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Abstract: A series of MOF-derived ZrO2-supported Pd-Ni bimetallic catalysts (PdNi/UiO-67-
CTAB(n)-A500) were prepared by co-impregnation and pyrolysis at 500 ◦C under air atmosphere
using UiO-67-CTAB(n) (CTAB: cetyltrimethylammonium bromide; n: the concentration of CTAB;
n = 0, 3, 8, 13, 18) as a sacrificial template. The catalytic activity of PdNi/UiO-66-CTAB(n)-A500 in
1,3-butadiene hydrogenation was found to be dependent on the crystal morphology of the UiO-67
template. The highest activity was observed over the PdNi/UiO-67-CTAB(3)-A500 catalyst which
was synthesized using UiO-67-CTAB(3) with uniform octahedral morphology as the template for the
1,3-butadiene selective hydrogenation. The 1,3-butadiene conversion and total butene selectivity were
98.4% and 44.8% at 40 ◦C within 1 h for the PdNi/UiO-67-CTAB(3)-A500 catalyst, respectively. The
catalyst of PdNi/UiO-67-CTAB(3)-A500 can be regenerated in flowing N2 at 200 ◦C. Carbon deposited
on the surface of the catalyst was the main reason for its deactivation. This work is valuable for the
high-efficiency bimetallic catalyst’s development on the selective hydrogenation of 1,3-butadiene.

Keywords: MOF-derived; ZrO2; bimetallic catalysts; Pd–Ni catalysts; hydrogenation of 1,3-butadiene

1. Introduction

C4 olefin is an important raw material for the synthesis of polymers [1,2]. However,
the C4 olefin stream from petroleum cracking contains a trace amount of 1,3-butadiene,
which can severely reduce the quality of polymers and easily poison the catalysts for poly-
merization [2–4]. The selective hydrogenation of 1,3-butadiene is an important industrial
process to remove 1,3-butadiene from petroleum cracking [5–7]. Currently, Pd catalysts
are mostly used as heterogeneous catalysts for 1,3-butadiene selective hydrogenation due
to their high hydrogenation activity [8–11]. However, the scarcity and high price of Pd
greatly limits its application [12]. Moreover, Pd catalysts generally have low selectivity to
total butenes (1-butene, trans-2-butene, and cis-2-butene) at high 1,3-butadiene conversion
due to their high hydrogen activation [6,13]. To decrease the cost of the Pd catalyst and
gain the high selectivity of butenes, alloying Pd with a second metal (such as Ni, Cu, Co,
etc.) and selecting suitable supports to form bimetallic supported catalysts have received
considerable attention [2,4,14–17]. The addition of the second metal in bimetallic Pd-based
catalysts can change the surface structure and electronic properties of Pd catalysts, decrease
the adsorption capacity of butenes, and improve the selectivity to total butenes [18,19].
Bimetallic Pd-Ni [13,20,21], Pd-Cu [2], Pd-Cr [22], Pd-Au [23], and Pd-Ag [24] catalysts
have been shown to have superior butene selectivity over monometallic Pd catalysts.
Huang et al. [13] synthesized the Ni1-Pd1/ZnO catalyst by the bioreduction route using
Cinnamomum Camphora leaf extract. They found that the butene selectivity (90.0%) of the
bimetallic Ni1-Pd1/ZnO catalyst was better than that of the monometallic Pd/ZnO catalyst
(46.9%) [13]. Yang et al. [2] also reported that the γ-Al2O3-supported Pd–Cu bimetallic
catalyst displayed higher butene selectivity as compared with the monometallic Pd cata-
lyst at the same 1,3-butadiene conversion. Huang et al. [24] reported that the Pd-Ag/ES
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(ES = eggshell) catalyst displayed high butene selectivity (95.8%) at high 1,3-butadiene
conversion (95%) at 45 ◦C. The bimetallic catalyst Au(2)Pd(1)/MIL-101(Cr) (95.7%) dis-
played a higher selectivity of total butenes than that of Pd/MIL-101(Cr) (35.0%) when the
1,3-butadiene conversion was about 100% [23].

In recent years, metal–organic frameworks (MOFs) have emerged as a class of promis-
ing precursors or sacrificial templates for synthesizing various porous metal oxides or
carbon with complex compositions and a unique structure via pyrolysis owing to abun-
dant intrinsic molecular metal sites, an ordered pore structure, high porosity, and an
adjustable pore size [25–30]. The composition and structure of MOF derivatives can
be easily realized by adjusting the precursors or sacrificial templates of MOFs, modi-
fying the pyrolysis temperature, and changing the pyrolysis atmosphere (inert or air
atmosphere) [26,29,31,32]. Moreover, the ordered pore structure of MOFs can envelop other
metal salts or organic species which could further modify MOF derivatives [26,33]. Recently,
MOF derivatives have been widely used in heterogeneous catalysis, especially those using
MOF derivatives as a support for metal nanoparticles [34–38]. Zeng et al. [34] synthesized
the hierarchical mesoporous CuO@NiO (M-CuO@NiO) catalyst using MOFs as the pre-
cursor. The M-CuO@NiO catalyst displayed excellent catalytic activity and selectivity for
the deoxygenation of fatty acids [34]. The conversion of stearic acid and the selectivity of
C8-C18 alkanes reached 99.9% and 94.4%, respectively, which were comparable to the Pt/C
catalyst [34]. Lei et al. [39] successfully synthesized M-Co1Y1Ox (Y = Cu, Mn, Fe, and
Ni) catalysts using Y-doped ZSA-1 as a precursor via pyrolysis at 350 ◦C. The dopants
displayed a great effect on the catalytic performance for toluene catalytic destruction on
Co3O4 derived from Co-MOF [39]. They found that M-Co1Cu1Ox showed the most promi-
nent activity with T90% reduced 31 ◦C (compared to M-Co3O4) due to improved physical
properties [39]. They also reported that Co-Mn metal oxides synthesized through the py-
rolysis of Mn-doped ZSA-1 presented excellent catalytic performance for toluene catalytic
oxidation [40]. Wang et al. [41] prepared the nitrogen-doped carbon material (NC-E) from
ZIF-8 using a novel and simple method assisted by eutectic salts. They also prepared carbon
materials NC-T from ZIF-8 using traditional calcination [41]. The NC-E-supported Pt-Sn
catalyst exhibited improved electrochemical activity and stability for the ethanol oxidation
reaction than NC-T- and carbon black-supported Pt-Sn catalysts [41]. Wang et al. [42] found
that MOF-derived CeO2-supported Ag catalysts (Ag-Ce-BTC-C) prepared via one-pot and
pyrolysis at 500 ◦C under Ar and O2 atmosphere displayed good catalytic performance for
the toluene oxidation reaction (T90 = 226 ◦C).

Among the various types of MOFs, Zr-based MOFs have been extensively studied by
catalysis scholars owing to the strong Zr-O coordination bond, feasible synthesis conditions,
and the ease of reproducibility [43,44]. UiO-67 is one of the Zr-MOFs, which consists of
Zr6(OH)4O4 clusters and 4,4-biphenyl dicarboxylic acid (H2bpdc) linkers [45,46]. In the
present study, a series of UiO-67-CTAB(n) (CTAB: cetyltrimethylammonium bromide; n: the
concentration of CTAB; n = 0, 3, 8, 13, 18) with different physicochemical properties (crystal
morphology, crystal size, BET specific surface area, etc.) were prepared by the surfactant
CTAB assistant solvothermal method. PdNi/UiO-67-CTAB(n)-A500 catalysts were obtained
by co-impregnation and pyrolysis at 500 ◦C under air atmosphere using UiO-67-CTAB(n)
as a sacrificial template. The effect of various factors such as the physicochemical property
of the MOF template, reaction temperature, and reaction time on the hydrogenation of
1,3-butadiene was studied. A 1,3-butadiene hydrogenation test found that PdNi/UiO-67-
CTAB(3)-A500 presented the best catalytic performance for 1,3-butadiene hydrogenation.
The recoverability and reusability of the PdNi/UiO-67-CTAB(3)-A500 catalyst were also
investigated.

2. Results and Discussion
2.1. Synthesis and Characterization

The synthesis procedure was illustrated in a schematic representation (Scheme 1).
UiO-67-CTAB(n) (n = 0, 3, 8, 13, 18) was simply synthesized from ZrCl4, H2bpdc, acetic
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acid, CTAB, and DMF by the surfactant CTAB assistant solvothermal method using dif-
ferent CTAB concentrations. Then, the PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18)
catalyst was synthesized by the co-impregnation and pyrolysis method using PdCl2 and
Ni(NO3)2·6H2O as the metal precursor.
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Scheme 1. Schematic illustration of PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18) catalysts.

Viewing SEM images, the crystal morphology of UiO-67-CTAB(0) contains both reg-
ular octahedral crystals and irregular polyhedral crystals, and it shows a broad crystal
size, which ranged from 200 to 2800 nm as a result of the high-degree intergrowth and
aggregation of primary crystals (Figure 1) [47]. After adding CTAB to the synthesis so-
lution, UiO-67-CTAB(3) exhibited a uniform octahedral morphology with a crystal size
of ca. 1500 nm, which was consistent with the morphology of UiO-67 reported in the
literature [48,49]. During the process of crystallization, CTAB was adsorbed on the
surface of the UiO-67 primary crystal, which would decrease the van der Waals force
and surface energy, promoting the ordered agglomeration, thus forming a more regular
morphology [50–52]. The long hydrocarbon chains of CTAB also repelled each other, pre-
venting the further interaction with other UiO-67 crystals and excessive growth of UiO-67,
resulting in a smaller particle size [53,54]. However, further increasing the concentration
of CTAB in the synthetic solution, irregular polyhedral crystals appeared in the synthe-
sized crystals. The percent of irregular polyhedral crystals increased with the increase in
CTAB concentration, up to about 100% when the CTAB concentration was 18 g/L. The
crystal particle sizes of UiO-67-CTAB(8), UiO-67-CTAB(13), and UiO-67-CTAB(18) were
ca. 1100 nm, 2300 nm, and 300 nm, respectively. The concentration of CTAB in synthetic
mixture also had a significant effect on the particle size, and the crystal size was varied
as follows: UiO-67-CTAB(13) > UiO-67-CTAB(3) > UiO-67-CTAB(8) >UiO-67-CTAB(18) >
UiO-67-CTAB(0). These results indicated that excessive CTAB has a negative effect on the
formation of a uniform morphology. This may be owing to the fact that most CTAB existed
as micelles, rather than dispersed forms, which did not interact well with surfaces [51,55].
Wang et al. [52] also reported that the morphology and size of 146S@ZIF-8 can be changed
by adding CTAB. Jubeer et al. [56] reported that the particle size of ZnS could be adjusted by
changing the concentration of CTAB. Ping et al. [57] found that NiPO was of a flake shape
at a low CTAB:P molar ratio, and the samples began to appear with a tubular structure
with the increase in the CTAB:P molar ratio.
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Figure 1. SEM photographs of UiO-67-CTAB(0) (a), UiO-67-CTAB(3) (b), UiO-67-CTAB(8) (c),
UiO-67-CTAB(13) (d), and UiO-67-CTAB(18) (e).

The TEM images and Pd–Ni nanoparticle size distribution histograms of PdNi/UiO-
67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18) catalysts are displayed in Figure S1. As shown in
Figure S1, the PdNi/UiO-67-CTAB(0)-A500, PdNi/UiO-67-CTAB(3)-A500, and PdNi/UiO-
67-CTAB(18)-A500 catalysts had a narrow nanoparticle size distribution with an average
particle size of 6.0, 6.7, and 6.0 nm, respectively. However, PdNi/UiO-67-CTAB(8)-A500 and
PdNi/UiO-67-CTAB(13)-A500 showed broader nanoparticle size distribution with an aver-
age particle size of 15.3 and 9.2 nm. The characterization of the catalysts by TEM displayed
that PdNi/UiO-67-CTAB(8)-A500 presented the largest average particle size, PdNi/UiO-
67-CTAB(13)-A500 presented the middle average particle size, and the PdNi/UiO-67-
CTAB(0)-A500, PdNi/UiO-67-CTAB(3)-A500, and PdNi/UiO-67-CTAB(18)-A500 catalysts
presented smaller average particles sizes. The HAADF-STEM and EDS mapping of the
PdNi/UiO-67-CTAB(3)-A500 catalyst are displayed in Figure 2. The HAADF-STEM and
EDS mapping of PdNi/UiO-67-CTAB(3)-A500 demonstrated that Pd and Ni elements were
highly intermixed and evenly distributed on the support, confirming the formation of
Pd-Ni alloys [58,59].
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Figure 2. HAADF-STEM (a) and EDS mappings (b–d) of PdNi/UiO-67-CTAB(3)-A500.

The samples of UiO-67-CTAB(n) and PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18)
have been characterized by PXRD. The PXRD patterns of UiO-67-CTAB(n) and PdNi/UiO-
67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18) are presented in Figure 3. PXRD analysis displayed
that all the 2θ peaks of UiO-67-CTAB(0) corresponded well with UiO-67 reported in the
literature, illustrating that UiO-67-CTAB(0) has been successfully synthesized [44,60,61].
The PXRD peaks of the synthesized UiO-67-CTAB(3), UiO-67-CTAB(8), UiO-67-CTAB(13),
and UiO-67-CTAB(18) were almost identical to UiO-67-CTAB(0), which indicates that the
synthesized samples had the original UiO-67-CTAB(0) structure (Figure 3a). However,
the PXRD peak intensity of UiO-67-CTAB(18) decreased significantly, revealing that its
crystallinity was significantly lost (Figure 3a). After pyrolysis at 500 ◦C under air, the PXRD
patterns changed completely (Figure 3b). There was no characteristic diffraction peak from
UiO-67 for the PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18) catalysts, indicating that
UiO-67 was completely decomposed [62]. The PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8,
13, 18) catalysts all exhibited four diffraction peaks at 2θ values of 30.15, 33.84, 50.57, and
60.30° which could be assigned to the (111), (200), (220), and (311) crystallographic planes
of tetragonal ZrO2 (t-ZrO2), respectively [44,62–66]. However, the characteristic PXRD
diffraction peaks of the PdNi alloy were not detected in PdNi/UiO-67-CTAB(n)-A500
(n = 0, 3, 8, 13, 18) due to the low amounts of Pd and Ni and the high dispersion of PdNi
alloy nanoparticles on the UiO-67-CTAB(n) (n = 0, 3, 8, 13, 18) supports [67,68].
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4d). The BET surface areas were 686.1, 264.9, 1402.2, 1611.8, and 1309.1 m2/g for UiO-67-
CTAB(0), UiO-67-CTAB(3), UiO-67-CTAB(8), UiO-67-CTAB(13), and UiO-67-CTAB(18), 
respectively (Table 1). The total pore volumes were 0.4, 0.17, 0.73, 0.83, and 0.70 cm3/g for 
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CTAB(18), respectively (Table 1). The BET surface areas and pore volumes were varied as 
follows: UiO-67-CTAB(13) > UiO-67-CTAB(8) > UiO-67-CTAB(18) > UiO-67-CTAB(0) > 
UiO-67-CTAB(3). As shown in SEM, the crystal size showed the order UiO-67-CTAB(13) 
> UiO-67-CTAB(3) > UiO-67-CTAB(8) > UiO-67-CTAB(18) > UiO-67-CTAB(0) (Figure 1). 
UiO-67-CTAB(3) exhibited a uniform octahedral morphology, and the percent of irregular 
polyhedral crystals increased with the increase in CTAB concentration. The above results 
indicated that the BET surface area and pore volume were not only affected by the regu-
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Figure 3. PXRD patterns of UiO-67-CTAB(n) (a) and PdNi/UiO-67-CTAB(n)-A500 (b) (n = 0, 3, 8, 13, 18).

UiO-67-CTAB(n) and PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18) have been
characterized by nitrogen adsorption–desorption at 77 K to estimate the specific surface
area, porosity volume, and pore diameter. The specific areas and pore size distributions
were determined using the Brunauer–Emmett–Teller (BET) method and density functional
theory (DFT) method, respectively [69]. The nitrogen sorption isotherms and pore size
distribution diagrams are displayed in Figure 4, and the BET surface area and pore volume
dates are displayed in Table 1. As shown in Figure 4a, UiO-67-CTAB(n) (n = 0, 3, 8, 13,
18) displayed a pronounced type-I isotherm, indicating the existence of micropores [44].
The DFT-computed pore size distributions displayed maximum values at 0.82 and 1.27
nm for UiO-67-CTAB(0) (Figure 4b). The pore diameters determined by the DFT method
were 1.05, 1.09, 1.09, and 1.09 nm for UiO-67-CTAB(3), UiO-67-CTAB(8), UiO-67-CTAB(13),
and UiO-67-CTAB(18), respectively (Figure 4b). However, PdNi/UiO-67-CTAB(n)-A500
(n = 0, 3, 8, 13, 18) displayed a type-IV isotherm, indicating the emergence of a mesoporous
structure after the loading of Pd-Ni nanoparticles and pyrolysis at 500 ◦C (Figure 4c) [70,71].
The pore diameters based on the BJH model were 3.57, 3.59, 3.53, 3.58, and 3.54 nm for
PdNi/UiO-67-CTAB(0)-A500, PdNi/UiO-67-CTAB(3)-A500, PdNi/UiO-67-CTAB(8)-A500,
PdNi/UiO-67-CTAB(13)-A500, and PdNi/UiO-67-CTAB(18)-A500, respectively (Figure 4d).
The BET surface areas were 686.1, 264.9, 1402.2, 1611.8, and 1309.1 m2/g for UiO-67-
CTAB(0), UiO-67-CTAB(3), UiO-67-CTAB(8), UiO-67-CTAB(13), and UiO-67-CTAB(18),
respectively (Table 1). The total pore volumes were 0.4, 0.17, 0.73, 0.83, and 0.70 cm3/g
for UiO-67-CTAB(0), UiO-67-CTAB(3), UiO-67-CTAB(8), UiO-67-CTAB(13), and UiO-67-
CTAB(18), respectively (Table 1). The BET surface areas and pore volumes were varied
as follows: UiO-67-CTAB(13) > UiO-67-CTAB(8) > UiO-67-CTAB(18) > UiO-67-CTAB(0) >
UiO-67-CTAB(3). As shown in SEM, the crystal size showed the order UiO-67-CTAB(13)
> UiO-67-CTAB(3) > UiO-67-CTAB(8) > UiO-67-CTAB(18) > UiO-67-CTAB(0) (Figure 1).
UiO-67-CTAB(3) exhibited a uniform octahedral morphology, and the percent of irregular
polyhedral crystals increased with the increase in CTAB concentration. The above results
indicated that the BET surface area and pore volume were not only affected by the regularity
of the morphology but also by the crystal size. Osuga et al. [72] reported that the BET
surface area and pore volume were greatly affected by the morphology of aluminosilicate
zeolites. The formation of sheet-like particles increased the BET surface area and decreased
the micropore volume [72]. Li et al. [73] found that the different BET surface area of
2D metal–organic frameworks CuBDC (BDC: 1,4-benzenedicarboxylic) and CuBDC-NBA
(NBA:4-n-butylbenzoic acid) were induced by their different morphology and size. The
BET surface areas and pore volumes of PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18)
catalysts after Pd-Ni nanoparticle loading and pyrolysis at 500 ◦C decreased significantly
compared to UiO-67-CTAB(n) (n = 0, 3, 8, 13, 18). This may be due to the fact that UiO-67
completely decomposed and formed t-ZrO2. The PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8,
13, 18) catalysts displayed a similar BET surface area (54.3–66.7 m2/g) and pore volumes
(0.09–0.11 cm3/g), illustrating that the properties (BET surface area, pore diameter, and
pore volume) of the MOF template have little influence on the BET surface area and pore
volume of the catalysts obtained by pyrolysis.
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Figure 4. (a) N2-sorption isotherms of UiO-67-CTAB(n) (n = 0, 3, 8, 13, 18); (b) pore diameter
distributions of UiO-67-CTAB(n) (n = 0, 3, 8, 13, 18) calculated using DFT method; (c) N2-sorption
isotherms of PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18); (d) pore diameter distributions of
PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18) calculated using DFT method.

Table 1. Comparison of physicochemical properties of different samples.

Entry Sample SBET (m2/g) Vtotal (cm3/g)

1 UiO-67-CTAB(0) 686.1 0.40
2 UiO-67-CTAB(3) 264.9 0.17
3 UiO-67-CTAB(8) 1402.2 0.73
4 UiO-67-CTAB(13) 1611.8 0.83
5 UiO-67-CTAB(18) 1309.1 0.70
6 PdNi/UiO-67-CTAB(0)-A500 60.9 0.09
7 PdNi/UiO-67-CTAB(3)-A500 54.6 0.09
8 PdNi/UiO-67-CTAB(8)-A500 66.7 0.11
9 PdNi/UiO-67-CTAB(13)-A500 62.4 0.09
10 PdNi/UiO-67-CTAB(18)-A500 54.3 0.09

The elemental composition and chemical valence state of the PdNi/UiO-67-CTAB(3)-
A500 catalyst were studied by XPS. Figure 5 presents the full XPS spectra along with the
Pd 3d, Ni 3p, and C1s narrow scan spectra of PdNi/UiO-67-CTAB(3)-A500. It can be
seen in the full survey scan spectra that the PdNi/UiO-67-CTAB(3)-A500 catalyst was
mainly composed of Pd, Ni, Zr, O, and C (Figure 5a). The Pd 3d spectrum of PdNi/UiO-
67-CTAB(3)-A500 can be deconvoluted into four peaks; the binding energies at 332.7 and
342.5 eV can be ascribed to Pd0 3d5/2 and Pd0 3d3/2, whereas the two peaks at 337.1 and
346.2 eV can be ascribed to Pd2+ 3d5/2 and Pd2+ 3d3/2 (Figure 5b) [20,74]. For the Ni 3p
spectrum of PdNi/UiO-67-CTAB(3)-A500, a peak at 855.3 eV as well as a satellite peak at
861.4 eV were apparent in the Ni2+ 2p3/2 region, whereas a signal at 873.1 eV as well as
a satellite peak at 879.6 eV were observed in the Ni2+ 2p5/2 region (Figure 5c) [34,75]. As
shown in C1s peaks, the strong peak at 284.4 eV was attributed to the graphite carbon, and
the peaks at 284.8 eV, 286.4 eV, and 288.7 eV corresponded to the calibration peak C–C,
C–O–C, and O = C–O, respectively (Figure 5d) [76,77]. The Raman spectra of PdNi/UiO-
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67-CTAB(3)-A500 displayed two obvious peaks at 1381 cm−1 (D band) and 1592 cm−1 (G
band) which can be attributed to the amorphous carbon species and highly symmetrical
and ordered graphitized carbon species (Figure 6) [78,79]. Both the results of XPS and
Raman spectroscopy for PdNi/UiO-67-CTAB(3)-A500 illustrated the existence of carbon
species; this may be due to the incomplete combustion of catalysts.
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Figure 5. XPS spectra of survey scan (a), Pd 3d (b), Ni 2p (c), and C1s (d) for PdNi/UiO-67-CTAB(3)-A500.
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Figure 6. Raman spectra of PdNi/UiO-67-CTAB(3)-A500.

2.2. Catalytic Performance and Stability

The catalytic performance of PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18) for
the hydrogenation of 1,3-butadiene was investigated. The hydrogenation activity of the
blank (without catalyst) can be neglected owing to the low 1,3-butadiene conversion (<1%)
at 25–40 ◦C. Figure 7 exhibits the 1,3-butadiene conversion and product selectivity of
PdNi/UiO-67-CTAB(3)-A500 at different reaction temperatures (25–40 ◦C). At a low tem-
perature of 25 ◦C, the conversion of 1,3-butadiene first increased, then decreased, and
thereafter remained constant with the extension of the reaction time (Figure 7a). The
initial conversion of 1,3-butadiene was only 4.7%; yet when the reaction time was 1 h,
the conversion reached the maximum, up to 46.0%; the conversion was 34.2% within 6 h
(Figure 7a). At a temperature of 30 ◦C, the conversion of 1,3-butadiene first increased and
then decreased with values ranging from 71.3% to 96.1% (Figure 7a). At a relatively high
reaction temperature of 40 ◦C, the conversion of 1,3-butadiene decreased with an increase
in reaction time, and the conversions decreased from 99.9% to 85.4% (Figure 7a). The results
displayed that the increase in the reaction temperature resulted in a continuous increase in
1,3-butadiene conversion. The ideal products of 1,3-butadiene hydrogenation were butenes
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(including 1-butene, trans-2-butene, and cis-2-butene), and butenes can be converted
into butane by further hydrogenation [23,45]. The butane (44.2–49.0%) and total butene
(51.0–55.8%) selectivities over PdNi/UiO-67-CTAB(3)-A500 changed slightly with the in-
crease in reaction time at 25 ◦C (Figure 7b). The selectivity of trans-2-butene increased
during the first 1 h of the reaction, then decreased from 1 h to 4 h, and then remained
essentially constant from 4 h to 6 h (Figure 7b). However, the selectivity toward 1-butene
displayed an opposite tendency compared to trans-2-butene over the entire reaction time
range (Figure 7b). The selectivity of cis-2-butene remained approximately constant through-
out the whole reaction time range, ranging from 6.8% to 8.9% (Figure 7b). When the reaction
temperature rose to 30 ◦C, there was very little change in the distribution of products in
the order of butane (47.3–52.3%) > 1-butene (22.7–27.9%) > trans-2-butene (15.7–18.3%) >
cis-2-butene (7.0–8.0%) (Figure 7c). When the reaction temperature was further increased to
40 ◦C, the product distribution changed in the order of butane (54.3–56.7%) > trans-2-butene
(20.3–22.3%) > 1-butene (15.0–18.1%) > cis-2-butene (6.1–6.7%) (Figure 7d). When the reac-
tion temperature increased from 25 ◦C to 40 ◦C, the selectivity toward total butenes slightly
decreased from 51.0–55.8% to 43.5–45.7%, and the selectivity toward butane increased from
44.2–49.0% to 54.3–56.5% (Figure 7). This may be due to the stronger adsorption of butenes
that was generated on surface PdNi alloy nanoparticles at a higher temperature, resulting
in deep hydrogenation [80,81]. Therefore, the higher reaction temperature promotes the
secondary hydrogenation of butenes to butane [59]. The data of Figure 7 proved that the
1,3-butadiene conversion and selectivity of PdNi/UiO-67-CTAB(3)-A500 were related to the
reaction temperature; as the reaction temperature increased, the 1,3-butadiene conversion
of the catalyst increased, and the selectivity toward total butenes decreased.
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Figure 7. 1,3-butadiene conversion profiles (a) and product selectivity histograms (b–d) over PdNi/UiO-
67-CTAB(3)-A500 catalyst at different reaction temperatures (25–40 ◦C) (reaction conditions: 20 mL/min
1.0 vol% 1,3-butadiene balanced with N2, 10 mL/min 99.999% H2, catalyst quantity = 5 mg).

The 1,3-butadiene conversions and product selectivities of PdNi/UiO-67-CTAB(n)-
A500 (n = 0, 3, 8, 13, 18) catalysts for the selective hydrogenation of 1,3-butadiene are
shown in Figure 8. Clearly, PdNi/UiO-67-CTAB(3)-A500 displayed the best performance
for the selective hydrogenation of 1,3-butadiene. For the PdNi/UiO-67-CTAB(3)-A500
catalyst, the 1,3-butadiene conversion was maintained at about 99.0% at the first 2 h of the
reaction, then gradually decreased as the reaction proceeded further, and the conversion
of 1,3-butadiene dropped to 85.4% within 6 h (Figure 8a). The selectivity to total butenes
changed slightly in the whole reaction process, and its value was between 43.5% and 45.7%
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(Figure 8c). For the PdNi/UiO-67-CTAB(0)-A500 catalyst, the conversion of 1,3-butadiene
slightly increased during the first 0.25 h and then decreased significantly from 0.5 h to
6 h (Figure 8a). The selectivity of total butenes decreased during the first 0.25 h and then
increased from 0.5 h to 6 h (Figure 8b). The conversion of 1,3-butadiene and the selectivity
of total butenes were 67.6% and 66.9% after reaction 6 h at 40 ◦C for PdNi/UiO-67-CTAB(0)-
A500, respectively (Figure 8a,b). The PdNi/UiO-67-CTAB(13)-A500 catalyst displayed a
similar shaped conversion curve and catalytic performance to that of the PdNi/UiO-67-
CTAB(0)-A500 catalyst (Figure 8a,e). The 1,3-butadiene conversion and selectivity to total
butenes were 66.5% and 63.2% within 6 h at 40 ◦C for the PdNi/UiO-67-CTAB(13)-A500
catalyst, respectively (Figure 8a,e). For the PdNi/UiO-67-CTAB(8)-A500 catalyst, the 1,3-
butadiene conversion slightly increased during the first 0.25 h of the reaction, leveling off
from 0.5 h to 3.5 h, and slightly decreased from 4 h to 6 h (Figure 8a). The selectivity for
total butenes changed slightly at all reaction times, with values ranging from 41.8% to 47.1%
(Figure 8d). The PdNi/UiO-67-CTAB(18)-A500 catalyst displayed the lowest catalytic
activity. 1,3-butadiene was slightly increased with reaction time during the first 0.5 h
varying from 44.2% to 51.3% and slightly decreased from 1 h to 6 h (42.0–46.6%) (Figure 8a).
The selectivity of total butenes ranged from 48.2% to 59.3% for the PdNi/UiO-67-CTAB(18)-
A500 catalyst (Figure 8f). These results indicated that the crystal size, BET surface area,
and pore volume of the UiO-67 template have little effect on the catalytic activity of the
catalyst. However, the crystal morphology of the UiO-67 template has an important effect
on the catalytic activity of the catalyst. The PdNi/UiO-67-CTAB(3)-A500 catalyst which
was synthesized using UiO-67-CTAB(3) with uniform octahedral morphology as a template
displayed the highest catalytic activity, while that of PdNi/UiO-67-CTAB(18)-A500 with
100% irregular polyhedral crystals was the worst.
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Figure 8. 1,3-butadiene conversion profiles (a) and product selectivity histograms (b–f) over
PdNi/UiO-67-CTAB(n)-A500 (n = 0, 3, 8, 13, 18) catalysts at 40 ◦C (reaction conditions: 20 mL/min
1.0 vol% 1,3-butadiene balanced with N2, 10 mL/min 99.999% H2, catalyst quantity = 5 mg).
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A brief comparison of the catalytic performance of reported Pd-based catalysts for
the hydrogenation of 1,3-butadiene is presented in Table 2. It can be seen that our pre-
pared PdNi/UiO-67-CTAB(3)-A500 catalyst displayed excellent 1,3-butadiene hydrogena-
tion performance as compared to the reported hydrogenation monometallic Pd catalysts
(Table 2, entries 1–4) [9,82]. The addition of Ni to a Pd monometallic catalyst can change
the structure and electronic properties of the Pd catalyst and improve 1,3-butadiene conver-
sion and butene selectivity [18,19]. The PdNi/UiO-67-CTAB(3)-A500 catalyst displayed
better hydrogenation activity than SiO2- and UiO-66-NH2-supported Pd-Ni bimetallic
catalysts (Table 2, entries 1, 6, 11) [13,20]. However, our prepared catalyst PdNi/UiO-67-
CTAB(3)-A500 displayed lower hydrogenation activity than Ni1-Pd1/ZnO, single-atom
Au@Pd@SiO2, Pd–Cu/Mn2O3, and PdNi/UiO-66 (1:1) catalysts (Table 2, entries 1, 5,
8–10) [13,20,83,84]. Although our prepared PdNi/UiO-67-CTAB(3)-A500 catalyst exhibited
higher 1,3-butadiene conversion than that of the Pd-Ag/ES catalyst for the hydrogenation
of 1,3-butadiene, its selectivity for total butenes was lower (Table 2, entries 1, 7) [24].

Table 2. The catalytic performance of reported Pd-based catalysts in the hydrogenation
of 1,3-butadiene.

Entry Catalyst Pd Loading (wt%) Pd Size (nm) T (◦C) Conv. (%) Sel. (%) Ref.

1 PdNi/UiO-67-CTAB(3)-A500 6.5 6.7 40 98.4 44.8 this work
2 Pd/pollen-C-500 1 112.6 50 23.0 97.9 9
3 1PdGONE 1 8.9 50 15 88 82
4 2PdG 2 4.9 50 89 27 82
5 Ni1-Pd1/ZnO - 3.6 35 98.8 90.0 13
6 Ni1-Pd1/SiO2 - 3.2 35 44.0 93.8 13
7 Pd-Ag/ES 0.5 3.7 45 95.0 95.8 24
8 Au@Pd@SiO2 0.02 monodisperse 35 98.0 80.0 83
9 Pd–Cu/Mn2O3 1 3.8 50 99.1 92.0 84
10 PdNi/UiO-66 (1:1) 2.65 7.1 40 99.8 84.5 20
11 PdNi/UiO-66-NH2 (1:1) 2.51 4.6 40 15.6 99.5 20

The stability of catalysts is an important factor to be considered in industrial
production [18,85]. Stability testing is highly necessary for the promotion and actual
production of the catalyst. The durability of the PdNi/UiO-67-CTAB(3)-A500 catalyst was
first examined for 60 h at 40 ◦C. Then, the catalyst was regenerated in N2 (12 mL/min)
flowing at 200 ◦C for 1 h and tested for another 30 h. As shown in Figure 8a, PdNi/UiO-67-
CTAB(3)-A500 was significantly deactivated during a total 60 h of the reaction time on the
stream; the 1,3-butadiene conversion decreased from 99.9% to 27.6%. However, the product
selectivity changed slightly at all reaction times (Figure 9b). The selectivity of total butenes
varied between 43.6% and 45.7%. The regenerated PdNi/UiO-67-CTAB(3)-A500 catalyst
displayed improved catalytic activity (Figure 9a). The conversion of 1,3-butadiene reached
85.5% after PdNi/UiO-67-CTAB(3)-A500 regenerated in flowing N2 at 200 ◦C for 1 h and
then gradually decreased over the next 30 h. The total butene selectivity of the regenerated
PdNi/UiO-67-CTAB(3)-A500 catalyst increased gradually at the first 18 h and then leveled
off with the reaction. These results showed that the catalyst of PdNi/UiO-67-CTAB(3)-A500
can be regenerated at 200 ◦C. It was previously reported that carbon will be produced
during the process of 1,3-butadiene hydrogenation, and the accumulation carbon will block
the catalyst channels or deposit on the catalyst as films, thus leading to the deactivation
of the catalyst [59,78,86,87]. The PdNi/UiO-67-CTAB(3)-A500 catalyst after the reaction
at 40 ◦C for 24 h on the stream was characterized by TG in air atmosphere to analyze the
deposited carbon. From the TG curve in Figure 10, the first weight loss stage from 30 ◦C to
275 ◦C owed to the release of physically adsorbed raw materials (1,3-butadiene and H2)
and product materials (butane, 1-butene, trans-2-butene, and cis-2-butene). XPS displayed
that Pd in PdNi/UiO-67-CTAB(3)-A500 existed as Pd0 and Pd2+ (Figure 5b). The TG curves
showed a slight increase (1%) in weight from 275 ◦C to 700 ◦C, illustrating that Pd0 started
to oxidize. Then, the TG curve had a decrease with the weight loss of 1.7% from 730 ◦C to
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910 ◦C due to the deposited carbon being oxidized to generate CO2 and CO gases [88]. The
calculated deposition carbon rate was 0.71 mg/(h·gcat).
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3. Experimental Section
3.1. Synthesis of UiO-67-CTAB

UiO-67-CTAB(n) (n = 0, 3, 8, 13, 18) was prepared by using the surfactant CTAB assistant
solvothermal method (CTAB: cetyltrimethylammonium bromide). First, ZrCl4 (0.64 mmol,
150.00 mg), 4,4-biphenyldicarboxylic acid (H2bpdc, 0.72 mmol, 175.00 mg), acetic acid (5 mL),
and surfactant CTAB (0.135 g) were dissolved in 40 mL N,N′-dimethylformamide (DMF).
Subsequently, the mixture was transferred into a 100 mL Teflon-lined autoclave reactor and
maintained at 120 ◦C in a drying oven for 24 h. After natural cooling to room temperature,
the white slurry was centrifuged. The obtained white solid was then washed three times
with DMF and anhydrous methanol, respectively. Finally, the remaining white solid was
dried under vacuum (vacuum degree: 0.1 MPa) at 50 ◦C for 5 h. The resultant powder was
named as UiO-67-CTAB(3). The UiO-67-CTAB(8), UiO-67-CTAB(13), and UiO-67-CTAB(18)
samples were synthesized by using a similar procedure, except using different CTAB
concentrations (8, 13, and 18 g/L). The sample also synthesized by using a similar method
without CTAB was named as UiO-67-CTAB(0) as the control.

3.2. Synthesis of PdNi/UiO-67-CTAB-A500

The PdNi/UiO-67-CTAB(n)-A500 (n: the concentration of CTAB; n = 0, 3, 8, 13,
18; A500: pyrolysis at 500 ◦C under an air atmosphere) catalyst was synthesized by
the co-impregnation and pyrolysis method. Briefly, PdCl2 (0.047 mmol, 8.40 mg) and
Ni(NO3)2·6H2O (0.085 mmol, 24.8 mg) were dissolved in 2 mL anhydrous ethanol. Then,
the solution of PdCl2 and Ni(NO3)2·6H2O was dropwise added to 0.1 g UiO-67-CTAB(3).
The suspension was left to age overnight at –4 ◦C and dried at 100 ◦C for 2 h in a vacuum
oven with a vacuum degree of 0.1 MPa. The dry solid was placed in an alumina boat
and pyrolyzed under an air atmosphere in a muffle furnace at 500 ◦C for 3 h (1 ◦C/min)
to obtain PdNi/UiO-67-CTAB(3)-A500. The PdNi/UiO-67-CTAB(0)-A500, PdNi/UiO-67-
CTAB(8)-A500, PdNi/UiO-67-CTAB(13)-A500, and PdNi/UiO-67-CTAB(18)-A500 catalysts
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were also synthesized in a similar procedure by the co-impregnation and pyrolysis method.
The actual metal (Pd, Ni, and Zr) content of the catalysts as determined by ICP-OES is
shown in Table S1.

3.3. Catalytic Activity Evaluation

The hydrogenation of 1,3-butadiene was carried out in a fixed bed using a quartz reac-
tor with an internal diameter of 6 mm at 25–40 ◦C under atmospheric pressure. Typically,
5 mg of the catalyst was diluted with 500 mg of quartz sand (inert diluent, 40–80 mesh).
The catalyst was pretreated in flowing N2 (8 mL/min) at the reaction temperature for
0.5 h. The reaction gas mixture was 1,3-butadiene/N2 (1.0 vol.%, 20 mL/min) and H2
(10 mL/min). The space velocity reached 360,000 mL/(h·gcat) which could eliminate mass-
transfer limitation during the 1,3-butadiene hydrogenation. The gas stream at the reactor
outlet was analyzed using online GC-6890 (Purkinje General Instrument Co., Ltd., Beijing,
China) equipped with an Al2O3 capillary column (30 m×0.53 mm×10 mm). Carbon bal-
ance was 97% ± 3%. 1,3-butadiene conversion (X1,3-BD) and selectivities (Si) of butane,
1-butene, trans-2-butene, and cis-2-butene were calculated using the following equations:

X1,3−BD(%) =
[1, 3 − BD]i − [1, 3 − BD] f

[1, 3 − BD]i
× 100

Si(%) =
Ci

∑
i

Ci
× 100

where [1,3-BD]i is the initial molar flow rate of 1,3-BD (mmol/min), [1,3-BD]f is the final
molar flow rate of 1,3-BD (mmol/min), Ci is the product (such as butane) molar flow rate,
and ∑

i
Ci is the total product (containing butane, 1-butene, trans-2-butene, and cis-2-butene)

molar flow rate.

4. Conclusions

We have studied the selective hydrogenation of 1,3-butadiene on PdNi/UiO-67-
CTAB(n)-A500 (n = 0, 3, 8, 13, 18) catalysts. Catalytic activity strongly depends on the crystal
morphology of the UiO-67 template for 1,3-butadiene hydrogenation. The highest catalytic
activity was observed over the PdNi/UiO-67-CTAB(3)-A500 catalyst which was synthe-
sized using UiO-67 with a uniform octahedral morphology as the template for 1,3-butadiene
selective hydrogenation. Catalytic activity increased with increasing reaction temperature
for PdNi/UiO-67-CTAB(3)-A500, whereas the selectivity to total butenes slightly decreased.
The higher reaction temperature could promote the secondary hydrogenation of butenes
to butane. The 1,3-butadiene conversion and the selectivity of total butenes were 98.4%
and 44.8% at 40 ◦C within 1 h for the PdNi/UiO-67-CTAB(3)-A500 catalyst, respectively.
The catalyst of PdNi/UiO-67-CTAB(3)-A500 can be regenerated in flowing N2 at 200 ◦C.
Carbon deposited on the catalyst during the 1,3-butadiene hydrogenation process was the
main reason for its deactivation. This work is valuable for the high-efficiency bimetallic
catalyst’s development on the selective hydrogenation of 1,3-butadiene.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules29102217/s1, Materials and Methods: materials, characterization
and equipment; Table S1: The actual metal content of as-synthesized catalysts analyzed by ICP-OES;
Figure S1: TEM photographs and PdNi nanoparticle distributions of PdNi/UiO-67-CTAB(0)-A500
(a,b), PdNi/UiO-67-CTAB(3)-A500 (c,d), PdNi/UiO-67-CTAB(8)-A500 (e,f), PdNi/UiO-67-CTAB(13)-
A500 (g,h), and PdNi/UiO-67-CTAB(18)-A500 (i,j).
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