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Abstract: Polygenic risk scores (PRS) hold promise for the early identification of those at risk from
neurodegenerative disorders such as Alzheimer’s Disease (AD), allowing for intervention to occur
prior to neuronal damage. The current selection of informative single nucleotide polymorphisms
(SNPs) to generate the risk scores is based on the modelling of large genome-wide association data
using significance thresholds. However, the biological relevance of these SNPs is largely unknown.
This study, in contrast, aims to identify SNPs with biological relevance to AD and then assess
them for their ability to accurately classify cases and controls. Samples selected from the Brains for
Dementia Research (BDR) were used to produce gene expression data to identify potential expression
quantitative trait loci (eQTLs) relevant to AD. These SNPs were then incorporated into a PRS model
to classify AD and controls in the full BDR cohort. Models derived from these eQTLs demonstrate
modest classification potential with an accuracy between 61% and 67%. Although the model accuracy
is not as high as some values in the literature based on significance thresholds from genome-wide
association studies, these models may reflect a more biologically relevant model, which may provide
novel targets for therapeutic intervention.
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1. Introduction

Polygenic risk scores (PRS), a measure of genetic liability within an individual for
a given disease, hold much promise for clinical application. These measures could be
extremely useful in the early identification of individuals at risk for mid- to late-life diseases
such as neurodegeneration, enabling therapeutic intervention to delay or prevent the onset
of symptoms. However, given that the diseases these scores aim to predict are often
complex and highly heterogeneous in their genetic (and lifestyle) aetiology, the PRS also
holds the potential to identify the individual molecular pathways that are aberrant in an
individual, allowing the application of precision medicine.

Alzheimer’s disease (AD), responsible for the majority of dementia cases [1], is
one such disease that could benefit from the development of a robust PRS model. The onset
of AD generally occurs later in life, over the age of 65, except for a small percentage that
exhibits symptoms much earlier due to inherited mutations in the APP, PSEN1, and PSEN2
genes (familial AD). The etiology of AD is complex and is a result of accumulative risk
factors, both genetic and lifestyle-based. Heritability of AD is estimated to be as high as
79% [2,3], indicating a large role for genetics in the pathology; however, it is also estimated
that up to a third of dementia cases may be prevented with changes in lifestyle, such as
improvements in diet and activity [4]. Current treatments for AD are thought to slow the
progression of the disease, with the best effects seen when drugs are administered early
in diagnosis [5]. Therefore, a genetic test to run PRS analysis early in life could identify
people at high genetic risk for AD, allowing intervention prior to symptom onset, resulting
in increased beneficial efficacy of these drugs.
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Currently, PRS are developed using data from large genome-wide association studies
(GWAS). Single Nucleotide Polymorphisms (SNP) models are derived from selecting SNPs
associated with AD under a set significance threshold and calculating risk scores based on
the occurrence of effect alleles and their effect sizes to increase or decrease the risk for AD.
These models are then tested for their accuracy in classifying individuals with AD from
controls [6]. The SNPs included in these models range from a few hundred to thousands
and provide varying levels of accuracy [7]; however, what these SNPs have in common
is that the vast majority are non-coding, with no discernible biological consequence. The
development of PRS is still in its infancy, with multiple limitations being highlighted. SNPs
are selected based on statistical association studies rather than knowledge of biological
consequences. The estimated effect sizes of some SNPs included in these models are often
negligible and therefore debatable as to whether they play a significant and therapeutically
relevant role in the disease’s aetiology. Furthermore, it is thought that some SNPs with
important biological effects may be omitted from the models because their statistical
significance does not reach the threshold [8–10].

An alternative approach utilising SNPs with known biological effects, such as influ-
encing gene expression, may provide a more clinically relevant PRS model. This clinically
relevant model will aid in the understanding of biological consequences ranging from
genetic variation to pathological change. This knowledge could be crucial for identifying
new avenues for therapeutic intervention given specific biological pathway aberrations.
In addition, it may provide a more accurate and replicable model for clinical application,
identifying people at high risk of developing AD before symptom onset, allowing early
therapeutic intervention, and preventing the disease altogether.

This study attempts to advance current PRS analysis in AD by utilising gene expression
data to inform SNP selection for the model, in contrast to the significance of association
for SNPs in GWAS. Expression Quantitative Trait Loci (eQTL) were identified using gene
expression data derived from RNA-sequencing in post-mortem brains and genotype data
of AD (n = 8) and control (n = 8) individuals from the Brains for Dementia Research (BDR)
cohort. These eQTL SNPs were used to create a PRS model to classify AD and controls in
the full BDR cohort [11].

2. Results

RNA-sequencing data was used to determine gene expression levels in 16 post-mortem
frontal cortex samples (8 = AD; 8 = control) taken from the BDR cohort. Gene expression
counts suggested the expression of 22,117 genes in the bulk frontal cortex tissue, with
1844 genes demonstrating significant gene expression differences between the AD and
control samples.

Additive linear model eQTL analysis with all SNPs (n = 283,464) available for the BDR
cohort [11] and all genes expressed (n = 22,117) yielded 766,358 SNP-gene pairs with a
False Discovery Rate (FDR) adjusted p value < 0.01. These SNP-gene pairs consisted of
41,378 unique SNPs as potential eQTLs to utilise in the PRS model. SNP IDs were matched
with the GWAS summary statistics of three commonly used datasets: Lambert (International
Genomics of Alzheimer’s Project (IGAP)) [12], Jansen [13], and Bellenguez [14]. The
commonality of SNPs between these datasets and the BDR varied (Table 1), with the Jansen
dataset having the highest commonality of SNPs with the BDR dataset. Initial analyses of
these SNP models yielded moderate classification accuracy with Area Under the Curve
(AUC) statistics between 61–64%. The samples used to identify eQTLs were all APOE ε3
homozygotes, controlling for the large effect size exhibited by the two APOE isoform SNPs
(rs429358 and rs7412). Effect sizes for these two SNPs were only available in the IGAP and
Jansen summary statistics and were added to the eQTL models, leading to an increase in
significance and classification accuracy of up to 67% (Table 1).
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Table 1. Summary results from PRS models developed from SNPs found to be eQTLs for gene
expression in human post-mortem frontal brain tissue. Initial risk scores were generated from those
SNPs that were found to be eQTLs in the entire dataset (n = 41,378 SNPs); these were then restricted
to only those that influenced genes found to be differentially expressed between controls and AD
samples (n = 3650 SNPs). Samples used to generate gene expression data were APOE ε3 homozygous
and therefore excluded the effect of the isoform SNPs (rs429358 and rs7412); these were added into
the model to generate scores on the entire BDR cohort. The classification of AD and controls was
found to be ~65–67% accurate using these models. Comparison with just the APOE SNPs and the
best thresholding models yielded more significant results.

eQTLs eQTLs
Plus APOE

eQTLs in
DE Genes

eQTLs in
DE Genes

Plus APOE

rs429358 &
rs7412 Only

Best Model
Using

Threshold-
ing without

APOE
Region

Best Model
Using

Threshold-
ing Plus
APOE

Isoform
SNPs

Best Model
Using

Threshold-
ing with
APOE
Region

IGAP

# SNPs 17,865 17,867 1614 1616 2 29 31 56
Logisitic Regression

p value 9.22 × 10−6 1.52 × 10−8 0.184 3.18 × 10−8 6.89 × 10−15 6.73 × 10−5 2.61 × 10−16 9.20 × 10−18

Area Under
the Curve 0.6144 0.6508 0.5357 0.6616 0.7082 0.6078 0.7442 0.7633

Jansen

# SNPs 34,894 34,896 3116 3118 2 62 64 164
Logisitic Regression

p value 1.02 × 10−6 2.51 × 10−9 0.264 7.72 × 10−8 2.1 × 10−14 0.0002 1.93 × 10−12 3.72 × 10−16

Area Under
the Curve 0.6417 0.6738 0.5335 0.6511 0.7083 0.6033 0.7089 0.7543

Bellenguez

# SNPs 30,863 - 2759 - - 70,674 - -
Logisitic Regression

p value 1.76 × 10−5 - 0.03 - - 2.73 × 10−11 - -

Area Under
the Curve 0.6241 - 0.5586 - - 0.6865 - -

The eQTL SNP-gene pairs were limited to only those genes (442 out of 1844) that
displayed significant (adjusted p value < 0.05) differential expression (DE) between the
AD and control samples, ensuring disease relevant SNPs were included in the model and
reducing the number of SNP-gene pairs to 21,709 with 3650 unique SNPs for the eQTL-DE
PRS models (Table 1). PRS generated with these SNPs did not show a significant correlation
with AD and had poor classification accuracies of 53–55%. However, the addition of the
APOE isoform SNPs to the models increased classification accuracy to ~65% (Table 1).

For comparison purposes, PRS models containing just the APOE isoform SNPs and
the best model obtained from the “thresholding” approach were conducted. A PRS cal-
culated using the two APOE isoform SNPs produced a highly significant and consistent
classification accuracy of 70% regardless of which dataset was used to derive the effect
sizes from. Thresholding models excluding the APOE region (500 kb surrounding the
locus, hg19: 45,160,844–45,660,844) provided classification estimates of around 60%, which
increased to >70% with the addition of the two APOE isoform SNPs. Interestingly, the best
classification models were those that included all SNPs with a p value ≤ 5 × 10−8, without
the removal of 500 kb surrounding the APOE locus (Table 1, Figure 1).

Exploration of the SNP-gene pairs identified from the eQTL-DE analyses
(Supplemental Tables S1 and S2) found several SNPs that were located within several
known risk factor genes for AD, including CR1, PICALM, MEF2C, CASS4, SLC24A4/RIN3,
INPP5D [12], CLNK, CNTNAP2, ABI3, PLCG2 [13,15], BLNK, JAZF1, ABCA1, TMEM106B [14].
However, the gene expression affected by these SNPs was often on a different chromosome,
with only 14 of the DE SNP-gene pairs occurring on the same chromosome and within
1 Mb of the transcription start/stop sites of the named gene (Supplemental Table S2). Inter-
estingly, several DE genes were consistently regulated by the same set of SNPs consisting
of these known associated AD candidate genes and displayed higher expression in the AD
samples compared to the controls (Supplemental Tables S2 and S5). These genes include
three tumour suppressors (DMBT1, MTUS1, and KLRC1), two genes involved with cell
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communication and myelin (GJB1 and KLK6), and a P450 monooxygenase involved in the
synthesis of cholesterol and lipids (CYP4F12).
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quences of disease state. These eQTLs were then used to calculate a PRS using the PLINK 
scoring algorithm, with the PRS being subjected to a logistic regression to determine if a 
higher score correlated to a higher probability of a sample being classified as a case. The 
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for differentially expressed genes in AD when the APOE isoform SNPs are included in the 
model. 

The majority of eQTL effects were seen on different chromosomes than where the 
SNP resides; in fact, only 14 SNP-gene pairings from the eQTL-DE analyses were found 
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Figure 1. Receiver Operating Characteristic (ROC) curves for PRS were generated for the BDR
cohort using the IGAP (A) and Jansen (B) summary statistics. Utilising eQTL SNPs that governed
genes found to be differentially expressed in the RNA-sequencing dataset produced a small and
non-significant classification curve (red). The classification improved with the addition of the two
APOE isoform SNPs (blue) but did not reach the accuracy of classification achieved when using the
thresholding model generated with SNPs with significance equal to or less than 5 × 10−8 in the base
dataset, excluding 500 kb around the APOE locus but including the APOE isoform SNPs (green).

3. Discussion

This study aimed to explore a different strategy for determining SNPs to be included
in PRS models to classify AD samples from controls. Utilising the BDR cohort genotype
and gene expression data, eQTL SNPs were identified for genes that displayed significant
differential expression between AD and control post-mortem frontal cortex tissue. All
samples were APOE isoform ε3 homozygous to identify key AD pathology regulators
outside of this main risk factor gene. Out of the 1844 genes observed to be differentially
expressed, 442 genes were shown to be correlated with genotypes, indicating that some
gene expression differences observed may be due to other factors (lifestyle) or consequences
of disease state. These eQTLs were then used to calculate a PRS using the PLINK scoring
algorithm, with the PRS being subjected to a logistic regression to determine if a higher
score correlated to a higher probability of a sample being classified as a case. The accuracy of
this was determined from the AUC statistics derived from ROC curves. The study indicates
that moderate classification accuracy (~65%) can be obtained from eQTLs for differentially
expressed genes in AD when the APOE isoform SNPs are included in the model.

The majority of eQTL effects were seen on different chromosomes than where the SNP
resides; in fact, only 14 SNP-gene pairings from the eQTL-DE analyses were found to be on
the same chromosome and within 1 Mb of the transcription start/stop site of the named
gene. In contrast to suggesting that these SNPs do not act on genes near-by, it could suggest
that the cis effects of eQTLs are subtle and that large sample sizes are required to detect
them. What is being detected in this study are the further downstream (larger) effects of a
biological pathway initiated at the base change. Reminiscent of a “butterfly effect”, where
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a single base change can lead to a cascade of changes, leading to increasingly larger effect
sizes down the biological pathway that can be more readily detected [16,17].

Several genes appeared to be coordinated by the same set of SNPs, including those in
well-known AD candidate risk genes; interestingly, the direction of change in expression
of these genes was the same, indicating higher expression in AD brains than in controls.
Three genes are known tumour suppressors, and so one could speculate that increased
expression correlates with increased cell death, which may support the inverse correlation
between cancer and Alzheimer’s disease observed in several studies [18]. Other genes
identified in this set were GJB1 and KLK6, which function in cell communication and myelin
turnover. Whereas the data presented here supports that of an earlier study observing
increased levels of KLK6 in the plasma of AD patients [19], the increase in expression
of GJB1 (which encodes for connexin-32) in the AD group contradicts other studies that
suggest a decrease in connexins in AD mouse models [20]. Finally, CYP4F12 is a member of
the p450 cytochrome family, involved in metabolism and cholesterol and lipid pathways,
which has also been observed to be upregulated in AD [21], with further evidence for their
role in neurodegeneration supported by other P450 pathway components also showing to
be elevated in AD [22,23]. It is worth noting that differences in gene expression between a
disease state and a control cannot infer causality, as some gene expression changes may
be consequences of the disease state rather than causing it. However, the connection pre-
sented here between known AD risk gene polymorphisms and changes in gene expression
warrants further investigation to shed light on the biological pathways between genetic
risk variants and pathology.

PRS models based on eQTLs do not have better overall accuracy than those using
the APOE isoform SNPs alone in the model or in conjunction with models obtained using
a sequential threshold approach. The best PRS models presented in this study came
from the “Thresholding” approach, utilising all SNPs, including those in the APOE locus.
Interestingly, the best threshold models achieved using the IGAP and Jansen datasets
utilised SNPs with a p value of <5 × 10−8; whereas the best model achieved using the
Bellenguez dataset used a much higher significance threshold of p ≤ 0.2917 and therefore
a greater number of SNPs. This highlights that the choice of summary statistics to create
PRS may influence the outcome of the model given the differing overlaps of SNPs, effect
sizes, and significance values across datasets. In contrast, it is interesting to note that the
effect sizes of the APOE isoform SNPs differ greatly between the summary statistics from
the IGAP [12] and Jansen [13] datasets (rs429358: 1.35 vs. 0.162; rs7412: −0.387 vs. −0.885,
respectively—Supplemental Tables S3 and S4). However, the accuracy of the classification
is very similar, indicating that the allele frequency difference in the target dataset is the
main influence on the classification accuracy, which has also been shown in a previous
study [24].

In comparison to other PRS studies in the literature that utilise AUC statistics, the
classification accuracy of the APOE isoform SNPs alone seems consistent, with AUCs
ranging from 68–70% [25–28]. This study is also consistent in its finding that PRS generated
from SNPs from outside the APOE region demonstrate AUCs in the range of ~55–60%
with SNP numbers ranging from the GWAS “hits” to several thousand [25,26,28,29]. In
contrast, other studies have achieved much higher classification accuracies, reaching over
80% [30,31]. In both studies, thresholding was used to select SNPs for the PRS from the
IGAP summary statistic dataset, including those with a liberal significance value of p ≤ 0.5,
leading to SNP numbers akin to those in all eQTL analyses presented here. These studies
demonstrate that highly predictive models are possible when including SNPs with small
but important effects, though whether these will be actionable targets for therapeutic drugs
or lead to clear precision medical intervention is hard to say, and therefore a trade-off
between predictability and clinical practicality may be warranted.

The PRS model incorporating eQTL SNPs for genes that were identified as signifi-
cantly differently expressed displayed a range of classification accuracies from 53–55%,
which failed to make significance cut-offs. This is likely due to the sample size, as the
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expression work utilised only 16 samples and therefore lacked the power to detect more
subtle gene expression differences. It is likely that with a larger sample, more differentially
expressed genes would be observed, increasing the number of eQTLs in the model and
the classification accuracy. This is supported by the observation that using all eQTLs pro-
duced greater classification accuracy than those in DE genes alone and may have included
disease specific eQTLs that govern gene expression differences that did not meet the DE
significance cut-off. It is also possible that not all AD-related SNPs act in the brain, and
therefore key predictive SNPs would be missing from this analysis, leading to the lower
classification accuracy observed.

Although the sample size here is too small to calculate meaningful effect sizes of
changes in transcription level, a risk score based on these may represent a more accurate,
biologically relevant, and translatable across ancestry classification method [32–34]. Recent
studies suggest that classification based on Transcription Risk Scores (TRS) outperforms
those based on genetic risk scores [32,34]. Though the exact method as to how to calculate
the scores differs, it is thought that developing a multi-SNP-based predictor of gene ex-
pression may help link GWAS findings to functional outcomes and better prediction for
disease that may be more translatable across different datasets and ancestry groups than
individual SNP-based tests [33].

4. Materials and Methods

The BDR cohort is a longitudinal clinicopathological project [35] that has complimen-
tary whole genome genotype information for genetic analysis obtained from the Illumina
Neurochip aligned to hg19 SNP coordinates [11].

Sixteen samples were selected from the BDR cohort (Oxford Brain Bank’s generic
REC approval 15/SC/0639) for RNA-sequencing. All samples were neuropathologically
confirmed AD cases (n = 8) or cognitively normal controls (n = 8) with no other neuropathol-
ogy. Samples were matched on biological sex, age at death (p = 0.69), and PMI (p = 0.67),
and all samples were homozygous for the APOE isoform ε3. RNA was extracted from
bulk frontal-cortex tissue using previously established protocols [36]. In total, 20 ng of
the total RNA per sample were provided to the UCL Genomics Facility (London, UK) for
Kapa mRNA HyperPrep library preparation and sequenced on the Illumina NextSeq 2000,
generating ~30 M paired end reads per sample for analysis.

Raw reads provided by the UCL Genomics Facility were assessed for quality using
FASTQC and aligned to the hg19 human reference genome using HISAT2 [37]. Binary
alignment files were filtered for mapped pair-reads with a phred score ≥ 30, before gen-
erating read counts per gene with the ‘Featurecounts’ programme [38]. Differential gene
expression was identified using DESeq2, filtering for low gene counts [39].

Gene count data generated was used alongside genotype information to identify
eQTLs using the R package ‘Matrix eQTL’ [40]. Briefly, gene count, gene location, and
genotype data in the form of minor allele counts and corresponding SNP loci information
were used to model the effect of genotype in an additive linear model, with the FDR
significance threshold set at 0.01. Both cis and trans eQTLs were considered.

SNPs identified as eQTLs were used to generate PRS on the full BDR cohort of AD
(n = 356) and control (n = 164) samples using the –score command in PLINK v1.9 [41].
Multiple summary statistic datasets were obtained to provide effect sizes for the PRS
calculations; this was to ensure that the maximum number of SNPs from the eQTL analysis
could be captured in the PRS. Summary statistics produced from three large GWAS were
utilized—IGAP, Jansen, and Bellenguez [12–14]. Each dataset was clumped using the
1000Genomes European dataset in PLINK v1.9 [41], using the parameters –clump-p1 1;
–clump-p2 1; –clump-kb 250; and –clump-r2 0.8. The eQTL SNPs were matched with
these SNPs, and where multiple SNPs were found to reside in the same clump, the most
significant SNP was taken forward into the PRS.

Thresholding models were generated by including SNPs present in both the summary
statistics from the three GWAS datasets and the BDR dataset. SNPs were incorporated into
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the model at increasing significance levels based on the p value for association in the GWAS
dataset. The threshold for inclusion started at p ≤ 5 × 10−8 and increased at intervals of
10−6 (millionths) until all the SNPs were incorporated (p = 1).

Scores generated in PLINK were assessed in R [42] using logistic regression and the
‘pROC’ package [43]. The generation of area under the curve (AUC) statistics arising from
the receiver operating characteristic (ROC) curves provided estimates of the models’ overall
accuracy of case-control classification.

5. Conclusions

In conclusion, this study and emerging investigations from the literature would
indicate that utilising SNPs that have functional effects may be a more robust method to
identify key DNA variants that could predict disease across populations. Further to this,
elucidation of these variants would also uncover disease aetiology, identify key targets for
intervention, and lead to precision medicine guided by genetics.
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