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Abstract: This review article assembles key recent advances in the synthetic chemistry and biology of
specialised pro-resolving mediators (SPMs). The major medicinal chemistry developments in the
design, synthesis and biological evaluation of synthetic SPM analogues of lipoxins and resolvins
have been discussed. These include variations in the top and bottom chains, as well as changes to the
triene core, of lipoxins, all changes intended to enhance the metabolic stability whilst retaining or
improving biological activity. Similar chemical modifications of resolvins are also discussed. The
biological evaluation of these synthetic SPMs is also described in some detail. Original investigations
into the biological activity of endogenous SPMs led to the pairing of these ligands with the FPR2/LX
receptor, and these results have been challenged in more recent work, leading to conflicting results
and views, which are again discussed.
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1. Introduction

In ancient times, the process of inflammation was thought to be an undesirable action
and harmful to the host. However, since the 19th century, the inflammatory response has
been recognised as part of the healing process and key to the defensive mechanisms of the
body [1]. Inflammation is part of the innate immune response to infection or injury, leading
to a series of physiological responses in the host. These responses are characterised by heat,
redness and pain, often accompanied by swelling and a loss of function. Collectively, they
represent the five ‘cardinal signs’ of inflammation [2].

The aim of the inflammatory response is to confine the insult to an isolated area and to
initiate the immune response to repair the injured tissue and regenerate tissue homeostasis.
This is achieved by the release of chemical mediators such as cytokines and chemokines,
which activate the physical response, increasing vasodilation and vascular permeability
in order to flood the infected area with immune cells [3]. In heathy cells, when the injury
is eradicated, the inflammatory response resolves, and subsequent immune reactions
diminish. The resolution phase is essential to the return of tissue homeostasis [4]. The
breakdown of this aspect of the inflammatory response leads to a prolonged exposure to pro-
inflammatory mediators, leading to chronic inflammatory diseases such as cardiovascular
disease, arthritis, asthma and diabetes [5].

Once the inflammatory response is initiated, the loop of inflammatory events occurs in
a cascade until the infection is eradicated by the immune response or the injury is contained.
Early actions of the host response are taken over by more complex mechanisms and
eventually become redundant. It is pivotal that the inflammatory response is controlled
and resolved. Many molecules play a role in governing the duration and magnitude
of the inflammatory response. Lipoxins are one such class of anti-inflammatory, pro-
resolving molecules [6]. These endogenous, lipid-derived, chemical mediators are a class
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of eicosanoid natural products. They are part of a cohort of molecules, collectively referred
to as specialised pro-resolving mediators (SMPs), that play an active role in the resolution
phase of inflammation. The purpose of this review is to summarise recent advances in
the chemistry and biology of these specialised pro-resolving mediators, with a focus on
lipoxins and resolvins.

2. Lipoxins

Lipoxins, and other members of this class of molecules, evoke their effect by inhibiting
the congregation of neutrophils to the site of infection, thus triggering the cascade of events
that culminate in the resolution of the inflammatory response [7]. They are also known to
promote wound healing by promoting the infiltration of monocytes, which are required for
this purpose. As well as the endogenous lipoxin molecules, LXA4 (1) and LXB4 (2), other
specialised pro-resolving mediators, such as resolvins, protectins and maresins, also play
an important role in the resolution of inflammation (Figure 1) [8].
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Figure 1. Native LXA4 (1) and LXB4 (2).

Lipoxins were first isolated from human leukocytes in 1984 by Serhan, Hamberg
and Samuelsson [9]. Their continued investigations on the subject allowed the precise
biosynthesis of the naturally occurring lipoxins LXA4 and LXB4 to be understood [10].
Lipoxins are a derivative of the arachidonic acid pathway which is known to play a key role
in the process of inflammation. As such, it has been the subject of considerable academic
interest. Non-esterified arachidonic acid is subject to oxidation by both the lipoxygenase
and the cyclooxygenase pathways. The three major lipoxygenase pathways, 5-, 12- and
15-lipoxygenase, transform arachidonic acid into its biological active derivatives (Scheme 1).
These enzymes stereospecifically insert molecular oxygen into the unconjugated double
bond system [10].

One of the major biosynthetic routes to LXA4 (1) and LXB4 (2) involves the insertion
of molecular oxygen at the carbon-15 position of arachidonic acid (3), which is facilitated
by the action of the enzyme 15-lipoxygenase (15-LO). This oxidation of arachidonic acid
forms 15-hydroperoxyeicosatetraenoic acid (15-HPETE) (4), which is subject to further
oxidation by 5-lipoxygenase to form an epoxide intermediate (5). This molecule is rapidly
hydrolysed to form LXA4 and LXB4 by an attack on the C-6 position or the C-14 position,
respectively [10].

A second LX biosynthesis pathway, involving the interaction of human neutrophils
with platelets in the blood, was discovered by Serhan and co-workers [11]. In this pathway,
arachidonic acid is subject to oxidation by 5-LO to form LTA4 (6). Platelet 12-LO acts on 6
to form the epoxide intermediate 5, which is subsequently transformed into LXA4 (1) by
action at the C-6 position and LXB4 (2) by action at the C-14 position by the corresponding
LX hydrolase enzymes.
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Scheme 1. Biosynthetic pathway to endogenous LXA4 (1) and LXB4 (2).

3. Aspirin-Triggered Lipoxins

Aspirin also plays a key role in the biosynthesis of lipoxins, as reported by Claria and
Serhan in 1995 [12]. The aspirin dependent route leads to the formation of 15-epi-LXA4 (7),
also known as aspirin-triggered lipoxin (ATL). The aspirin-triggered pathway can also lead
to the formation of the LXB4 mimetic (8) (Figure 2).

Aspirin is a well-known pharmaceutical agent with a broad scope of clinical applica-
tions. It is commonly prescribed as an analgesic, antipyretic, cardiovascular and anti-cancer
treatment [13].



Molecules 2024, 29, 2233 4 of 18

Molecules 2024, 29, x FOR PEER REVIEW 3 of 19 
 

 

 
Scheme 1. Biosynthetic pathway to endogenous LXA4 (1) and LXB4 (2). 

3. Aspirin-Triggered Lipoxins 
Aspirin also plays a key role in the biosynthesis of lipoxins, as reported by Claria and 

Serhan in 1995 [12]. The aspirin dependent route leads to the formation of 15-epi-LXA4 (7), 
also known as aspirin-triggered lipoxin (ATL). The aspirin-triggered pathway can also 
lead to the formation of the LXB4 mimetic (8) (Figure 2). 

 
Figure 2. Aspirin-triggered lipoxins 15-epi-LXA4 (7) and 15-epi-LXB4 (8). Figure 2. Aspirin-triggered lipoxins 15-epi-LXA4 (7) and 15-epi-LXB4 (8).

Cyclooxygenase-2 (COX-2) is an enzyme that acts on arachidonic acid 3 to form
prostaglandins in the inflammatory reaction cascade [14]. COX-2 switches its catalytic
activity in the presence of aspirin, generating 15-hydroxyperoxyeicosatetraenoic acid (9)
(15-HPETE) instead of prostaglandins (Scheme 2). When acetylated by aspirin, COX-2
enzymatically converts arachidonic acid to 15-HPETE. Epi-lipoxins are formed by the
metabolism of 15-HPETE (9) by the 5-LO enzyme. The synthesis first goes through a
5(S)-epoxytetraene intermediate (10). This intermediate leads to the formation of both 15-
epi-LXA4 (7) and 15-epi-LXB4 (8), which carry the (R)-configuration at C-15 [15]. Numerous
studies have proven that ATLs can serve as endogenous anti-inflammatory signals and
facilitate some of aspirin’s beneficial actions [16].
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4. Biological Activity of LXA4

Studies conducted by Serhan and colleagues have demonstrated the potent anti-
inflammatory and pro-resolving effects of LX and ATL, both in vitro and in vivo. The
primary target of these eicosanoids are neutrophils, which express high levels of certain
G-protein coupled receptors. Lipoxins and their derivatives bind to the G-protein coupled
lipoxin A4 receptor (ALX), originally named due to its high affinity for LXA4. This receptor
is currently identified as FPR2/ALX, reflecting agonism by both formylated peptides
and LXA4, and is consistent with the Nomenclature and Standards Committee of the
International Union of Basic and Clinical Pharmacology singles receptor nomenclature
guidelines [17].

The binding of LX to this receptor triggers the release of chemo signals through which
LX exert their anti-inflammatory effects. LXA4 is known to bind in a stereoselective fashion
to its receptor, which is not shared by either LXB4 or LTB4 [18].

The ALX receptor was identified through binding studies using tritium-labelled LXA4
(3H-LXA4) [19]. Functional LXA4 receptors are inducible in HL-60 cells. Serhan and
co-workers were therefore able to test orphan cDNAs, cloned from these HL-60 cells,
which encode 7-transmembrane region receptors, for their ability to bind and signal with
LXA4. Chinese hamster ovary (CHO) cells, transfected with the orphan receptor cDNA,
displayed specific tritium-labelled LXA4 high-affinity binding. Bioactive ATL and LXA4
analogues compete with 3H-LXA4 binding to LXA4 receptors, thereby confirming their
binding action [19].

After binding to these receptors, LXs show counterregulatory effects in some tissues.
They inhibit the movement of polymorphonuclear leukocytes (PMNs), impeding their
adhesion to endothelial cells [20]. This inhibits the chemotaxis of PMNs and eosinophils.
They also produce vasodilatory effects and inhibit leukotriene-B4-mediated inflammatory
events [21]. One of the primary anti-inflammatory effects of lipoxins is that they evoke a
series of bio-actions that inhibit neutrophil infiltration to the injury site, thus preventing tis-
sue injury [22]. After neutrophils are cleared from the site of injury/infection, macrophages
are recruited. Macrophages are cells that remove dead and pathogenic cells from the site
of infection. Lipoxins promote the resolution of inflammation by delaying the apoptosis
of macrophages [23]. The biological importance of lipoxins in the inflammatory cascade
is evidenced by the fact that a deficiency of these compounds in the body is associated
with human inflammatory diseases, including asthma, glomerulonephritis and rheumatoid
arthritis [24].

5. Metabolic Stability of Native Lipoxins

While native lipoxins are capable of promoting the resolution of acute inflammation,
the full spectrum of their therapeutic application is hindered by the inherent chemical
lability of the conjugated tetraene, which makes up a part of their molecular skeleton. The
native endogenous mediators are rapidly metabolised in vivo. This is a trait characteristic
of all autocoids. The inactivation of lipoxins is achieved through enzymatic degradation
soon after they carry out their anti-inflammatory effects. The rapid metabolism of native
lipoxins has been well studied, and many of the pathways are known (Figure 3).

Lipoxins undergo oxidation at the C-15 position, mediated by the action of 15-hydroxy-
prostaglandin dehydrogenase (15-PGDH), which results in their inactivation. 15-PGDH
catalyses the dehydrogenation reaction of the C-15 hydroxyl to afford the corresponding
ketone, 15-oxo-LXA4 (11) [25]. A reaction will also occur at the C13-C14 double bond, the re-
duction of which by the enzyme leukotriene B4 12-hydroxydehydrogenase (PGR/LTB4DH)
will result in the formation of the 13,14-dihydro-LXA4 metabolite. LTB4DH will also react
with the ketone (11) to form 13,14-dihydro-15-oxo-LXA4 (12) [26]. Another known pathway
of LX metabolism is the ω-oxidation at the C-20 position to form 13. This is mediated by
cytochrome P450 (believed to be CYP3A) enzymes. Lipoxins are also subject to metabolism
via the β-oxidation/elimination pathway, which delivers the α,β-unsaturated metabolite
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(14) [27]. These metabolites display a considerable reduction in activity compared to the
native lipoxin.
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6. Development of Stable Lipoxin Analogues

Although native lipoxins display potent anti-inflammatory properties, they are not
considered to be viable candidates as therapeutic agents, due primarily to their poor half-
life in vivo. Although the transient nature of lipoxins is a significant drawback regarding
their therapeutic application, the potential benefit that could be drawn from these native
anti-inflammatory molecules is indisputable.

Significant work was undertaken regarding the Structure–Activity Relationship of
the native LXA4, which determined the features of the molecule that were crucial to its
biological activity [22]. The results of these experiments determined that for appropriate
binding to the ALX receptor, the 5(S)-6(R)-configurations of the upper chain diol and the
cis-configuration of the C-11 alkene were necessary (Figure 4). Additionally, the 15-epi-
LXA4, which is the aspirin-triggered variant and possesses opposite stereochemistry at
the C-15 alcohol, was determined to have greater activity compared to the native LXA4
(Figure 4) [22].
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Working with these observations, and also considering the mode of the enzymatic
inactivation of the native LXA4, investigations began into the synthesis of analogues of
LXA4 and LXB4 that possess similar biological action to that of their native counterparts
but possess a resistance to metabolic inactivation. With the pathways of lipoxin metabolism
identified, analogues could be specifically designed to circumvent these undesirable reac-
tions (Figure 5) [28].
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7. LXA4 Triene Core Modifications

The reduction of the C13-C14 double bond majorly contributes to the deactivation of
the native lipoxin. Our group and others have devoted significant work to the modification
of the triene core to avoid this eventuality. The first compounds of this kind were the
benzo-containing analogues. Benzo-LXA4 was synthesised by Petasis et al. (15) in 2008 and
asymmetrically by Guiry (16) in 2007 (Figure 6) [29,30].
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This analogue is resistant to reduction at the C13-C14 position, and the benzo-modification
improves their half-life substantially. Benzo-LXA4 is equally as efficient as native LXA4
but displays a 1000-fold increase in potency, demonstrating anti-inflammatory activity in
acute models of hind limb ischemia–reperfusion injury and zymosan-induced peritonitis,
including reduced PMN infiltration and pro-inflammatory cytokine release [30,31].

The therapeutic efficacy of this series of mimetics was further established in addi-
tional experimental models, including surgically induced renal fibrosis [32], obesity-driven
adipose inflammation [33] and diabetes-induced atherosclerosis and kidney disease [34,35].

Several pathological features were observed in a high-fat diet-induced murine obesity
model, including fatty liver, impaired glucose tolerance, adipose inflammation and CKD,
and benzo-LXA4 was found to mimic many of the protective effects of LXA4. Benzo-LXA4
was also found to restore the expression of the autophagy markers LC3-II and p62, which
were reduced by obesity [33].

In collaboration with Godson, the therapeutic potential of benzo-LXA4 was investigated,
comparing it to LXA4 in an established model of diabetic complications (streptozotocin-
treated ApoE−/− mice). Benzo-LXA4 was found to protect against diabetes-induced vas-
cular complications in a similar manner to native LXA4, albeit at a lower dose [34,35].
Importantly, our study demonstrated that LXA4 and benzo-LXA4 suppress fibrotic gene
expression by negatively regulating the early growth response factor (EGR-1) transcription
factor network, a complex dysregulated in human renal fibrosis [35].

In the investigations of diabetes-induced atherosclerosis and diabetic kidney disease,
LXA4 and benzo-LXA4 were used in two different dosing modalities: as disease developed
along a 10- or 20-week time course of diabetes or as a treatment of established disease.
LXA4 and benzo-LXA4 prevented the development of vascular complications of diabetes
and, most importantly, reversed established disease.

Several key aspects of disease pathology were affected, including the inhibition of
glomerular matrix accumulation, proteinuria [35] and the regression of atheromatous
plaque [34]. In exploring the underlying mechanisms, it was shown that LXs inhibited
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monocyte adhesion to endothelia, vascular smooth muscle cell proliferation and inflam-
matory responses, including NF-κB-driven gene expression and TNF-α release. The latter
responses were mirrored in human plaque tissue cultured ex vivo and exposed to LXs [34].
Importantly, the LX-induced attenuation of vascular complications was independent of
changes in diabetes-induced hyperglycemia and elevated glycosylated hemoglobin A1c.

As an extension of the benzo-LXA4 work, we synthesised a set of eight novel Lipoxin
A4 analogues (Figure 7), in which we varied the substitution pattern around the benzene
ring to afford analogues mimicking potential conformers of the native LXA4 that may
adapt in vivo [36]. We achieved an enantioselective synthesis of these analogues with
both the native C15 configuration as well as the epi-configuration of the aspirin-triggered
LXA4. We also extended the alkyl chain length in four of the analogues to observe the
effect on bioactivity. Our preliminary results demonstrate the anti-inflammatory potential
of these novel LXA4 analogues. The tests showed that the longer lower-chain analogues
demonstrated better biological activity than the shorter-chain analogues with the 1,4-
disubstituted analogue 17 (n = 4) and 1,3-disubstituted analogue 18 (n = 4), showing a
significant reduction in the production of specific pro-inflammatory cytokines, IL-12p40
and IL-1β, at low concentrations.
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Figure 7. 1,4- and 1,3-substituted benzo-LXA4 analogues.

Following the generation of the benzo-LXA4 analogues, the scope of this concept was
expanded to include a range of aromatic and heteroaromatic-substituted Lipoxin analogues
by Guiry. Nitrogen-containing heterocycles such as quinoxaline (19) and benzothiophene
(20) were incorporated [37,38]. More recently, dimethyl-(21) and di-phenyl-imidazole (22)
were synthesised and evaluated for their biological activity (Figure 8). It was hoped that
these modifications to the triene core of the molecular skeleton would imbue the analogue
with a resistance to metabolic inactivation and thereby increase its activity.

Eight novel quinoxaline-containing analogues, in which the length of the lower alkyl
chain was varied, were screened for their impact on inflammatory responses [37]. Structure–
activity relationship (SAR) studies showed that (R)-19 was the most efficacious and potent
anti-inflammatory compound of those tested, as it significantly attenuated lipopolysaccha-
ride (LPS)- and tumor-necrosis-factor-α (TNF-α)-induced NF-κB activity in monocytes and
vascular smooth muscle cells. The NF-κB family of transcription factors is activated by
several pro-inflammatory mediators [39]. The molecular target of (R)-19 was investigated,
and it was determined to activate the endogenous LX receptor formyl peptide receptor 2
(ALX/FPR2). The anti-inflammatory properties of (R)-19 were further investigated in vivo
in murine models of acute inflammation. Consistent with in vitro observations, (R)-19
attenuated inflammatory responses, and these results support the therapeutic potential of
the lead QNX-sLXm (R)-19 in the context of novel inflammatory regulators.

In 2023, Guiry reported the asymmetric synthesis of lipoxin A4 (LXA4) mimetics, in
which the triene core of the molecule has been replaced by an aromatic sulfur-containing
benzothiophene ring (20) [40]. The key steps in the synthesis included a Friedel–Crafts
acylation, a Suzuki coupling between two upper and lower chain fragments and a highly
stereoselective Noyori transfer hydrogenation to set the stereochemistry of the alcohol at
the benzylic position. No biological evaluation of this analogue was reported.
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Subsequent testing of the anti-inflammatory properties of the imidazole-containing
analogues (21–22) showed that the native LXA4 is capable of reducing LPS-induced NF-κB
activity by 24 ± 1% at a 100 nM concentration. However, the dimethylimidazole (24) was
found to reduce the anti-inflammatory activity by a greater margin of 44 ± 9% and at a
reduced concentration of 1 pM and was therefore identified as the lead compound, showing
the greatest potency and efficiency of any analogue synthesised to date [38].

8. LXA4 Lower Chain Modifications

Early work on this front came from Petasis and co-workers, who designed a number
of LXA4 analogues containing variations at the C-15 and C-20, in 1995 [41]. They published
lower-chain modified mimetics such as 15-(R/S)-methyl LXA4 (23), 15-cyclohexyl-LXA4
(24) and 16-phenoxy-LXA4 (25) (Figure 9). These analogues were designed to hinder the
metabolic deactivation through C-15-oxidation and to evaluate the importance of the C-15
alcohol. To test the reactivity of these new lipoxin mimetics, each molecule was subjected to
a system of PMA differentiated HL-60 cells, a system which rapidly metabolises the native
LXA4. Studies conducted by Petasis and co-workers showed that after exposure to this
system for a period of 15 min, less than 10% of LXA4 can be recovered. Conversely, the new
analogues 23, 24 and 25 were recoverable, after an incubation of 2 h, in up to a 95% yield.
In addition to displaying increased longevity, these C-15-modified mimetics also retained
the biological action of LXA4 by successfully inhibiting the transmission of PMNs.

In an effort to overcome ω-oxidation, para-fluoro-phenoxy (26) and para-trifluoromethyl-
phenyl LXA4 (27) were later designed and prepared (Figure 10) [42]. These analogues also
displayed increased biostability and reactivity when compared to the native lipoxin.

Lower-chain modifications were also carried out within the Guiry group. After the
imidazole-containing analogue was identified as a lead compound of the heteroaromatic-
containing series, further studies on this mimetic were also carried out by varying the
length of the lower alkyl chain in analogues 28, 29 and 30 (Figure 11) [38]. The imidazole-
containing analogues possessing truncated alkyl chains displayed a reduction in potency
compared to the native lower-chain-containing analogue.
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LXA4 mimetics designed to withstand the reduction of the C2 alkene to the C3 alkene
and the ω-oxidation of C20 were synthesised by Guiry in 2022 (Figure 12) [43]. These
mimetics, 31 and 32, featured a bicyclo[1.1.1]pentane ring as part of the bottom chain of
their structure. This functionality was incorporated to block ω-oxidation, increasing the
stability of the mimetics, which increases their biological activity. Analogue 32 was found
to be more potent and efficacious in inhibiting NF-kB-induced luciferase gene expression
than native LXA4 and 26, demonstrating 50% inhibition in the picomolar range. These
results indicate that the presence of the bicyclo[1.1.1]pentane ring in the bottom chain of
the mimetic increases the activity of the mimetic.
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9. Upper-Chain Modifications

Although extensive research has been conducted into the variation in the aromatic
region and the lower chain of LXA4, changes to the upper chain remain largely unexplored.
In fact, only one analogue possessing a modified upper chain has been presented in the
literature (Figure 13). The previously described para-fluorophenoxy LXA4 mimetic (26)
was further altered by Serhan and colleagues in 2004 [44]. This 3-oxo-derivative (33)
displayed similar efficacy and potency to those of the corresponding native-upper-chain
analogue. However, the newly modified upper chain did exhibit increased chemical and
metabolic stability.
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10. Resolvins

Lipoxins are only one family of the polyunsaturated fatty acid (PUFA) metabolites,
termed specialised pro-resolving mediators (SPMs), that regulate the inflammatory system.
This genus of endogenous lipid mediators includes lipoxins, resolvins, protectins and, more
recently, maresins [45].

Resolvins, derived from ‘resolution phase interaction products’, are autocoids biosyn-
thesised from essential PUFAs. There are two subcategories of resolvin molecules: the
E-series resolvins, which are derived from eicosapentaenoic acid (EPA), and the D-series
resolvins, which are derived from docosahexanoic acid (DHA) [46]. There are six known
compounds in the D-series, commonly referred to as RvDs (Figure 14).

Of these resolvin D-series, two compounds, RvD1 (34) and RvD2 (35), are trihydroxy-
lated and contain a tetraene core. The presence of these functionalities lends the molecules a
structural resemblance to lipoxin-type mimetics. Inversely, they possess structural qualities
distinct from lipoxins, namely, cis-unsaturation on both the upper and lower chains and an
elongated upper chain by two carbon units. RvD3 (36) and RvD4 (37) are also trihydroxy-
lated DHA-derivatives, whereas RvD5 (38) and RvD6 (39) possess only two alcohol groups.
Similar to the lipoxin class, aspirin-triggered resolvins have also been identified, with the
inversion of stereochemistry at the lower-chain alcohol [47]. Of the compounds classed
as SPMs, these resolvins bear the closest resemblance to the lipoxin family—particularly,
RvD1 and RvD2, which exhibit structural parallels to LXA4 and LXB4, respectively. RvD1
had also demonstrated a higher natural resistance to metabolic inactivation than LXA4,
making it a compound worthy of further investigation [47].
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11. RvD1 in Inflammation

Many chemical mediators, such as the arachidonic acid-derived lipid mediators, have
well-established roles in the process of inflammation. Extensive research into the subject
eventually demonstrated that arachidonic acid was not the only fatty acid precursor that
undergoes transformation to produce bioactive mediators in inflammation and resolution.
The ω-3 fatty acid-derived EPA and DHA also deliver a number of such molecules [48].
RvD1, which is derived from DHA, is now known to produce anti-inflammatory action
but also to promote resolution back to the non-inflamed state [49]. The resolution phase of
inflammation was once believed to be a passive process; however, the discovery of these
resolvin-type molecules, as endogenous stop-signals for inflammation, has provided the
evidence required to identify resolution as an active and regulated process [50].

RvD1 is produced in resolving exudates in vivo, as a product of the transcellular
biosynthesis with human leukocyte and endothelial cells [47]. It was also identified in
human whole blood and in the murine brain [51]. The compound is biosynthesised by the
sequential oxidation of DHA by 15-LOX and 5-LOX [47].

The anti-inflammatory properties of RvD1 were investigated using a murine skin air
pouch model, which examined the effect of RvD1 on PMN accumulation [52]. Polymor-
phonuclear neutrophils (PMNs) contribute to the immune response by recruiting various
proinflammatory mediators, which, in healthy tissues, would promote wound-healing.
In the case of inflammatory autoimmune diseases, the presence of PMNs causes an ex-
acerbation of debilitating disease symptoms. The study, conducted by Serhan in 2002,
demonstrated the ability of RvD1 to regulate PMN action in vivo [52]. The local adminis-
tration of RvD1 also inhibited zymosan-induced peritonis by the regulation of leukocyte
recruitment into the air pouch.

A later study in 2006 showed that RvD1 has a suppressive effect on the release of
the proinflammatory cytokine TNF-α, which is implicated in the pathogenesis of ischemic
acute kidney injury. This work highlighted the active role of RvD1 in the resolution of
inflammation. Not only do they block the activation of proinflammatory pathways, but
they also act during the acute injury phase to counteract inflammation and injury [53].

A study conducted in 2011 discovered the protective action of resolvin compounds
in corneal angiogenesis [54]. The injury occurs in this case through cysteinyl leukotrienes,
which stimulate conjunctival goblet cell mucous secretion. This is a crucial component
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of ocular allergy, usually treated by the sustained use of steroids. However, RvD1 and
RvE1 have been shown to block the action of cysteinyl leukotrienes by preventing the
increase in Ca2+ and thereby preventing the activation of the ERK1/2 receptor. Resolvins
have been recorded to inhibit physiological processes of inflammation, decrease neutrophil
assembly and block cytokine production. Based on these actions, resolvins have reduced
inflammation in animal models of several cases of chronic inflammatory diseases [53,55].

Another aspect of RvD1 that makes it an attractive target for further studies is the
receptor upon which it acts, as it is capable of activating the FPR2/ALX receptor [56]. This
is exceedingly advantageous in a strategic sense, as it mitigates the need to develop a
new testing method for synthetic lipoxin–resolvin analogues. Receptor selectivity studies
demonstrate that the pro-resolving actions of RvD1 and AT-RvD1 are mediated by two
G-protein coupled receptors, FPR2/ALX and GPR32 [57]. The receptor of interest in
this circumstance is the FPR2/ALX receptor, as it is used in the biological testing of the
synthetic LXA4 analogues prepared by Guiry. The FPR2/ALX receptor is activated only by
the presence of LXA4, RvD1, RvD3 and their aspirin-triggered counterparts.

12. Synthetic Analogues of RvD1

To date, the investigation into the synthetic analogues of the resolvin family has
been relatively limited in comparison to that of its lipoxin counterparts. The first total
synthesis of RvD1 and its aspirin-triggered C-17 epimer, AT-RvD1 (40), was reported in
2007 (Figure 15) [47].
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Figure 15. RvD1 and AT-RvD1.

In 2008, Petasis presented the RvD1 methyl ester (41) and the 17-methyl RvD1 methyl
ester (42), representing the first synthetic mimetics of this class (Figure 16) [58]. Analogue
42 has yet to be prepared stereoselectively, although this molecule did demonstrate some
promise in biological testing, where it displayed organ-protective functions.
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17R-19-para-Fluorophenoxy-RvD1 (p-RvD1) (43) was then reported, also by Serhan,
Petasis and co-workers (Figure 17). This molecule was tested for protective function in
inflammatory lung injury, an important model for tissue injury. The inflammation stems
from the deposition of IgG immune complexes in the lung tissue. The biological assay was
completed with p-RvD1 and AT-RvD1, and its conclusion indicated that both AT-RvD1
and p-RvD1 successfully suppressed the inflammatory response induced by IgG immune
complexes, both in vivo and in vitro [59].
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The protective function displayed by RvD1 inspired the desire for the construction
of a more stable analogue, thus leading to the synthesis of benzo-diacetylenic-17-R-RvD1
methyl ester (44) (Figure 18) [60]. This more stable mimetic is an agonist of the human
GPR32 receptor. An in vivo mouse model displayed its ability to suppress inflammation
by enhancing the phagocytosis of macrophage cells. In testing, the new analogue 44 was
found to be equipotent with RvD1 in accelerating the resolution of inflammation. The
presence of the ring stabilises the backbone of the native RvD1, instilling a resistance to
degradation that could prove useful in the design of future therapeutics [60].
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13. Synthetic Analogues of RvE1

Resolvin E1 (RvE1, 45), one of the four resolvin E-series, is an ω-3 fatty acid eicosapen-
taenoic acid (EPA) metabolite with very potent anti-inflammatory activity identified by
Serhan (Figure 19) [61,62]. Its remarkable anti-inflammatory effects are due to the inhibition
of neutrophil chemotaxis and inflammatory cytokine production and the promotion of
macrophage phagocytosis. Resolvins are widely studied, yet only a few analogues of RvE1
are reported. On the basis of a conformational analysis of RvE1, Shuto and Fukoda designed
its four cyclopropane congeners (46a–d), in which the conformationally flexible terminal
C1–C4 moiety of RvE1 was rigidified by introducing stereoisomeric cyclopropanes [63]. The
four congeners, along with RvE1, were efficiently synthesised using a common synthetic
route. The evaluation of the anti-inflammatory effects of the compounds in mice resulted
in the identification of trans-β-CP-RvE1 (46d), which was significantly more active than
RvE1, as a potential lead for anti-inflammatory drugs of a novel mechanism of action.
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14. Conflicting Views on the Detection of SPMs and the Identification of
Proposed GPCR

This review collates recent advances in terms of the design and synthesis of specialised
pro-resolving mediators that have been inspired by the chemical structures of the natu-
rally occurring lipoxins and resolvins. One hallmark of SPM formation in vivo is that the
reported levels of these lipid mediators are much lower than typical pro-inflammatory me-
diators including leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, the
reliable detection and quantification of these metabolites are challenging, even employing
HPLC-MS instrumentation with low limits of detection. For a balanced perspective in the
current review, it is appropriate to note that there is some disagreement, if not controversy,
about the identity and the signalling of the proposed G-protein-coupled SPM receptors,
thus challenging the role of SPMs as endogenous mediators of the resolution of inflam-
mation, as noted in the recent review by Schebb and Steinhilber [64]. They suggest that
evidence that lipoxins and resolvins exert their effects through specific receptors remains
controversial and incomplete. Finally, evidence that SPMs are formed in biologically active
concentrations in humans that promote the resolution of inflammation has been questioned.

One example from the primary literature that questions that activation of human
and murine forms of FPR2/ALX by LXA4 and analogues was systematically examined by
Offermanns and co-workers [65]. They showed that both receptor orthologues responded
to the FPR2/ALX peptide agonist WKYMVM when expressed heterologously. In contrast,
LXA4 from different sources neither increased [Ca2+]i and extracellular-signal-regulated
kinase (ERK) phosphorylation nor induced a decrease in cAMP levels or a translocation
of β-arrestin. Also, several LXA4 analogues were found to be unable to signal through
FPR2/ALX. They concluded that FPR2/ALX is not activated by LXA4 and that the molec-
ular mechanism by which LXA4 functions still needs to be identified. A further example
comes from the report from Riddy, who comprehensively showed how several natural
mediators and synthetic ligands signal through three specialised pro-resolving mediator
GPCRs using multiple ligands from different classes across four-six endpoint signalling as-
says. Their study discovers new ligand pairings, refutes others, reveals poly-pharmacology
and identifies biased agonism in FPR2/LXA4 receptor pharmacology [66].

15. Conclusions

In conclusion, this review article reports a concise collation of recent advances in the
synthetic chemistry and biology of specialised pro-resolving mediators (SPMs). The major
medicinal chemistry developments in the design and synthesis of synthetic SPM analogues
of lipoxins and resolvins have been discussed. Original investigations discovering the
biological activity of SPMs led to the pairing of these ligands with the FPR2/LX receptor,
and these results have been challenged in more recent work, leading to conflicting results
and views. Irrespective of this, there is an ongoing effort to provide novel therapeutic
agents to combat an array of inflammatory diseases, and it is hoped that this timely
review will help to stimulate the design and biological evaluation of novel lipoxin and
resolvin analogues.
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