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Abstract: The resurgence of cannabis (Cannabis sativa L.) has been propelled by changes in the legal
framework governing its cultivation and use, increased demand for hemp-derived products, and
studies recognizing the industrial and health benefits of hemp. This has led to the creation of novel
high-cannabidiol, low-∆9-tetrahydrocannabinol varieties, enabling hemp crop expansion worldwide.
This review elucidates the recent implications for hemp cultivation in Europe, with a focus on the
legislative impacts on the cultivation practices, prospective breeding efforts, and dynamic scientific
landscape surrounding this crop. We also review the current cultivars’ cannabinoid composition of
the European hemp market and its major differences with that of the United States.
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1. Introduction
1.1. History and Perspective of Hemp Cultivation in Europe

Hemp is undoubtedly one of the most important crops cultivated in human history
and was one of the first plants cultivated in Europe [1]. In Europe, hemp has a rich history
of traditional uses that date back centuries. Commonly cultivated for its strong fibers,
which were used to produce textiles, ropes, and sails, hemp was a valuable commodity
in maritime industries and everyday life. Additionally, hemp seeds were used as a food
source and in traditional medicine for their nutritional and therapeutic properties [2].

The history of Cannabis genus plant laws in Europe has been intricate and diverse,
as each country adopted distinct approaches and regulations concerning the cultivation,
possession, sale, and use of cannabis. In the early 20th century, when international drug
control efforts began to take shape, numerous European countries enacted laws to regulate
the use of all C. sativa varieties [3]. The International Opium Convention of 1925 was
the first international treaty that addressed cannabis control, defining ‘Indian hemp’ as
the dried flowering or fruiting tops of the pistillate plant C. sativa from which the resin
has not been extracted, regardless of its commercial designation. Many European nations
subsequently implemented national laws to comply with this treaty. At that time, low-∆9-
tetrahydrocannabinol (THC) plants (hemp) were regulated to the same extent as high-THC
varieties (marijuana, more recently known as ‘medical cannabis’) of cannabis [4].

In 1961, the United Nations’ Single Convention on Narcotic Drugs was introduced,
aiming to control the production and distribution of cannabis and other narcotic drugs [3].
This had a significant impact on the development of stricter drug policies in European
countries. In the United States, there were already laws in place restricting the cannabis
industry, predating the Single Convention on Narcotic Drugs [5]. As global efforts to
restrict drugs gained momentum, many European nations adopted stringent drug laws,
criminalizing the possession, cultivation, and distribution of cannabis plants [6].
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However, in the latter part of the 20th century and into the 21st century, some European
countries began to decriminalize possession of small amounts of cannabis for personal
use, treating it as an administrative, rather than a criminal, offense [7]. In response to
growing evidence of the therapeutic benefits of cannabis, several European countries
started legalizing medical cannabis in the 21st century [8,9].

1.2. Past and Future of European Hemp Science and Applications

Cannabis (Cannabis sativa L.) has a long history of use in various parts of the world,
including Europe. Its fibers and seeds have been used traditionally for many purposes,
including clothing, building materials, paper, nutrients, and human and animal health [1,2].
Because of psychotropic use in the 1920–1930s of the high-∆9-tetrahydrocannabinol (THC)
content-dominant varieties, cannabis was largely banned in most countries in subsequent
decades, including in most of Europe [1]. However, legislators now recognize the difference
between high THC-containing plants (i.e., marijuana) and hemp, which has a low THC
content, and is, therefore, non-euphorigenic and an excellent source of beneficial cannabi-
noids, such as cannabidiol (CBD) [10]. Taxonomically, it is thought that both marijuana
and hemp belong to a single species, C. sativa L., which encompasses all cannabis/hemp
varieties [11]. However, based on observations of phenotypic differences, some scientists
believe that the Cannabis genus comprises three species, namely C. sativa (hemp), C. indica
Lam (marijuana), and C. ruderalis [12,13]. The original classification of cannabis varieties
according to their phenotype distinguished three types: Type I—THC-dominant, Type
II—THC/CBD-balanced, and Type III—CBD-dominant [14]. Later on, another chemotype
was identified and described and has since been called Type IV— CBG-dominant [15]. Only
in very recent research was the final type added to the chemotype classification, Type V,
which accumulated few if any cannabinoids [16]. In this review, we will focus on low-THC
C. sativa hemp varieties, which have enjoyed a noticeable surge in cultivation in recent years
because of increasing interest in consumer and medical applications across Europe [2].

1.3. CBD Promotes Revival of Hemp Cultivation

In recent years, hemp has experienced a remarkable revival, primarily because of its
emergence as a valuable source of cannabinoids other than the psychotropic THC, partic-
ularly CBD. This resurgence marked a significant shift from the historical stigmatization
of cannabis, as it became recognized that the low-THC plant (hemp) could be utilized for
numerous industrial applications [17] and for the therapeutic potential of its cannabinoid-
rich extracts [18,19]. Specifically, the medicinal potential of hemp is primarily associated
with its cannabinoid content, particularly CBD [20]. CBD has been widely studied for its
potential in alleviating various health conditions, including pain [21–24], anxiety [25,26],
epilepsy [27,28], and inflammation [29,30].

There has been a notable surge in the development of hemp inhalation studies [31–34],
driven by the increasing interest in hemp-derived compounds and the growing acceptance
of alternative methods of consumption. These products primarily focus on delivering
cannabinoids such as CBD through various inhalation techniques, including vaporization
and smoking [35–38]. Innovations in vaporization technology have led to the creation of
portable and user-friendly hemp vaporizers, allowing consumers to inhale CBD-infused
vapors without the harmful byproducts associated with traditional smoking. Additionally,
hemp pre-rolls, containing high-CBD hemp flowers, have gained popularity for convenient
and discreet hemp consumption through smoking. These products offer consumers a quick
onset of effects and are favored for their potential therapeutic benefits, making them a
prominent segment in the expanding hemp market.

Some hemp varieties are naturally abundant in CBD, making them an appealing
option for producing CBD products without the unwanted psychoactive THC effects
associated with marijuana. This has led to a surge in hemp cultivation worldwide,
with farmers and entrepreneurs seeking to capitalize on the growing demand for CBD-
driven health and wellness properties [39–42]. However, the appeal of hemp extends
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beyond CBD. The plant can produce over 140 cannabinoids in total [43,44], among them,
a variety of non-psychoactive, biologically active cannabinoids, such as CBG [45–48],
cannabichromene [49–51], cannabinol (CBN) [52–55], cannabidivarin (CBDV) [56–59], and
tetrahydrocannabivarin (THCV) [60–63], with each of them exhibiting potential health bene-
fits. Scientists are increasingly exploring the therapeutic properties of various cannabinoids
to better understand their potential health applications.

1.4. Industrial Versatility of Hemp

Hemp fibers have been used for millennia in the production of textiles and fabrics.
Hemp fabrics are known for their durability, breathability, and resistance to UV rays. Hemp
textiles are not only environmentally friendly but also offer a sustainable alternative to
traditional cotton [64,65] and synthetic fibers [66,67].

Hemp-based construction materials, such as hempcrete, have gained popularity as eco-
friendly alternatives in the building industry [68]. In several studies, hempcrete performed
well as a building material, replacing traditional construction materials while adhering to
the thermal, insulating, and acoustic characteristics required in construction [69–73].

Hemp seeds are rich in essential nutrients and have gained recognition as a superfood.
They are a complete source of protein, containing all nine essential amino acids, making
them an ideal plant-based protein option for vegetarians and vegans [74–76]. Hemp
seeds are also abundant in healthy fats, particularly omega-3 and omega-6 fatty acids [77],
promoting heart health and overall well-being [78].

Hemp seed oil is a prized ingredient in the cosmetic and skincare industry because of
its nourishing and moisturizing properties [79]. It is a natural emollient, helping to soothe
and hydrate the skin without clogging pores. Hemp seed oil is also rich in antioxidants [80],
aiding in the fight against free radicals and supporting skin health [81]. It can also be
used as an anti-inflammatory agent, particularly in irritable bowel syndrome and other
gastrointestinal conditions [82]. Hemp seed oil can also be used as a biofuel [83,84]. Hemp
biodiesel has shown promise as a renewable and environmentally friendly alternative
to fossil fuels [83,84]. CBG is a cannabinoid found in cannabis with potential health
benefits. Research suggests CBG might have neuroprotective properties, anti-inflammatory
effects useful for disorders such as inflammatory bowel disease, and potential pain relief
capabilities. Additionally, CBG could aid in stimulating appetite and possibly serving as
an antimicrobial agent [47]. In another study beneficial effects on anxiety, chronic pain,
depression, and insomnia were reported with few if any side effects [85].

To summarize, hemp exhibits great promise as a sustainable alternative to traditional
materials and crops. Its versatility, carbon sequestration capabilities [86,87], and moderate
growth cycle make it an attractive option for numerous industries seeking eco-friendly
solutions. In Malawi, where hemp is replacing tobacco cultivation, the use of hemp has
led to reduced water consumption and pesticide use, contributing to a more sustainable
agricultural and industrial landscape [88,89]. As awareness of the environmental benefits
of hemp continues to grow, more regions and industries may consider incorporating this
versatile plant into their practices, fostering a greener and more sustainable future.

2. Major Hemp Compounds and Breeding Efforts
2.1. Exploring Major Cannabinoids

The most important compounds of C. sativa are cannabinoids, with THC being the
most well-known one because of its strong psychoactive effect, while the second most-
known one and target of multiple breeding efforts is CBD [90]. However, the cannabis plant
produces more than 140 different cannabinoid compounds [11,12,90]. We will not describe
the detailed biosynthesis or the chemical transformations of cannabinoids, as such processes
have been extensively described elsewhere [91,92]. Substantial clinical evidence exists for
the efficacy of CBD in the settings of anxiety, psychosis, schizophrenia, post-traumatic
stress disorder, and substance abuse [20]. This includes uncontrolled and randomized
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controlled trial (RCT) studies for anxiety, psychosis, schizophrenia, post-traumatic stress
disorder, substance abuse, and sleep quality [20].

Regarding biological activity, it is important to consider the stereoisomers of ∆9-THC,
which has two stereogenic centers (C-6a and C-10a) and can exist as pairs of enantiomers
and diastereomers (two enantiomers of ∆9-trans-THC and two enantiomers of ∆9-cis-
THC) [93]. It has been shown that low-THC hemp varieties are rich in ∆9-cis-THC in
concentrations comparable with that of ∆9-trans-THC, which is predominantly respon-
sible for psychoactive effects [94]. The enantiomers of ∆9-cis-THC had less CB1/CB2
binding (Ki) and functional activity (EC50 [35S]GTPγS binding) for the inhibition of the
endocannabinoid-degrading enzymes (IC50 values) than (−)-∆9-trans-THC in a compara-
tive in vitro biological evaluation [94].

2.2. Understanding Terpenes

Multiple terpenes are found in cannabis plants, where they are abundant and complex
in nature, contributing to the overall aroma and scent of different varieties and are a major
breeding focus [95]. Terpenes are responsible for the distinct aromas and flavors associated
with various plants, fruits, and herbs, but more importantly, they play essential roles in the
plant kingdom, serving as a defense mechanism against herbivores and pathogens [96,97],
as well as attracting pollinators [98].

The most prevalent terpenes in cannabis are myrcene, which is recognized for its
musky, earthy, and fruity fragrance and linked to relaxant, sedative, anti-inflammatory,
and analgesic effects [99]; α- and β-limonene, which emits a citrusy, lemon/orange-like
aroma and is associated with mood elevation and stress alleviation [100] and neuropro-
tective properties [101]; α-pinene, which elicits a piney scent akin to coniferous trees,
potentially possesses anti-inflammatory properties [102], and aids brain health [103]; β-
caryophyllene, which has a peppery aroma such as that found in black pepper and cloves,
with neuroprotective [104] and antioxidant properties [105]; linalool, which is known for
its floral, lavender-like aroma that is connected with relaxation and stress reduction [106];
humulene, which exudes an earthy, woody scent, and is being researched for its potential
anti-inflammatory capabilities [107]; terpinolene, which features a complex bouquet of
floral, herbal, and citrus notes, though it is less common and its effects remain under
scrutiny [108]; ocimene, with its sweet, herbal, occasionally fruity fragrance, which is
believed to have antiviral and antifungal properties; nerolidol, which is characterized
by a woody, citrusy aroma and undergoing exploration for potential anti-parasitic and
antimicrobial benefits [109,110]; and α-bisabolol, which emits a sweet floral aroma and is
under investigation for potential pharmacological effects [111].

Some studies have indicated that terpenes neither act on cannabinoid receptors di-
rectly [112] nor activate transient receptor potential vanilloid 1 and ankyrin 1 channels
nor modulate their activation by THC [113]. However, other studies have shown that ter-
penes can activate the CB1 receptor in vivo [114]. Cannabis terpenes α-humulene, geraniol,
linalool, and β-pinene have also been shown to activate the CB1 receptor in vivo and can
in fact be multifunctional cannabimimetic ligands [115]. Although the action of terpenes
on cannabinoid receptors is unclear, they have gained significant attention in the cannabis
industry and the broader field of aromatherapy and natural medicine because of their poten-
tial health benefits [116]. Different terpenes may exhibit various effects, such as promoting
relaxation, reducing stress, improving focus, or providing anti-inflammatory properties.

Cannabis contains other aromatic compounds, such as aldehydes, ketones, alcohols,
esters, nitrogen-containing compounds, and phenols, which contribute to its characteristic
aroma and flavor [116,117]. These aromatic compounds work in synergy with terpenes
to create the diverse and complex scents found in different cannabis varieties [116]. The
presence and concentration of these compounds can vary among varieties, giving rise to
the wide range of aromas associated with various cannabis varieties [116].

Phenolic compounds encompass a range of aromatic compounds with pivotal roles in
both plant defense mechanisms and potential human health benefits [116]. Some prominent
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phenolic compounds found in cannabis include flavonoids such as quercetin, kaempferol,
luteolin, and apigenin [118]. Quercetin, a flavonol, has been detected in noteworthy concen-
trations and is recognized for its antioxidant and anti-inflammatory attributes [119]. Simi-
larly, kaempferol, another flavonol, contributes to the antioxidant capacity of cannabis [120]
and holds promise for its potential cardioprotective effects [121]. Apigenin, a flavone,
is known for its anxiolytic properties and potential as an anti-inflammatory agent [122].
Furthermore, cannabis also contains cannflavins A and B, unique flavonoids with emerging
research highlighting their potential anti-inflammatory properties [118]. These phenolic
compounds, along with others, underpin the intricate biochemical profile of cannabis,
potentially influencing its aroma, flavor, and therapeutic potential. Although the precise
roles and interactions of these phenolic compounds are still being elucidated, their presence
underscores the multifaceted nature of cannabis and its potential applications in both plant
biology and human well-being.

Among the more interesting recent discoveries was the identification of a new family
of volatile sulfur compounds containing the prenyl (3-methylbut-2-en-1-yl) functional
group that is responsible for skunk scent [123]. Their remarkable similarity to garlic volatile
sulfur compounds also marks them as a target for discovery of their additional health
benefits [123].

2.3. Advancing Classical Cannabis Breeding

Since the first sequencing effort to produce the draft genome of C. sativa [124], there
have been many subsequent studies improving genome assembly and expanding on the
number of varieties [125,126], with the most recent and well-regarded one being published
in 2021 [127].

Geographical expansion and domestication have had little impact on the Cannabis
genome size. Although there are significant differences between male and female genome
sizes, they cannot be distinguished via combined flow cytometry [128], which is useful for
the hemp industry as it is female plants that produce flowers with desired cannabinoids.
and identification is now easily achieved by testing for Y chromosomes using PCR [129].

There have been recent efforts in Europe to develop improved methods, such as
rapid generation cycling (speed breeding), to produce hemp varieties adapted to local
climate conditions and specific applications [130]. Hemp is inherently a short-day plant
requiring 12–14 of daylight hours for optimal growth. While longer days promote yield
and reduce flowering, these are suitable for the production of hemp as a fiber source. It
remains unclear if the performance of hemp varieties grown in higher-latitude regions
will hold true in lower-latitude and tropical regions [131]. On the other hand, longer dark
periods can induce early flowering and reduce biomass. Other efforts have focused on
developing improved protocols for rapid regeneration, such as modified nodal cutting and
shoot-tip protocols [132] or seed priming and pericarp removal [133]. Further studies have
been undertaken to measure cannabinoid concentrations and their correlation with climate
conditions [134].

It is important to note that cannabis offers remarkable plasticity and is perfectly suit-
able for breeding efforts that follow Mendelian selection. In addition to classical methods,
the combination of breeding and genetic engineering, including CRISPR technology, hold
immense potential for optimizing hemp plants to maximize specific cannabinoid and ter-
pene contents. Genetic engineering, particularly the precise and targeted modifications fa-
cilitated by CRISPR, offers the ability to directly manipulate the Cannabis genome [135,136].
This advancement allows scientists to enhance the expression of genes responsible for
cannabinoid and terpene production or introduce novel pathways to produce rare or
valuable compounds [137–139]. By harnessing these techniques, hemp cultivators can
develop varieties tailored to meet specific market demands for medicinal, recreational, or
industrial purposes, unlocking the full potential of this versatile plant. However, ethical
considerations, regulatory compliance, and responsible research practices are crucial in
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exploring the potential of breeding and genetic engineering to ensure the sustainable and
safe development of optimized hemp varieties.

In recent years, there has been growing interest in the biosynthesis of minor cannabi-
noids, which are cannabis compounds present in lower abundance compared with major
cannabinoids, such as THC and CBD [140–143]. Research in this field has sought to eluci-
date the enzymatic pathways involved in the synthesis of these minor cannabinoids and
explore the genetic factors influencing their production [143]. Scientists have identified var-
ious biosynthetic pathways responsible for minor cannabinoids, such as CBG [144], CBN,
cannabichromene, cannabidivarin, and tetrahydrocannabivarin [145]. This knowledge has
led to advancements in biotechnological approaches, including genetic engineering and
synthetic biology, to enhance the yield and accessibility of these compounds [137]. The
exploration of minor cannabinoids holds promise for their potential therapeutic benefits, as
early studies indicate that some of these compounds may possess unique medicinal proper-
ties. As the field of cannabis research continues to expand, further understanding of the
biosynthesis of minor cannabinoids may unlock exciting opportunities for the development
of novel pharmaceuticals and therapeutics.

The accumulation of cannabinoids in cannabis plants is influenced not only by genetic
factors but also by environmental conditions [145–148]. The genetic makeup of a cannabis
variety determines its potential to produce specific cannabinoids [145,149], but environmen-
tal factors play a vital role in whether these traits are expressed to their fullest. Elements
such as temperature, light intensity, humidity, soil composition, and nutrient availability
impact cannabinoid accumulation [146]. For example, some varieties may produce higher
THC levels under specific light conditions [147], whereas others may favor CBD production
in different environments. Additionally, stressors such as drought [150] or pest attacks
can trigger the production of certain cannabinoids as a defense mechanism [151]. This
intricate interplay between genetics and the environment highlights the importance of un-
derstanding and optimizing cultivation practices to achieve desired cannabinoid profiles in
cannabis plants [152]. By controlling environmental variables, cultivators can maximize the
expression of desired cannabinoids, tailoring cannabis varieties to suit various consumer
preferences and specific end-use applications.

3. The Growing Hemp Industry in Europe

In the European Union (EU), hemp cultivation is governed by regulations that define
hemp as C. sativa having a THC content below 0.3%. Hemp farmers must exclusively use
certified seed from varieties listed in the EU Common Catalogue of Varieties of Agricultural
Plant Species. The Plant Varietal Portal of the European Union provides a searchable
catalog of such EU-approved hemp varieties through its website [153]. Cultivators must
also obtain licenses or authorizations, and regular inspections are conducted to ensure
compliance with the THC limit. Additionally, regulations cover the processing and trade
of hemp-derived products, such as CBD extracts, which may require further licensing or
authorization.

In Switzerland, farmers are required to obtain permits for legal hemp cultivation, and
the THC limit is set at 1.0%. Switzerland also regulates the processing and trade of hemp-
derived products to ensure compliance with the established guidelines [154]. Contrary
to the EU, farmers in Switzerland are permitted to cultivate and trade any hemp variety
regardless of origin if it possesses a THC content below 1.0% (Figure 1).

Several countries and regions in Europe have become prominent players in hemp culti-
vation [155,156]. France has a longstanding history of hemp farming and a well-established
industry serving both domestic and international markets [157]. Germany has seen notable
growth due to increasing demand for hemp products and supportive government poli-
cies. Italy’s favorable climate has contributed to its thriving hemp industry. Furthermore,
Spain, particularly in regions such as Andalusia and Catalonia, has experienced signifi-
cant expansion of cultivation [158,159]. The Netherlands, with its progressive approach
to cannabis-related industries, has been actively involved in hemp farming for various
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applications. Moreover, Eastern European countries, including Poland [160], Romania,
and Lithuania, are emerging as key contributors to the European hemp sector, witnessing
growing cultivation areas and processing facilities [155]. However, it is necessary to con-
sider the critical importance of maceration and the availability of water resources in hemp
processing, especially given the diverse environmental conditions in many regions where
hemp cultivation takes place.
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The higher THC threshold of 1.0% enables the production of a wide range of high-CBD
hemp varieties, contributing to a country’s flourishing market for CBD products [161,162].
While Swiss farmers benefit from diverse microclimates [163] that support the cultivation
of various hemp varieties [164], ultimately, low humidity, long growing season, and high
solar radiation that will best aid CBD-dominant varieties.

Hemp cultivators in Europe encounter a range of challenges and opportunities. One
of the major hurdles lies in the diverse regulations across European countries concerning
hemp cultivation, THC limits, and hemp-derived product processing, leading to uncertainty
and hindering cross-border trade [165]. The stigma associated with cannabis, despite
hemp’s legal distinction from marijuana, can impact investment and market acceptance.
Competition from other agricultural sectors and imported hemp products further adds
pressure to local cultivators.

Nonetheless, there are promising prospects for hemp cultivators in Europe. The
increasing demand for hemp-derived products, especially CBD, presents a vast market
potential for farmers and processors. As consumers gravitate toward sustainable and eco-
friendly alternatives, the appeal of hemp-based goods increases significantly. The industry’s
growth is supported by increasing research and innovation, leading to improved cultivation
practices and the development of high-performing hemp varieties. Collaborative efforts
between European countries can harmonize regulations, facilitate cross-border trade, and
expand market reach for hemp cultivators.
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4. THC- vs. CBD-Dominant Cannabis sativa L. Varieties

The cannabis flowers from the USA and Europe contrast in their botanical features
and chemical composition (Figures 2 and 3). USA varieties have a significantly higher
THC concentration than those from Switzerland or the rest of Europe, which have a
much lower CBD content on average, particularly when compared with Swiss varieties
(Figures 2 and 3).
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It is worth noting that the legislative limit of 0.3% THC in Europe highly influences
the amount of CBD content (mean = 2.542%); the limit of 1.0% THC in Switzerland has
no such effect (CBD mean =13.64%) (Figure 3). This relationship between THC content
limits and CBD content is particularly evident when comparing CBD content in Swiss
varieties with that of CBD-dominant varieties in the USA, where no THC limit is enforced
(CBD mean = 12.78%) (Figure 3). Cannabis flowers from the USA, often characterized by
their lush and resinous appearance, tend to have higher THC levels, which contributes to
their potency and psychoactive effects [166,167]. Cultivated primarily as a source of fiber
and seed oil, European cannabis flowers are CBD-dominant, offering potential therapeutic
benefits without inducing psychoactive effects. The varying climate and regional cultivation
practices in each continent contribute to the unique characteristics of their respective
cannabis flowers, offering diverse varieties and effects.

In THC-dominant cannabis varieties, the types and concentrations of terpenes present
can differ from those in CBD-dominant varieties (Figures 4 and 5). The number of total
terpenes does not significantly differ among CBD-dominant, THC-dominant, or CBD/THC-
balanced varieties (Figure 4). This could suggest independent terpene accumulation and
biosynthesis from that of determining cannabinoid dominance. When comparing particular
terpenes among CBD-dominant, THC-dominant, and CBD/THC-balanced varieties, no
clear trend emerges that would favor any terpene pattern in relation to specific cannabinoid
accumulation (Figure 5). These terpene variations contribute to the distinct aromatic profiles
and potential effects of the two types of cannabis.
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However, the CBD-dominant strains of cannabis exhibit a greater degree of consistency
in terpene profiles in comparison with their THC-dominant counterparts (Figure 5 standard
deviations). This divergence in terpene variability can be attributed to the fact that a
narrower range of CBD-focused varieties have been cultivated in contrast to the broader
array of THC-dominant cultivars. This phenomenon is primarily a result of prevailing
consumer inclinations within the United States market [167]. Recently, endeavors in the
realm of breeding are being channeled toward the augmentation of aromatic and flavor
profiles within CBD-dominant cultivars, specifically hemp.
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In the hemp industry, significant discrepancies exist between reported and measured
cannabinoid concentrations in various hemp products, posing challenges to consumers and
businesses alike [168]. This disparity arises from a combination of factors, including the
absence of standardized testing methods and regulations for cannabinoid analysis [169]. Dif-
ferent laboratories employ varying testing protocols and equipment, leading to inconsistent
results for the same product. The inherent variability in cannabinoid composition within
the same hemp product is another key factor influencing reported concentrations [170,171].
Factors such as plant genetics, growing conditions, and extraction methods contribute to
this variability.

Additionally, the decarboxylation process, where raw cannabinoids are converted
from their acid form in the plant into their pharmacologically active forms, can impact the
reported cannabinoid content. Incomplete or non-uniform conversion during decarboxy-
lation may lead to discrepancies between the reported levels of cannabinoids and their
actual concentrations in the final product. Furthermore, inaccurate labeling practices and
differences in extraction efficiency and sample preparation techniques can also contribute
to the variation in reported cannabinoid concentrations [172–175]. It is also important to
consider the degradation of cannabinoids, once formulated, in products and the limited
shelf life resulting from this process [176–178].

To address these challenges and enhance consumer confidence, the European hemp in-
dustry needs standardized testing protocols and clear regulations for cannabinoid analysis.
Implementing third-party testing and certification programs can provide reliable informa-
tion on cannabinoid content, promoting transparency and accountability. By establishing
a robust and reliable system for cannabinoid analysis, the industry can build consumer
trust, drive market growth, and solidify the European hemp industry’s position in the
ever-expanding global market. As the regulatory landscape evolves, efforts to standardize
testing and enhance transparency will play a pivotal role in addressing the reported versus
measured concentrations of cannabinoids in European hemp products.
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5. Concluding Remarks and Future Perspectives

The resurgence of hemp cultivation in Europe has been catalyzed by the increased
demand in hemp-derived products as well as the less restrictive legislative landscape
(wherein changes in laws were driven by public pressure), leading to a flourishing industry
with diverse applications. The historical significance of hemp as a valuable resource for
textiles, construction, food, and medicine has been revived, showcasing its potential to
revolutionize multiple industries in a sustainable and eco-friendly manner. The increasing
interest in hemp-derived compounds, particularly CBD, has allowed for new opportunities
in the wellness and pharmaceutical sectors. Moreover, research and innovation in hemp
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science have advanced significantly, providing insights into cannabinoids, terpenes, and
their potential therapeutic applications. Navigating the complexities of Cannabis sativa
L. research presents a host of intriguing challenges, each offering a pathway to deeper
insights and progress. For instance, understanding the role of terpenes in shaping the
unique traits of different cannabis strains raises questions about their potential interaction
with cannabinoid receptors. Exploring the precise functions and interactions of other
aromatic compounds, including aldehydes, ketones, alcohols, esters, nitrogen-containing
compounds, and phenols, remains an intriguing yet elusive endeavor, ripe for further
exploration. The interplay of genetics and environmental factors in influencing cannabinoid
and terpene profiles highlights the importance of optimizing cultivation practices to achieve
desired outcomes. The hemp industry in Europe faces both challenges and opportunities,
with diverse regulations and market acceptance being key factors to navigate.

The future of hemp cultivation and scientific progress in Europe hold immense
promise. As research in hemp science continues to advance, deeper insights into minor
cannabinoids and their potential therapeutic benefits are anticipated. The use of classical
plant breeding techniques as well as genetic engineering (including CRISPR technology)
offer exciting possibilities to create novel, innovative hemp varieties with elevated and/or
unique cannabinoid and terpene profiles, further unlocking the plant’s potential for diverse
industrial and medical applications. However, alongside scientific exploration, it is crucial
to navigate ethical considerations, regulatory compliance, and responsible research prac-
tices, particularly in breeding and genetic engineering. Collaboration among researchers,
cultivators, and policymakers will play a pivotal role in establishing standardized test-
ing protocols and regulations to address the reported versus measured concentrations of
cannabinoids in hemp products. The sustainability and eco-friendliness of hemp field
cultivation make it a compelling option for industries seeking environmentally conscious
solutions. Balancing innovation with sustainability is paramount, calling for the incorpo-
ration of practices like water-efficient irrigation, organic farming, and responsible land
management to mitigate environmental risks associated with hemp cultivation. As the
hemp industry in Europe continues to grow and evolve, responsible practices and regula-
tory frameworks will be essential to maximize the benefits of this versatile and valuable
crop for society and the environment. The importance of clear trade rules and the elim-
ination of cross-border restrictions to facilitate hemp production cannot be overstated.
Clear trade regulations ensure smooth operations and promote fair competition within
the industry. By removing cross-border restrictions, hemp producers gain access to larger
markets, fostering growth and innovation in the sector. By embracing innovative research,
sustainable practices, and sound policies, Europe’s hemp industry is poised to help shape a
more sustainable future.
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