C3–C4 1.382(5) C4–C3–C2 120.4(3)
C4–C5 1.395(5) C5–C4–C3 121.3(3)
C5–C6 1.392(5) C6–C5–C4 118.1(3)
C5–C8 1.497(5) C8–C5–C4 120.7(3)
C6–C7 1.384(5) C8–C5–C6 121.2(3)

C7–C2–C1 121.4(3)
C7–C6–C5 120.9(3)

1 Full atomic positional and derived data for SC-XRD experiments in the Supplementary Materials. DFT geometry
optimized in the gas phase at the RB3PW91-D3/aug-CC-pVTZ level of theory.

Table 2. Hydrogen bonds and inter-anion contacts in the crystal structure of 2.

D(–H) :A d(D–H)/Å d(H···A)/Å d−∑rvdW d(D···A)/Å Angle/◦

Hydrogen-bonds
N1–H1a O2 1 1.045(17) 1.90(3) −0.82 2.852(3) 150(3)
N1–H1b O1 1.051(18) 1.843(19) −0.877 2.880(4) 168(3)
N2–H2a O1 2 1.030(17) 1.83(3) −0.89 2.792(3) 153(4)
N2–H2b O2 1.039(18) 1.95(2) −0.77 2.948(3) 160(3)

Inter-anion Contacts
O1 Se1 3 (angle is Se1–O1···Se1 3) −0.289 3.131(2) 108.8(1)
Cl1 Se1 3 (angle is Se1 3–Cl1 3···Se1) −0.252 3.3980(9) 85.96(3)

Symmetry codes: 1 1 + x,1.5-y,1/2 + z; 2 x,1.5-y,-1/2 + z; 3 1 + x,y,z.
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2.3. Hydrogen Bonding in the Solid Lattice of 2

There is an extensive H-bond network (Figure 3, Table 2) in 2 and all the H-bond
parameters fit for standard electrostatic-covalent H-bonding according to the criteria of
Jeffrey (summarized in Table A1 in Appendix B). The H-bonds form layered nets, wherein
every second ion pair is reversed in a head-to-tail fashion that, as viewed in Figure 3, form a
‘Vee’ or roof shape, the horizontal of which aligns with the bifurcator of ∠ac. For extended
views of these nets, see Figure S3 in the Supplementary Materials. There are both short
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H-bonds between the amidinium and chloroselenite ions [d(D···A) 2.852(3) and 2.948(3) Å]
and even shorter links to the next amidinium ions on both sides in the net [d(D···A) 2.852(3)
and 2.880(4) Å]. The H-bond acceptor sites at O correspond to negative charge maxima on
the computed electrostatic potential surface (Figure S4), which is otherwise unexceptional.
Bonds of this length can be worth as much as 50 kJ/mol each (Table A1) so could add up
to as much as 200 kJ/mol per formula unit. This is significant stabilization. The primary
H-bonds (in Etter notation) are the discrete D1

1(2) links b and d of the cation to the facing
anion, which thereby form an R2

2(8) > b < d ring, a standard motif for amidinium ions [53].
There are also D1

1(2) links a and c to two adjacent anions that are of comparable strength to
the ring bonds. Many other infinite chain paths and much larger rings can also be identified
in the network. Figure 3 also evidences classic π-π stacking, wherein ring carbon atom C3
is closely aligned with the centroid of the phenyl ring below, at a distance of 3.56 Å, with
repeats of this interaction throughout the lattice.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 17 
 

 

Cl1   Se1 3 (angle is Se1 3–Cl1 3···Se1) −0.252 3.3980(9) 85.96(3) 
Symmetry codes: 1 1 + x,1.5-y,1/2 + z; 2 x,1.5-y,-1/2 + z; 3 1 + x,y,z. 

2.3. Hydrogen Bonding in the Solid Lattice of 2 
There is an extensive H-bond network (Figure 3, Table 2) in 2 and all the H-bond 

parameters fit for standard electrostatic-covalent H-bonding according to the criteria of 
Jeffrey (summarized in Table A1 in Appendix B). The H-bonds form layered nets, wherein 
every second ion pair is reversed in a head-to-tail fashion that, as viewed in Figure 3, form 
a ‘Vee’ or roof shape, the horizontal of which aligns with the bifurcator of ∠ac. For ex-
tended views of these nets, see Figure S3 in the Supplementary Information. There are 
both short H-bonds between the amidinium and chloroselenite ions [d(D···A) 2.852(3) and 
2.948(3) Å] and even shorter links to the next amidinium ions on both sides in the net 
[d(D···A) 2.852(3) and 2.880(4) Å]. The H-bond acceptor sites at O correspond to negative 
charge maxima on the computed electrostatic potential surface (Figure S4), which is oth-
erwise unexceptional. Bonds of this length can be worth as much as 50 kJ/mol each (Table 
A1) so could add up to as much as 200 kJ/mol per formula unit. This is significant stabili-
zation. The primary H-bonds (in Etter notation) are the discrete 𝐷ଵଵ(2) links b and d of the 
cation to the facing anion, which thereby form an 𝑅ଶଶ(8) > b < d ring, a standard motif for 
amidinium ions [53]. There are also 𝐷ଵଵ(2) links a and c to two adjacent anions that are of 
comparable strength to the ring bonds. Many other infinite chain paths and much larger 
rings can also be identified in the network. Figure 3 also evidences classic π-π stacking, 
wherein ring carbon atom C3 is closely aligned with the centroid of the phenyl ring below, 
at a distance of 3.56 Å, with repeats of this interaction throughout the lattice. 

 
Figure 3. Hydrogen bond network in the crystal lattice of 2. The Etter notation for the lower-level 
nets are indicated in the blue lettering: 𝐷ଵଵ(2) a; 𝐷ଵଵ(2) b; 𝐷ଵଵ(2) c; 𝐷ଵଵ(2) d; 𝐶ଶଶ(6) > a < b; 𝐶ଶଶ(8) > 
a < c; 𝐶ଶଵ(6) > a < d; 𝐶ଶଵ(6) > b < c; 𝑅ଶଶ(8) > b < d; 𝐶ଶଶ(6) > c < d. The relative H-bond strengths are 
color-coded, with yellow being stronger than orange. 

2.4. Intra-Ionic Short Contacts in the Lattice of 2 
We now consider how well the ClSeO2− ions in 2 are isolated from each other. Metric 

parameters for contacts shorter than the sums of the Van der Waals’ radii are included in 
Table 2. Figure 4a emphasizes the major interactions between ClSeO2− ions by including 
only the ring-forming ion pairs for clarity, whereas Figure 4b shows the overall packing 
and deliberately includes all atoms to show the intermolecular environment. As is clear 
from the literature on general oxochlorochalcogenates(IV) [3], there are no truly isolated 
halochalcogenite ions in crystal lattices, although large organic cations such as PPh4+ or 
AsPh4+ sometimes come close, as in [AsPh4][OSeCl3] (CSD refcode: BIRGUE10 [54]), which 
at the very least tend to displace inter-anion contact with more benign donor–acceptor 
interactions with aromatic ring electron density. With smaller organic cations, inter-anion 
interactions are commonly observed, both in the forms of discrete dimers and infinite 
chain polymers. The strongest interactions occur with small monometallic cations, such 
as in alkali and alkaline earth metal salts, such as the type C direct anion chain structure 

Figure 3. Hydrogen bond network in the crystal lattice of 2. The Etter notation for the lower-level
nets are indicated in the blue lettering: D1

1(2) a; D1
1(2) b; D1

1(2) c; D1
1(2) d; C2

2(6) > a < b; C2
2(8) > a < c;

C1
2(6) > a < d; C1

2(6) > b < c; R2
2(8) > b < d; C2

2(6) > c < d. The relative H-bond strengths are color-coded,
with yellow being stronger than orange.

2.4. Intra-Ionic Short Contacts in the Lattice of 2

We now consider how well the ClSeO2
− ions in 2 are isolated from each other. Metric

parameters for contacts shorter than the sums of the Van der Waals’ radii are included in
Table 2. Figure 4a emphasizes the major interactions between ClSeO2

− ions by including
only the ring-forming ion pairs for clarity, whereas Figure 4b shows the overall packing
and deliberately includes all atoms to show the intermolecular environment. As is clear
from the literature on general oxochlorochalcogenates(IV) [3], there are no truly isolated
halochalcogenite ions in crystal lattices, although large organic cations such as PPh4

+ or
AsPh4

+ sometimes come close, as in [AsPh4][OSeCl3] (CSD refcode: BIRGUE10 [54]), which
at the very least tend to displace inter-anion contact with more benign donor–acceptor
interactions with aromatic ring electron density. With smaller organic cations, inter-anion
interactions are commonly observed, both in the forms of discrete dimers and infinite chain
polymers. The strongest interactions occur with small monometallic cations, such as in
alkali and alkaline earth metal salts, such as the type C direct anion chain structure in
K[FSeO2] [55]. However, many halochalcogenite anions of heavier halogens and chalcogens
cannot exist with these small, focused charge, cations.
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Table 3. Experimental (Raman) and computed vibrational spectra for ClSO2
− ions (cm−1).

Band Assignment Symmetry Experiment 1

CH3CN Solution
Experiment 1

[Me4N][ClSeO2]
DFT

Optimized 2
DFT

X-ray Geom. 3

ν1 νsym(SO2) A′ 890 (p) 903 (s) 896 (vs,p) 886 (vs,p)
ν2 ν(S–Cl) A′ 273 (p) 4 267 (s) 4 267 (w,p) 321 (m,p)
ν3 δsciss(SO2) A′ 380 (p) 396 (w) 367 (w,p) 382 (w,p)
ν4 δsym(ClSO2

−) A′ 200 (p) 4 193 (vs) 4 178 (m,p) 242 (m,p)
ν5 νasym(SO2) A′′ 840 (dp) 841 (w) 912 (m,dp) 887 (s,dp)
ν6 δasym(FSO2

−) A′′ not obsv. not obsv. 165 (w,dp) 189 (w,dp)
1 As reported in Ref. [1]. 2 Frequency calculation of the Raman spectrum with full RB3PW91-D3/aug-CC-
pVTZ geometry optimization of the anion geometry. 3 RB3PW91-D3/aug-CC-pVTZ-computed anion at the
X-ray geometry in the crystal lattice of 2, symmetrized to Cs. 4 Reversals of the 1978 assignments, based on the
vibrational symmetries obtained by DFT; the colored bands draw attention to this switch. Notably, the ν2 and ν4
bands are strongly coupled, and hence both will reflect variations in S–Cl bond strength.
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Specific inter-anion contacts are found in the lattice of 2 (Figure 4a). The anions are
doubly bridged by Se1–O1···Se1′ and Se1–Cl1···Se1′ contacts, forming discrete chains par-
allel to the crystallographic a axis in which the anions are stabilized in three directions by
the H-bonds and the large chlorine atoms are surrounded by stacks of tolyl ring methyl
groups (Figure 4b). Importantly, the direction of approach of Cl1 to Se13 on the next anion is
close to linear with the opposing O13, i.e., the direction consistent with chalcogen bonding
from a σ-hole at Se [23]. A consideration of the metrical data in Table 3, specifically the
d−∑rvdW values, indicates that these inter-anion contacts are relatively weak compared
with the anion-cation H-bonding contacts. They are thus comparable (7–8.5% < ∑rvdW)
to the bridging Cl···Se contacts in the chain structure of [Me4N][ClSeO2] (see Supple-
mentary Materials). This is further borne out by the comparison with the chain-forming
Se–Cl···Se’ contacts in 8-hydroxyquinolinium trichloro-oxyselenate, [C9H8NO][OSeCl3],
which displays d−∑rvdW = −0.77 Å (CSD refcode HQNLSE [56]). Other known structures
of oxychlorselenium(IV) anion salts, which all show degrees of inter-anion contacts, are as
follows: [PPh4]2[O2Se2Cl6] (CSD refcode: BIRHAL10 [57]); [NEt4]2[O2Se2Cl6] (CSD refcode:
BORCAM [54]); [C10H10N2][OSeCl4] (CSD refcode: DPRYSE [58]); [NMe4]3[O2Se2Cl7][Cl2]
(CSD refcode: EWILOO [25]); [NnPr4]2[O2Se2Cl6] (CSD refcode: JUCDIU [59] (CSD refcode:
RAFYOM [60]).
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2.5. DFT Computational Investigation of Structure

Surprisingly, no prior computational study of ClSeO2
− ions could be found in the

literature, so it was considered essential to undertake a reliable DFT investigation. Based
on precedents in the literature, the B3PW91 functional was selected for its proven efficacy
in selenium chemistry [61], but we also chose to enhance it with Grimme’s original D3
dispersion correction to improve its capability for also modelling the full H-bonded salt.
For a basis set, aug-CC-pVTZ was selected because of its prior accuracy for selenium
compounds [62]. The chosen RB3PW91-D3/aug-CC-pVTZ method was first validated by
computing the structure of SeO2(g), which provides excellent agreement on geometry and
molecular vibrations (see Appendix A).

In a first calculation, the ion pair at the crystal coordinates was computed, which
confirms the primary directionality of the H-bonded geometry. A large dipole moment of
15.5 Debye orients almost parallel to the toluamidinium molecular plane and bifurcating the
SeO2 moiety (Figure 1b). Although far from a complete network, this primary H-bonding
(i.e., the R2

2(8) net) does seem to be significantly structure directing (Table 2). Next, the full
gas-phase geometry optimization of the ion pair was attempted, which did converge, albeit
with a rather more curved overall structure (∠C2···Se1–Cl1 = 68.0◦) than that found in the
lattice geometry (∠C2···Se1–Cl1 = 117.0◦).

Thereafter, the free ClSeO2
− ion was geometrically optimized, with full frequency

calculations for comparison to the vibrational spectra in early literature reports, when IR,
and especially Raman, spectroscopy were used as the chief characterization tools [1,33].
The geometry optimizes to effective Cs point symmetry, as expected, resulting in Se–O
lengths of 1.630 Å, close to the average 1.637(1) Å of the two experimental values. Most
surprisingly, however, the Se–Cl length increases to 2.491 Å, more than 7% longer than the
experimental value of 2.3202(9) Å. This is far larger than the expected elongation from
just using DFT at this level of theory. Moreover, these values are within the typical DFT
accuracy (just 1.5% longer) reported for the BIRHOZ structure on [Me4N][ClSeO2] [3].

Further support that the shorter Se–Cl length is a real effect from the H-bonding
of the toluamidinium to the oxygen atoms of the ClSO2

− ion in 2 is provided by the
above-mentioned gas-phase optimization of the cation-anion pair, where the Se–Cl length
remains in the range 2.32 to 2.33 Å through all the optimization steps. Presumably, this is a
primarily electrostatic effect, whereby withdrawing ED from the SeO2 moiety enhances the
presumed dative bond of the Cl− nucleophile in its interaction with Se (see next section).
We note that in oxytetrachloroselenate(IV) structures, H-bonding is known to induce longer
Se–Cl bonds, e.g., in the structure [C4H10NO][OSeCl4] (CSD refcode: RAFYOM [60]) where
the Se–Cl elongates to 2.776(2) Å from H-bonding to the morpholinium nitrogen (15%
longer than the average of the three other equatorial bonds), or [C10H10N2][OSeCl4] (CSD
refcode: DPRYSE [58]) where the Se–Cl that is H-bonded to the bipyridinium NH elongates
to 2.990(4) Å (24% longer than the equatorial average). Thus, H-bonding to the halogens
causes longer Se–Cl bonds, whereas to the oxygen it causes shorter Se–Cl bonds. The
observed behavior may also be related to variations in valence sharing.

Seeking further experimental confirmation, we noted that the BIRHOZ structure [3]
on [Me4N][ClSeO2] was one of the very salts originally investigated by Milne using Raman
spectroscopy [1]. At that time, the vibrational data were only assigned using symmetry
criteria, including experimental depolarization ratios, and by analogy to ClSO2

− [32].
The results of the RB3PW91-D3/aug-CC-pVTZ-computed spectra, conducted on (i) the
optimized gas phase geometry and (ii) on the isolated anion at the X-ray geometry found
in 2, with assignments, and a comparison to the experimental Raman spectroscopy data
are compiled in Table 3, and a comparison of one computed and experimental spectrum is
shown in Figure 5.
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cogenite anion to date [29]. These workers reported that a normal coordinate analysis with 
potential energy distribution indicates that the symmetry coordinate of the S–F stretch in 
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we find that ν3 is not much involved, but there is this formal reversal of ν2 and ν4, as well 
as strong coupling that distributes a large amount of S–Cl stretch character to both modes. 
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Figure 5. Overlay of (a) the RB3PW91-D3/aug-CC-pVTZ DFT Raman spectrum computed on a gas
phase isolated ClSeO2

− anion with (b) the experimental spectrum reported on a crystalline powder
sample of [Me4N][ClSeO2]; note that the bottom scale is interrupted at the red arrow, so the band
positions must be interpolated. Bands below 100 cm−1 are lattice modes. Adapted with permission
from LaHaie, P.; Milne, J. Inorg. Chem. 1979, 18, 632–637 [1]. Copyright (1979) American Chemical
Society. Red text is used to distinguish from the original annotations of the underlying graphics.

First, the fit of the numerical data between the experimental and the computed anion
values is remarkably good given the combination of experimental uncertainty and com-
paring gas-phase structures with solids and solutions (there is also very good agreement
between the latter two). Importantly, the normal coordinate analysis in the DFT calcula-
tions contradict the assignment of ν2 to the 200/193 cm−1 experimental bands, leading
to a switch in the ν2 and ν4 assignments. A similar discrepancy has already been noted
for the vibrational spectra of FSO2

−, which is far and away the most thoroughly studied
halochalcogenite anion to date [29]. These workers reported that a normal coordinate
analysis with potential energy distribution indicates that the symmetry coordinate of the
S–F stretch in FSO2

− contributes only 20% to ν2, and instead has 40% ν3 and 39% ν4 char-
acter. For ClSeO2

−, we find that ν3 is not much involved, but there is this formal reversal
of ν2 and ν4, as well as strong coupling that distributes a large amount of S–Cl stretch
character to both modes. Viewed through this lens, it is apparent that these two bands are,
respectively, 54 and 64 cm−1 higher in frequency when computed at the X-ray geometry of
2 than at the DFT-optimized geometry (Table 3 and Figure 6). This, and the good overall fit
of the data, is a strong corroboration that the Se–Cl length in [Me4N][ClSeO2] corresponds
to that reported for the BIRHOZ structure [3], and very probably is close to that adopted in
CH3CN solutions.
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− for
(27) the Se L.P, (28) the Cl L.P. interacting with the empty π*(SeO2) orbital; (35) the corresponding
out-of-phase interaction. Surfaces constructed at the 0.04 AU level. (c) Computed geometries
(see text).

2.6. Donor–Acceptor Bonding in Hypervalent ClSeO2
− Using the NBO Formalism

After almost a century of debate, a combination of experimental and computational
evidence has settled that the bonding in molecular SO2 is not hypervalent and corresponds
very closely to the description provided by the classical Lewis octet structure with nominal
S–O bond orders of 1.5 [63]. SeO2(g) must certainly be described similarly, although under
ambient conditions, it forms a solid polymerized via OSeO→Se dative bonding [49]. Indeed,
our RB3PW91-D3/aug-CC-pVTZ DFT-computed structure for it has Wiberg bond indices
of 1.45 for the Se–O bonds, and 0.31 between the two O atoms. The electrostatic π-holes
detected in SeO2 (Figure 6a) are oriented above and below the central Se atom and are
perpendicular to the molecule plane [24]. Classical nucleophiles such as HCN or NH3
are indeed computed to bind to the Se atom close to this perpendicular with interaction
distances of 70–89% of the ∑rvdW [24].

Whether or not these π-holes are operative in ClSeO2
−, it is clear from both the

experimental and computed geometries that a chloride ion donates electron density to form
a kind of dative or charge-transfer bonding, which is stronger than a mere intermolecular
interaction, and that is definitely hypervalent [64]. We have applied a natural bond order
(NBO) analysis using the NBO 3.1 component within Gaussian W16 on the geometry
optimized in the gas phase for ClSeO2

− (Figure 6b,c). This clearly shows the Se L.P. orbital
(#27) very close to co-planar with the SeO2 atoms (and hence very similar to that of the
educt—see Appendix A). The bond-forming NBO is the Cl L.P.→π*(SeO2) orbital (#28),
whilst the lowest-energy Rydberg NBO is its out-of-phase companion (#35). The Wiberg
bond indices for the optimized geometry are reduced to 1.26 for the Se–O bonds and 0.19
between the O atoms, whilst the bond that forms between Cl and Se has an index of 0.44.
This provides an excellent model for weak hyper-valent bonding in the chloroselenite ion
and is reminiscent of the bonding models developed for the very well-known trihalide
anions [65]. Since Cl→Se bonding has the net effect of occupying the SeO2 π* molecular
orbital, the π-bond order is expected to be reduced, which rationalizes the lower Wiberg
indices for these bonds. And the low bond order for the X–ChO2 bond is consistent with
the very long X–Ch bond distances in most crystal structures of halochalcogenites and
the observation of a wide range of bonding modes, ranging from well-defined XChO2

−
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molecular ions to ‘solvated halide’ geometries with almost equal X···Ch(O2)···X determined
in some SC-XRD structures (see the Introduction).

Returning now to the chloroselenite structure obtained in our salt 2 with the amidinium
ion, it becomes understandable how H-bonding to the two anion oxygen atoms in 2 can
have such a strong influence on the Se–Cl bond length, causing it to be more than 5% shorter
than observed in the structure of [Me4N][ClSeO2] (BIRHOZ [3]). In the H-bonded adduct,
computed in the gas phase, the NPA charge on Se increases from +1.66 in the optimized ion
structure to +1.71, while the charge on Cl decreases from −0.62 to only −0.46. There is thus
a clear rationale in the NBO analysis for the shorter Se–Cl bond observed in the structure
of 2, supporting the notion that H-bonding significantly stabilizes the chloroselenite in this
amidinium salt.

3. Experimental

General synthetic methods for thiazyl and selenazyl chemistry are as previously
described [46,66]. The isolation of 4 has been described previously [46].

3.1. Chemical Synthesis

Initially, 0.26 g of selenium(IV)-4-NH-dichloroselenatriazine, C10H8Cl5N3Se, was
exposed to 10 mL of CH2Cl2 and 10 mL of CH3CN and heated in an attempted purification
by recrystallization. Upon removing all volatiles, 30 mL of CH3CN was added and the
mixture was heated to reflux, ensuring all solids were dissolved, and then filtered hot under
nitrogen. After cooling, the filtrate was placed in a −10 ◦C freezer overnight, producing
small amounts of solids which were removed by a second filtration. Subsequent cooling of
the filtrate in a −30 ◦C freezer overnight produced well-formed colorless crystals, which
were quickly isolated, dried under high vacuum, and submitted for crystallographic study.

3.2. Single-Crystal X-ray Crystallography

Suitable crystals were selected under a microscope, mounted on fine glass capillaries in
Paratone™ oil, and cooled using the diffractometer cooling wand. Crystal and refinement
data are summarized in Table 2. Data for 2 were collected on a Bruker Platform/SMART
1000 CCD diffractometer at the University of Alberta. Image collection, peak identification,
cell and space group determination were controlled using SAINT. Multi-scan absorption
correction was undertaken using SADABS. Initial structure solution was performed with
SHELXS [67]. In view of the extensive H-bonding observed in this structure, refinement
was completed in the independent atom model (IAM) using olex2.refine [68] within the
Olex2 release 1.5 suite of programs [51]. After a detailed analysis and structure verification
in the IAM, Hirsfeld atom refinement was continued using aspherical scattering factors
with the aid of NoSpherA2 [50]. A detailed description of our workflow for HAR with
aspherical form factors has been published [69].

In the case of 2, HAR/NoSpherA2 quickly proved to be very successful. The electron
density (ED) of each atom was computed using ORCA 5.0 [70] at the R2SCAN/def2-TZVP
level of theory, whereafter the custom scattering factors for all atoms were computed
using NoSpherA2, and refinement was completed with olex2.refine. When the H-atoms
were refined anisotropically, it immediately became apparent that the tolyl methyl group
is rotationally disordered, an effect that is normally ignored in IAM where the riding
atom approach for H on C usually masks such subtleties. A two-part disorder model was
adopted, and HAR resumed (which inter alia requires that two full sets of DFT calculations
are required, one for each disorder component). This too proved successful. However,
although the overall data quality is quite good (Rint = 3.28%), the data were obtained on
an older sealed-tube diffractometer where the resolution was capped at 0.80 Å. This is
probably the origin of the two ghost peaks for the Se atom (Fourier ripples), hindering the
overall refinement quality. Hence, in the final refinement cycles the aromatic C-H, distances
were restrained to 1.085 Å and N-H distances to 1.040 Å, which are the current best values
from neutron refinement in this temperature range [71]. Similar 2- and 3-atom distance
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restraints were applied to the disordered H atoms in the CH3 group, and the occupancies
were frozen in a 50:50 ratio. This structure is not intended for validating the performance
of the HAR/NoSpherA2 method (which we have previously done thoroughly [69,72–74]);
instead, it aims for an accurate description of the extensive H-bonding network, and
obtaining a deformation density map to show the non-bonded ED.

Crystal Data for C8H11ClN2O2Se (M = 281.601 g/mol): monoclinic, space group P21/c
(no. 14), a = 3.9773(3) Å, b = 28.477(2) Å, c = 9.5781(9) Å, β = 91.242(1)◦, V = 1084.56(16) Å3,
Z = 4, T = 193.15 K, µ(Mo Kα) = 3.685 mm−1, Dcalc = 1.725 g/cm3, 8245 reflections measured
(4.48◦ ≤ 2θ≤ 52.84◦), 2194 unique (Rint = 0.0328, Rsigma = 0.0282) which were used in all cal-
culations. The final R1 was 0.0339 (I ≥ 2σ(I)) and wR2 was 0.0827 (all data). CCDC 2301348.

3.3. Computational Methods

Initial geometries for the DFT calculations were obtained from the X-ray coordinates
(ignoring the second component of the toluene methyl group disorder). All calculations
were performed with Gaussian W16 under GUI control from GaussView 6.0 and were run
on an AMD Ryzen Threadripper 16-core 3.75 GHz PC under Windows 10 [75]. Minimum
energy geometries were verified using harmonic vibrational analysis. The use of Grimme’s
D3 correction for dispersion, an attractive effect that is not readily accounted for by the bare
B3PW31 functional, was applied in all cases. The suitability of the RB3PW91-D3/aug-CC-
pVTZ level of theory was thoroughly investigated by computing the known structural and
vibrational properties of SeO2 (gas-phase structure), for which, see Appendix A. Atomic
charges were computed using normal bond order analysis, and bond orders using the
Wiberg definition, all with internal functions. Results computed with Gaussian W16 were
visualized and, where required, plotted using GaussView.

4. Conclusions

The evidence from this paper is that significant Cl–Se bond shortening is induced in
ClSeO2

− ions by the characteristic H-bonding from benzamidinium cations. This discovery
could have major benefits for isolating stable salts of other halochalcogenite(IV) salts.
For example, selectivity of the H-bonding for O is considered likely, which may help
prevent O/F positional disorder in FChO2

− salts. These cations may also lead to success
in obtaining crystalline adducts for the many X/Ch combinations for which there are no
SC-XRD data. This work also emphasizes a point, made previously by others, that work in
this area should use multiple, mutually integrated, techniques. For example, vibrational
spectroscopy, when fully interpreted by adequate levels of computation, should be feasible
on the proposed benzamidinium salts, enhancing the reliability of salt characterization
and enabling direct comparisons, especially with Raman spectroscopy, to the structures
adopted by these ions in solutions. Additionally, 77Se NMR may become invaluable for
characterizing the formation of haloselenite ions in solution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28227489/s1, Supplementary report, with structural de-
tails on BIRHOZ, further information on 2 and a full crystal structure report for 2. References [6,50,51,67,68]
are cited in the Supplementary Materials.
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Appendix A

Computational method calibration: SeO2 at the RB3PW91-D3/aug-CC-pVTZ level
of theory computes d(Se–O) = 1.6026 Å; ∠(OSeO) 114.1◦(cf. 1.6076(6); 113.83(8)◦ from
microwave spectroscopy [76]). Vibrational spectrum: ν2

′′ 362 cm−1; ν3
′′ 989 cm−1 (cf. 364;

968 cm−1 in the gas phase above solid SeO2, >350 ◦C by infra-red spectroscopy [77]). This
gives high confidence in the method so that agreement with experimental data for ClSeO2

−

will reflect accurately the structural data for this weakly bound ion.
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Figure A1. (a) Structure of SeO2 (in the gas phase; it is a polymeric solid at RT). (b) Computed IR
spectrum at the RB3PW91-D3/aug-CC-pVTZ level of theory.

The MO sequence (1a1)2(1b2)2(2a1)2(2b2)2(3a1)2(1b1)2(1a2)2(3b2)2(4a1)2(2b1)0 computed
at our level is in remarkable agreement with Walsh’s original theoretical predictions
for AB2 molecules at a bond angle of 114◦ [78], being (1a1)2(1b2)2(2a1)2(1b1)2(3a1)2(2b2)
2(1a2)2(3b2)2(4a1)2(2b1)0, so that only 1b1 and 2b2 levels are exchanged (the π1 MO is
lower-lying in the generic Walsh interaction diagram, probably reflecting stronger π-overlap
in the model system compared to that of the 4th period Se). Moreover, there is good agree-
ment in the relative energy levels for the two highest filled and lowest virtual levels, such
that the HOMO is the in-plane sulfur L.P. orbital by both approaches. Importantly for anion
coordination, as in [ClSO2]−, the lowest unoccupied MO of SeO2 is unambiguously the 2b1
π3* orbital dominated by the empty Se 4pz AO.

Appendix B

The molecular and crystal structure of 4 has been reported previously in the supple-
mentary data of Ref. [46] and is available from the CSD via refcode EZOWUM (or via its
acquisition code: CCDC 851053). Allowing for the differing covalent radii of S and Se (1.02;
1.16 Å), the bond lengths at the chalcogen seem quite comparable to those in the ClSeO2

−

ion in 2, another indication of the relatively strong Se–Cl bond in that structure. However,
the angles at S in sulfamyl chloride 4 are closer to tetrahedral values, as expected for a
four-coordinate structure. Almost all the bonds and angles around the S atom in 4 fit well
with the averages from 20 neutral comparator structures of other sulfamyl chlorides from a
CSD search. The exception is d(S1–N1) which at 1.695(3) Å is 7% longer than the average of
1.59(3) Å. However, the average when restricted to just those ten comparators in which the
attachment atom is not double bonded (to C or especially P) is closer, at 1.629(3) Å.

The H-bonds found in the lattice of 4 (Figure A2) are of only three types, but they are
found to be slightly shorter even than those in 2, and hence are expected to total about
150 kJ/mol in stabilization energy. The Etter notation for the lower-level nets are shown
in the figure using blue lettering. Evidently, H-bonding is well able to stabilize this very
reactive sulfamyl chloride.
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Table A1 is a very useful compilation of H-bond properties, which enables a mean-
ingful interpretation of the data found in the structures of 2 and 4, as well as many other
structures. These data have been compiled by the author from various literature sources
and modified to be suitable for acceptors from both the second and the third periods of the
main group elements.

Table A1. Ranking of Hydrogen Bond Strengths and Properties Adapted from Jeffrey *.

Parameter Strong Moderate Weak

Interaction type: strongly covalent mostly electrostatic electrostatic/dispersion
d(H···A), Å # 1.2–1.5 1.5–2.2 >2.2
d(D···A), Å # 2.2–2.5 2.5–3.2 >3.2

lengthening of D–H 0.08–0.25 0.02–0.08 <0.02
D–H versus H···A D–H ≈ H···A D–H < H···A D–H << H···A

Directionality: Strong moderate weak
∠D–H···A, ◦ 170–180 >130 >90

Bond energy, kJ mol−1 60–160 16–60 <16
IR shift ∆νDH , cm−1 25% 10–25% <10%

1H downfield shift, ppm 14–22 <14

* Jeffrey, G. A. An introduction to hydrogen bonding. Oxford University Press: New York, 1997, Volume 12,
pp. 330 [79]. # For a given donor type, the hydrogen-bond distance typically increases by over 0.5 Å from 2nd to
3rd period, 0.15 Å from 4th to 5th period, and 0.25 Å from 5th to 6th period acceptors [80].
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