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Abstract: Due to their high porosity, large specific surface area, and structural similarity with the ex-
tracellular matrix (ECM), electrospun nanofiber membranes are often endowed with the antibacterial
properties for biomedical applications. The purpose of this study was to synthesize nano-structured
Sc203-MgO by doping Sc3*, calcining at 600 °C, and then loading it onto the PCL/PVP substrates
with electrospinning technology with the aim of developing new efficient antibacterial nanofiber
membranes for tissue engineering. A scanning electron microscope (SEM) and energy dispersive
X-ray spectrometer (EDS) were used to study the morphology of all formulations and analyze the
types and contents of the elements, and an X-ray diffraction (XRD), thermogravimetric analysis (TGA),
and Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) were used for
further analysis. The experimental results showed that the PCL/PVP (SMCV-2.0) nanofibers loaded
with 2.0 wt% Sc;O3-MgO were smooth and homogeneous with an average diameter of 252.6 nm;
the antibacterial test indicated that a low load concentration of 2.0 wt% Sc203-MgO in PCL/PVP
(SMCV-2.0) showed a 100% antibacterial rate against Escherichia coli (E. coli).

Keywords: nano-textured; Sc;O3-MgO; antibacterial; electrospinning

1. Introduction

A wound dressing is a covering or protective layer that can temporarily protect the
damaged skin in the process of wound healing and treatment and avoid or control wound
infection [1]. Therefore, it is very important to develop wound dressing that can prevent
bacteria from penetrating into the wound or avoid microbial growth. Over the past few
decades, extensive research has been conducted on wound dressings with antibacterial
properties, such as thin films, hydrogels, emulsions, composites, nano/microfibers, etc. [2].
In recent years, nano/microfibers have shown broad application prospects in nano-wound
dressing. The electrospun nanofiber structure possesses absorbability, bacterial barrier,
oxygen permeability (gas transfer), non-adhesion to healing tissue, and biological activ-
ity, all of which are essential properties for antibacterial wound dressings [3]. Nanofiber
membranes are widely used in the fields of biomedical applications and tissue engineering
due to the unique characteristics, including tunable porosity, large specific surface area,
high aspect ratio, controllable small pore size, and the ability to resemble the architecture
of an extracellular matrix [4-6]. Among the available techniques, electrospinning is one
of the most promising methods of manufacturing nanofiber membranes in tissue engi-
neering applications [7]. Electrospinning is an effective nanofiber fabrication process that
stretches unfragmented polymer fibers from a polymer solution or polymer melt with
electrostatic force using a high voltage direct current in the form of a liquid jet preparation
of nanofibers [8,9]. As ideal wound dressings, electrospun nanofiber membranes have
a similar structure to an extracellular matrix (ECM), which can promote the interaction
between cells at the wound surface. Owing to the advantages of a unique uniform and
dense network structure, large specific surface area, strong flexibility, and high porosity,
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electrospun nanofiber membranes can be used as drug carriers to the wound, which have
great potential in the development of antibacterial dressings.

Currently, nanofibers of natural and synthetic polymers, such as gelatin (GEL), chi-
tosan (CS), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP), are successfully
prepared by electrospinning as biomimetic and temporal substrates to regulate cellular
and molecular activities [10-13]. PCL is a biodegradable semi-crystalline polymer with
excellent mechanical properties, it cannot be dissolved in water, and it is easily dissolved
in a variety of polar organic solvents. PCL is characterized by good biocompatibility,
non-toxicity, adjustable degradation rate, permeability with many drugs, and complete
absorption and metabolism from the human body, which is widely used in controlled drug
release systems as a sustained release carrier material [14]. It is commonly used in surgical
sutures, fracture internal fixation devices, drug delivery, and tissue or organ regeneration
scaffolds [15]. However, PCL is a hydrophobic material with strong crystallization and poor
hydrophilicity, which hinders its application in medical fields where a rapid absorption rate
is needed [16]. Its slow degradation kinetics may hinder its application in some biomedical
applications that require faster absorption rates. The crystallinity of PCL can be reduced
by mixing it with other polymers, which can result in a suitable hydrophilicity and can be
conducive to cell adhesion. Polyvinylpyrrolidone (PVP) is a biodegradable, biocompatible,
water soluble, ph stable, non-toxic amphiphilic polymer with good solubility, viscosity, and
film-forming performance with a variety of organic solvents. PVP has good electrostatic
spinning properties, including spinning and fiber extraction, and is widely used in the
preparation of nanocapsules, implant materials, and scaffolds [17]. PVP can be used to
produce materials with adjustable fiber surface morphology and degradation rate so that
the hydrophilicity and biodegradability of PCL nanofibers can be improved by adding PVP
for blending electrospinning [18,19]. PCL and PVP have shown excellent biocompatibil-
ity and effectiveness both in vivo and in vitro and have no irritation to the skin, mucous
membranes, and eyes as wound dressings.

As an environmentally friendly inorganic nanomaterial, nano magnesium oxide (nano-
MgO) has good biocompatibility, durable and broad-spectrum antibacterial activity, and
the ability to avoid other antibacterial materials that are expensive, biotoxic, and prone to
discoloration failure and light dependence, so it has become a kind of inorganic antibac-
terial material with great application potential. Nano-MgO shows unique advantages in
good bactericidal and inhibitory ability on bacteria, fungi, and cancer cells [20-23], which
can effectively destroy cell membrane structures and kill bacteria through the oxidative
damage of reactive oxygen species (ROS) and mechanical damage caused by adsorption.
Organic antimicrobials have strong initial bactericidal power, but their chemical stability
is poor, and they are easy to volatilize when exposed to heat, light, or water, so it is diffi-
cult to achieve a long-lasting effect, and they even produce toxic decomposition products.
The smaller the particle size of the nanometer magnesium oxide, the better the growth
inhibition and destruction of the bacteria [24]. In addition, ROS play an important role
in the antibacterial mechanism of magnesium oxide. This depends mainly on the oxygen
vacancy and alkalinity of magnesium oxide. Ion doping is an effective method to modify
the physical and chemical properties of metal oxides, such as a small particle size, high
defect concentration, and high catalytic activity. MgO nanoparticles have been incorporated
into various polymer nanofibers to confer antibacterial properties [25]. Doping elements
can cause lattice defects, such as vacancies, void atoms, replacement atoms, and disloca-
tions, improving the antibacterial ability of pure magnesium oxide. Studies have shown
that doping Zn, Cu [26], Ag [27], and ZnO nanoparticles [28] in nano-MgO can improve
the physical and chemical properties of the material. Sc** can replace the original ionic
lattice position and increase the defect material. Sc>* can replace the original ionic lattice
position and increase the defect concentration of the crystal, generating more ROS in the
antibacterial process and improving the antibacterial performance of the material. Fur-
thermore, magnesium (Mg), as one of the most abundant cations in the human body;, is an
essential element for human metabolism. Nigam et al. [29] used the MTT method to test the
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biocompatibility of MgO nanoparticles, and the results showed that MgO was compatible
with human cells and safe for human use. Vijayakumar et al. [30] and Tabrez et al. [31]
respectively evaluated the cytotoxicity of MgO NPs in human ovarian teratoma (PA-1) cells
and found good biocompatibility and stability. Li et al. [32] studied the effect of scandium
on the biocompatibility of degradable magnesium alloys. With low concentration Sc>*
doping on L-929 and SP2/0 cell MTT detection, the cell survival rate was more than 70%
of the negative control—no cytotoxicity. Sc** doping has an acceptable biosafety in cell
metabolism. In summary, Sc;O3-MgO has better cell activity and biocompatibility and no
cytotoxicity when loaded on PCL/PVP nanofibers.

In this work, the purpose of this paper is to obtain electrospun nanofiber membranes
(5¢c203-MgO)/PCL/PVP (SMCV) with excellent antibacterial properties that have poten-
tial application in the field of medical wound dressing. By electrospinning technology,
5¢;03-MgO was mixed into a spinning solution to prepare a PCL/PVP nanofiber mem-
brane, which had antibacterial properties. Electrospun fiber membranes loaded with
bioactive materials can be used for wound dressing, drug release, and artificial tissue
engineering scaffolds. Loaded nanoparticles physically protect wounds from bacterial
activity. Nanofibers can help cell differentiation and proliferation. The Sc;O3-MgO with a
nano-textured surface was an antibacterial agent, and PCL/PVP were used as nanofiber
membrane substrates. The structures of SMCV were characterized by scanning electron
microscopy (SEM), energy dispersive spectroscopy (EDS), infrared spectroscopy (ATR-
FTIR) thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).
The antibacterial performance of SMCV against Escherichia coli (E. coli) was tested with a
modified shake-flask method.

2. Results and Discussion
2.1. Morphology and Diameter Analysis

In order to simulate the structure and function of the ECM, the tissue engineering
structure must be conducive to promoting cell adhesion and proliferation. Scanning
electron microscopy was used to observe the structure of nanofiber scaffolds, and the
influence of the change in the Sc;03-MgO load on the morphology of nanofibers was
studied. The effects of ScO3-MgO loading on the morphology of the nanofibers were
investigated by SEM. Figure 1 shows the SEM of SMCV electrospun nanofiber membranes
loaded with different content of nano-textured Sc,O3-MgO (0, 0.5, 1.0, 1.5, 2.0, 2.5, and
3.0 wt%) and the corresponding fiber diameter distribution. As shown in SEM images, the
5cy03-MgO is almost insoluble in spinning solutions due to its poor water solubility so
that most of the antibacterial agents exist in the insoluble suspended particles in spinning
solutions. The SEM images show some white granular materials with a nano size on
the nanofibers, which are the Sc;03-MgO that exist in PVL/PVP substrates. As can be
seen in the figure, the electrospun fibers are successfully prepared without any beads; all
the nanofiber membranes consist of smooth and homogeneous fibers. With increasing
Scy03-MgO loading, the white particulate matter on the nanofibers gradually increases and
fiber diameters vary mostly between 100 nm and 400 nm, with the average diameter first
increasing with the loading to a maximum of 272.48 nm at SMCV-1.5, and then gradually
decreasing at SMCV-2.0. When the loading capacity of Sc;O3-MgO reaches 2.5 wt%, fewer
fibers are received when nanofibers are prepared by electrostatic spinning technology due
to the agglomeration of Sc;O3-MgO, and when it reaches 3.0 wt%, the agglomeration of
nanoparticles increases and the particles are mostly solid particles. In this way, non-water-
soluble Sc;O3-MgO will affect electrostatic spinning, reduce the spinning performance of
PCL/PVP, and make the spinning process unstable, including affecting the continuity of
spinning and the uniformity of nanofiber morphology and diameter.
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Figure 1. The SEM images, diameter distribution, and average diameters of SMCV (SMCV-0,
SMCV-0.5, SMCV-1.0, SMCV-1.5, SMCV-2.0, SMCV-2.5, and SMCV-3.0).

2.2. EDS Spectrum

EDS characterization was used to further determine the loading of Sc;O3-MgO and
the distribution of elements in PCL/PVP nanofiber membranes, and the types and con-
tents of SMCV components were analyzed. Figure 2a confirms the presence of carbon
(C) at Ebinding = 0.3 keV, nitrogen (N) at Ebinding = 0.4 keV, and oxygen (O) at Ebind-
ing = 0.5 keV. These observations show that the substrate of all seven fibers is a PCL/PVP
component [33,34]. It is worth noting that the EDS spectra of SMCV (SMCV-0.5, SMCV-1,
SMCV-1.5, SMCV-2.0, SMCV-2.5, and SMCV-3.0) confirm the presence of magnesium
(Mg) in Ebinding = 1.3 keV and scandium (Sc) in Ebinding = 0.4 keV, Ebinding = 4.1 keV,
and Ebinding = 4.5 keV. Thus, SMCV is mainly composed of elements C, N, O, Mg,
and Sc, the results indicated that Sc;O3-MgO was loaded on the PCL/PVP substrate
using electrospinning.

The results show that as the content of Sc;O3-MgO increases from 0.5 wt% to 3.0 wt%
(SMCV-0.5, SMCV-1, SMCV-1.5, SMCV-2.0, SMCV-2.5 and SMCV-3.0), the calculation
results are consistent with Table 1 and Figure 2a. EDS mapping is a direct method of
reflecting the dispersion of elements in a sample. As shown in Figure 2b, yellow dots, red
dots, dark green dots, light green dots, and blue dots are derived from elements C, O, N,
Mg, and Sc, respectively. It can be clearly seen that the color darkness of C and O in SMCV
begins to brighten with the increase in the content of Sc;O3-MgO, and gradually darkens
when the load reaches 2 wt%. When the load of Sc;O3-MgO reaches 2.5 wt%, the light green
and blue spots of Sc and Mg gradually darken. Therefore, the element mapping results
show that Sc,O3-MgO is successfully loaded and evenly distributed in the SMCV fiber
membranes. However, when the content of Sc;O3-MgO reached 2.0 wt%, the nanoparticles
began to agglomerate obviously (Table 1).
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Figure 2. The elements analysis: (a) EDS spectrum of SMCV (SMCV-0, SMCV-0.5, SMCV-1.0,
SMCV-1.5, SMCV-2.0, SMCV-2.5, and SMCV-3.0); (b) The elemental mapping of SMCV (SMCV-0,
SMCV-0.5, SMCV-1.0, SMCV-1.5, SMCV-2.0, SMCV-2.5, and SMCV-3.0).
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Table 1. The EDS data results of SMCV.

Index Element 1] 0.5 1.0 1.5 2.0 2.5 3.0
Sample labels SMCV-0 SMCV-0.5 SMCV-1.0 SMCV-1.5 SMCV-2.0 SMCV-2.5 SMCV-3.0
C 4.33 14.37 12.25 9.00 4.55 2.40
Apparent N 3.54 1.11 241 2.25 1.77 1.13 0.78
Concentration O 0.71 2.18 5.49 4.99 4.36 2.84 1.80
Mg 1.47 0.23 0.82 1.14 1.14 0.78 0.58
Sc 0.02 0.15 0.26 0.23 0.14 0.12
C 0.04329 0.14375 0.12248 0.09005 0.04552 0.02402
N 0.03536 0.00197 0.00430 0.00401 0.00315 0.00201 0.00138
K Ratio O 0.00127 0.00732 0.01849 0.01679 0.01467 0.00955 0.00604
Mg 0.00494 0.00150 0.00543 0.00754 0.00753 0.00516 0.00384
Sc 0.00025 0.00152 0.00255 0.00234 0.00142 0.00120
C 53.63 58.94 57.74 55.76 52.05 48.47
N 52.99 12.76 10.41 10.40 9.87 10.21 10.81
Wit% O 12.69 31.39 27.79 27.39 28.88 31.30 32.53
Mg 34.32 1.98 2.36 3.56 4.45 5.34 6.65
Sc 0.24 0.50 0.91 1.04 1.10 1.54
C 1.18 0.57 0.45 0.35 0.53 0.72 0.83
Wt% Sigma N 1.63 0.73 0.54 0.42 0.66 0.93 1.10
O 0.96 0.45 0.33 0.26 0.41 0.59 0.71
Mg 0.11 0.07 0.06 0.10 0.17 0.24
Sc 0.11 0.07 0.06 0.10 0.16 0.22
C 60.14 65.47 64.72 63.09 59.66 56.45
N 59.12 12.27 9.92 10.00 9.57 10.04 10.79
Atomic% O 12.14 26.43 23.17 23.04 24.53 26.94 28.44
Mg 28.74 1.10 1.30 1.97 2.48 3.02 3.83
Sc 0.07 0.15 0.27 0.31 0.34 0.48
2.3. XRD

The crystal state of SMCV loaded with an antibacterial agent was analyzed with
an XRD test, and the corresponding diffraction curve was analyzed and studied. The
crystalline structures of fibers SMCV (SMCV-0, SMCV-0.5, SMCV-1.0, SMCV-1.5, SMCV-2.0,
SMCV-2.5, and SMCV-3.0) were tested with XRD in the range of 10~80°, and the results
are shown in Figure 3a. As can be seen from the red vertical line in Figure 4a, the main
diffraction indices are (111), (200), (220), (311), and (222), respectively. The corresponding
diffraction peaks are 26 = 36.863°, 42.825°, 62.169°, 78.445°, and 74.517°, indicating the
polycrystalline properties of nano-MgO. After loading for Sc;O3-MgO, the nanofibers have
sharper diffraction peaks, indicating that the crystallinity is improved after loading. In
addition, in the green vertical line, it can be seen that the diffraction indices are (211), (222),
(440), and (622). The corresponding diffraction peaks are 20 = 22.178°, 31.567°, 52.741°, and
62.778°, which can be attributed to the load of Sc;O3-MgO. It shows that it exists in SMCV
fiber samples. However, diffraction peaks belonging to Sc can be observed in all fiber felt
of SMCV. This phenomenon indicates that the Sc is dispersed in a crystalline state in the
fiber mat.

2.4. ATR Spectra Analysis

ATR was used to test whether new chemical bonds and molecular interactions were
generated in SMCV nanofibers, and the functional groups of organic compounds were
quickly and effectively identified. In ATR analysis through Figure 3b, it is shown that
Sc;03-MgO is successfully integrated into PCL/PVP electrospinning fibers. According to
the resulting spectra (Figure 3b), the bands observed at 2945.07 cm ™! and 2986.59 cm ! are
attributable to the -CH;- and vibration of the -C=0 stretch in the PCL spectrum. Compared
with SMCV-0, bands at 3695 cm~! showed the presence of Sc;O3-MgO nanoparticles. The
SMCYV spectra showed the dominant peaks of PCL (-C=O- stretching 1723.67 cm~!) and
PVP (C=O stretching 1658.44 cm~') [35]. According to the ATR-FTIR spectra of SMCV,
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the absorption bands are 1421.51 cm1-1461.52 cm~! (C-H deformation), 1366.74 cm ™!
(C-O symmetric stretching), and 1236 cm ! (C-O-C asymmetric stretching), respectively. In
addition, two other characteristic peaks were found to be -O-C-O stretching at 1240.68 cm ™!
for PCL and C-N stretching at 1289.96 cm ™! for PVP. In the spectrum of SMCV, the bands
visible in the range of 652 cm~! to 400 cm~! belong to MgO vibrations [36]. With an
increase in the Sc3* content, the obvious bands that are less than 800 cm ! belong to the
metal oxygen bond, which proves that Sc,O3-MgO is successfully loaded into PCL/PVP
electrospinning fibers. It also proves that the increase in the load of Sc;03-MgO leads to a
slight deviation in the peak position of the infrared spectrum but to no obvious change in
the chemical structure.
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Figure 3. (a) XRD pattern of SMCV (SMCV -0, SMCV—-0.5, SMCV—-1.0, SMCV—1.5, SMCV-2.0,
SMCV-2.5, and SMCV-3.0); (b) ATR spectra of SMCV (SMCV-0, SMCV—-0.5, SMCV-1.0,
SMCV—-1.5. SMCV—-2.0, SMCV—-2.5, and SMCV—3.0).
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Figure 4. (a) The E. coli colony on LB solid medium (SMCV-0.5, SMCV-1.0, SMCV-1.5, SMCV-2.0,
SMCV-2.5, and SMCV-3.0); (b) antibacterial rate of SMCV against E. coli, error bars represent
mean =+ SD for n = 3, * p < 0.05, ** p < 0.01; (c) TG curve of SMCV (SMCV-0, SMCV-0.5, SMCV-1.0,
SMCV-1.5, SMCV-2.0, SMCV-2.5, and SMCV-3.0).

2.5. Thermal Analysis of Nanofibers

Thermogravimetric analyzer (TG) was used to test the thermodynamic properties
of SMCV nanofibers and characterize their thermal stability. As shown in Figure 4c, the
thermal decomposition behavior of the electrospun fiber samples of SMCV was charac-
terized by TG at a nitrogen flow rate of 25 mL/min increased from 30 °C/min to 800 °C.
The weight loss properties of water evaporation and thermal decomposition of SMCV
fibers were calculated as a function of temperature. The first stage of weight loss is due to
evaporation. The major weight loss in the second stage between 250 °C and 350 °C was due
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to normal thermal decomposition of PVP and PCL. SMCV-0 starts to lose weight at 250 °C,
and it loses weight completely at 355 °C. Compared with SMCV-0, the thermogravimetric
temperature of SMCV after loading Sc;03-MgO is delayed by 10 °C. As a result, the thermal
stability of SMCV-0 is significantly higher than that of original SMCV-0, and the residual
mass is also higher than that of unloaded nanofiber. The final weightlessness of more than
460 °C is due to the elimination of carbon residues and nanoparticles produced by thermal
reactions. The third phase of the weight variation of SMCV indicates that the addition of
Sc;03-MgO can improve the thermal performance of SMCV.

2.6. XPS Analysis of Nanofibers

XPS was used to test the SMCV nanofiber membrane before and after loading the
5c;03-MgO, and the content changes of elements on the surface of the membrane were
determined. Before and after loading Sc;O3-MgO onto SMCV nanofiber membrane with
XPS, the content of elements on the membrane surface was measured. Figure 5a,b is the
full-scan spectrum analysis of SMCV-0 and SMCV-2.0 surface element content, showing
that the test samples mainly contain characteristic peaks of C, O, and N. In the figure, there
is no impurity peak of other substances, and the content of C element and O element in the
nanofiber membrane is above 95%, which is the main component of the PCL/PVP spinning
substrate. As shown in Figure 5c,d, the increases of 1303.3 eV and 398.4 eV are mainly
attributed to the characteristic peaks of Mg2p and Sc2p; the doping of Sc>" may change the
molecular structure of MgO, in which the increase of Sc3* is more obvious, indicating that
5¢,03-MgO is successfully loaded on SMCV.
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Figure 5. (a) XPS spectra of SMCV-0; (b) XPS spectra of SMCV-2.0; (c) Sc 2p XPS data of SMCV-2.0;
(d) Mg 1s XPS data.

2.7. Antibacterial Activity of Nanofibers

The number of E. coli colonies in the LB solid medium of SMCYV is recorded, and
the calculation results are shown in Table 2. The number of E. coli colonies on LB solid
medium was 162 £ 14. The number of E. coli colonies in control group, SMCV-0, SMCV-0.5,
SMCV-1.0, SMCV-1.5, SMCV-2.0, SMCV-2.5, and SMCV-3.0 were 182.0 + 14.1, 173.0 4= 14.5,
141.6 £8.1,136.0 £9.2,45.3 £10.5,0 £ 0, 1.0 = 1.2, and 27.5 & 8.1, respectively. The results
showed that SMCV (SMCV-0, SMCV-0.5, SMCV-1.0, SMCV-1.5, SMCV-2.0, SMCV-2.5, and
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SMCV-3.0) on LB solid medium decreased with increasing Sc;O3-MgO content in SMCV.
The number of E. coli colonies in SMCV was dose-dependent with loaded antibacterial
ScyO03-MgO. The percentage reduction in the number of E. coli colonies was calculated with
equation (1). As shown in Figure 4b, SMCV has certain antibacterial abilities against E. coli,
and the antibacterial rate increases significantly with the increase in loading capacity while
the antibacterial performance weakens when the load is too large (18.1 £ 1.19, 31.32 £ 2.52,
61.50 + 3.03, 100 £ 0, 93.33 £ 1.15, 83.01 £ 2.93%, p < 0.05 or p < 0.01).

Table 2. The E. coli colony number on LB solid medium of SMCV.

Samples Control SMCV-0 SMCV-0.5 SMCV-1.0 SMCV-1.5 SMCV-2.0 SMCV-2.5 SMCV-3.0
Colony
number 1820+14.1 173.0+145 1416 +£8.1 136.0 £9.2 45.3 £ 10.5 00 1.0+12 275+ 8.1

The antibacterial property of SMCV loaded with different weights of nano-textured
Sc,03-MgO (0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 wt%) against E. coli were tested by the modified
flask standard method. After 24 h of culture, E. coli colonies are observed on LB solid
medium, as shown in Figure 5a. It can be clearly seen that the control LB solid medium is
covered with E. coli colonies while the number of E. coli colonies was slightly reduced on the
LB solid medium of SMCV-0.5. When the content of ScyO3-MgO reached 2.0 wt%, there are
almost no E. coli colonies on the LB solid medium of SMCV-2.0, and the antibacterial rate
reaches 100%. Therefore, with the increase in Sc;O3-MgO content in SMCV, the number of
E. coli colonies on LB solid medium in SMCV gradually decreases while aggregation occurs
when the load reaches 2.5 and 3.0 wt%, limiting the dispersion of antibacterial agent. E. coli
colonies grow on LB solid medium of SMCV-2.5 and SMCV-3.0. These results indicate
that SMCV has a certain bacteriostatic rate against E. coli, and the antibacterial rate can be
increased with an increase in Sc;O3-MgO content in SMCV. Furthermore, a 2.0 wt% loading
was the optimal antibacterial concentration.

In conclusion, the antibacterial performance of SMCV was completely dependent on
the content of Sc;O03-MgO in SMCYV, and the antibacterial performance was better with the
increase in Sc;O3-MgO content. Low Sc;O3-MgO content in SMCV (0.5 wt%, 1.0 wt%) will
result in poor antibacterial performance. However, due to the high content of Sc;03-MgO in
SMCV (2.5 wt%, 3.0 wt%), it is difficult for Sc;O3-MgO to be uniformly dispersed in SMCV,
and the significant concentration of Sc;O3-MgO in SMCV may lead to poor availability.
Therefore, SMCV-3.0 was prepared with the appropriate addition of 2.5 wt% Sc,O3-MgO,
which gave SMCV both usable properties and antibacterial properties. Considering that
the antibacterial properties and availability of SMCV have attracted much attention, an
optimized content of 2.5 wt% Sc;O3-MgO was selected to prepare SMCV.

There are several theories about the antibacterial mechanism of MgO, but the produc-
tion of reactive oxygen species (ROS) and mechanical damage are the main mechanisms.
On the one hand, it relies on the morphological structure of magnesium oxide itself to
physically damage the membrane system of bacteria, leading to cell rupture and death;
on the other hand, the superoxide ions generated on its surface and the alkaline environ-
ment caused by the reaction with water can cause the denaturation of bacterial DNA and
proteins [37-39]. As shown in Figure 6, Sc;O3-MgO has strong antibacterial activity. One
possible mechanism for its bacterial virulence includes the release of O?~, hydroxyl radical
OH, and severe damage to cellular components by reactive oxygen species (ROS) [27].
These free radicals can damage the cell structure through strong REDOX properties and
prevent the normal reproduction of bacteria to achieve an antibacterial effect. On the
other hand, there are many kinds of active sites on the surface of Sc;03-MgO, such as
lattice limited hydroxyl, free hydroxyl, and ion holes, which can be used as adsorption and
surface reaction centers and cause mechanical damage. Scandium (Sc3*) has been shown
to have the ability to inhibit the growth of Klebsiella pneumoniae, E. coli, and Pseudomonas
aeruginosa [40-42]. The purpose of doping Sc®* in the nano-MgO lattice is to increase the
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lattice defects and then increase the ROS content produced during the antibacterial process
to enhance the antibacterial property of MgO. When Sc;O3-MgO is successfully loaded on
PCL/PVP, it has good antibacterial performance.

Died E.coli

ROS damage and mechanical damage
Figure 6. Antibacterial mechanism of Sc;O3-MgO.

3. Materials and Methods
3.1. Materials

Magnesium (II) chloride hexahydrate (MgCl2-6H20), scandium (III) chloride hexahy-
drate (ScClI3-6H20), and ammonium carbonate ((NH4)2CO3) purchased from Shanghai
McLean Biochemical Technology Co., Ltd. (Shanghai, China) were used to prepare the
nano-textured 5c203-MgO. 2-2-2-Trifluoroethanol (TFE, Analytical reagent) obtained from
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China) was used as spinning solvents.
Polycaprolactone (PCL, 80,000) and polyvinyl pyrrolidone (PVP, K-30, 58,000) purchased
from Baogian Plastic Chemical Material Co., Ltd. (Hangzhou, China) and Aladdin Bio-
chemical Technology Co., Ltd. (Shanghai, China) were used to prepare nanofibers. The
bacteria used in this experiment was Escherichia coli (E. coli, ATCC 25,922, Shanghai
Luwei Technology Co., Ltd. (Shanghai, China)). In addition, agar, tryptone, NaCl, and
yeast extract powder purchased from Shanghai Maclean Biochemical Technology Co., Ltd.
(Shanghai, China) were also used for the antibacterial tests. All reagents were analytically
pure and were used without further processing or purification.

3.2. Synthesis of Nano-Textured Sc;O3-MgO

As in our previous study, the ScCl3-6H,O (0.0050 mol) and MgCl,-6H,O (0.0450 mol)
were dissolved in deionized water (25 mL). Solutions containing Sc>*-Mg?* were added to
the (NH4),CO3 solutions (0.002 mol/mL 25 mL) and stirred at 600 rpm at room temperature
(HJ-4B) for 6 h. The solution was washed and filtered three times and dried in an oven
(DHG-9248A) at 70 °C for 4 h to give the Scy(CO3)3-MgCO; precursor. Briefly, the Sc-
doped MgO nanoparticles were prepared via a high-temperature calcination method:
the Scp(CO3)3-MgCO3 precursor was added in a mulffle furnace (KSL-1400X-A3), which
was heated from a room temperature of 25 °C to a target temperature of 600 °C within
90 min, and then, it was maintained at 600 °C for 180 min. The process was ended as the
temperature dropped to 500 °C, and the nano-textured Sc;O3-MgO samples were obtained
when the temperature dropped to 25 °C [43].
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3.3. Fabrication of Nanofiber Membranes
3.3.1. Spinning Solutions

Briefly, PCL and PVP were dissolved in TFE solvent in a 1:1 ratio, and the total polymer
content was 12 wt% by weight. The spinning solutions were prepared by stirring at room
temperature overnight until completely dissolved. Finally, 0.5 wt%, 1.0 wt%, 1.5 wt%,
2.0 wt%, 2.5 wt%, and 3.0 wt% Sc,O3-MgO were added to the PCL/PVP spinning solutions,
respectively, and stirred at room temperature for 1 h; then, ultrasonic dispersions were
performed to obtain Sc;O3-MgO/PCL/PVP spinning solutions.

3.3.2. Electrospinning Process

Typically, the polymer solutions were allocated into a 10 mL plastic syringe with a
feed rate of 0.5 mL/h at 20 kV, and the needle was 12 cm away from the aluminum foil
collection plate. The electrospinning process was carried out at room temperature with
relative humidity below 50% (HZ-03). The collected fibers were dried in a vacuum drying
oven (DHG-9248A, 40 °C) so that the solvent in the fibers could be completely volatilized.
The sample labels of the nanofiber membranes are shown in Table 3.

Table 3. The sample labels of electrospun fibers.

SC203-MgO
Content (Wt%)

0 0.5 1.0 1.5 2.0 2.5 3.0

Sample labels

SMCV-0 SMCV-0.5 SMCV-1.0 SMCV-1.5 SMCV-2.0 SMCV-2.5 SMCV-3.0

3.4. Characterizations

SEM (JEOL, Tokyo, Japan) was used to characterize the surface morphology of the
nanofiber membranes. The diameter of 100 fibers was randomly obtained by Image J
software. X-ray photoelectron spectroscopy (Thermo Fisher Scientific, Waltham, MA, USA)
on a VG MultiLab 2000 X-ray photoelectron spectrometer using Al-Kx (hA = 1486.6 eV)
radiation as the excitation source, and the spectra were calibrated by the C 1s peak (284.8 eV).
In addition, EDS (Oxford Instruments, Oxford, UK) was used to characterize the content
and distribution of the elements. The XRD patterns were tested using XRD (Shimazu
Corporation, Kyoto, Japan) at 40 kV and 30 mA with Cu K« radiation (A = 1.5406 A).
XRD patterns were recorded over the diffraction angles ranging from 10° to 80° (26) at a
scanning rate of 5° min~!. The thermal stability of the membranes was determined with
thermogravimetric analysis (TGA). The thermal stability test adopted the synchronous
thermal analysis instrument (Linseis STA). The samples were weighed to about 10 mg and
placed in a sealed aluminum crucible for testing. At a nitrogen flow rate of 25 mL/min,
a double heating and cooling cycle from 20 °C to 500 °C was conducted at a rate of
20 °C/min to evaluate thermal gravimetry. The nanofiber membranes were analyzed
with ATR-FTIR (Thermo Fisher Scientific, Waltham, MA, USA) in a scanning range of
500-4000 cm L.

3.5. Antibacterial Property Test

The antibacterial activity of SMCV was quantitatively determined using the shaking
bottle method according to GB/T 20944.3-2008, GB/ T 24346-2009, and AATCC 100-2004
as shown in Figure 7, using E. coli as test bacteria. The modified shake-flask method
is mainly used to measure the antibacterial properties of antibacterial nanofibers. The
antibacterial substances in the fiber membrane can fully come into contact with bacteria in
the process of shaking. Compared with other antibacterial property testing methods, it has
the characteristics of being quantitative, accurate, and objective. Activated E. coli was placed
in sterilized Luria Bertani (LB) liquid medium and incubated at 37 °C for 17 h. The 30 mg
of SMCV samples (SMCV-0.5, SMCV-1.0, SMCV-1.5, SMCV-2.0, SMCV-2.5, SMCV-3.0) were
sterilized with UV positive and negative for 1 h before the experiment and the glassware
was autoclaved at 121 °C for 20 min. The sterilized SMCV samples were added to a
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LB culture-medium

Spread plate

sterilized culture flask containing 30 mL bacterial suspension (0.05 x 108 CFU/ mL) and
incubated at 37 °C for 24 h by shock. Pure E. coli suspensions were used as a control group.
After 24 h, the E. coli suspension was continuously diluted with normal saline (0.85%);
then, 200 pL of the diluted E. coli suspension was coated on LB solid medium with triangle
coating stick. The AGAR plates were incubated at 37 °C for 24 h. All experiments were
performed three times. The number of E.coli colonies in LB solid medium was counted
by viable microbial counting method, and the antibacterial rate (R%) was calculated with
Formula (1) [44].

R = [X;{Y} x 100 1)

where R refers to the antibacterial rate (%); X refers to the number of E. coli in the colony
(the control); and Y refers to the number of E. coli colony SMCV.

7=

E. coli

B Z
// (Sc,05-MgO) /PCL/PVP Electrospun

nanofiber membranes

/]
) (/ 4
J
Y
Shock culture after inoculation . )
NN\ N ’i
M W 4
/4
| 1 74 )
’J U} M After absorbing bacterial solution, add fiber membrane

Continuous dilution
Figure 7. Operation steps of antibacterial experiment.

4. Conclusions

In this work, Sc;O3-MgO particles were prepared and added into PCL/PVP elec-
trospun nanofiber membranes. When 2.0 wt% Sc;O3-MgO was added, the membrane
was composed of smooth fibers and loaded with white nanoparticles that had an average
diameter of 256.2 nm. After 24 h, it showed good bacteriostatic performance against E. coli
with a bacteriostatic rate of 100%. These results indicate that the prepared electrospun
nanofiber membranes with good antibacterial properties can be used as the material needed
for tissue engineering to prevent bacteria from multiplying in the injured site and solve the
problem of postoperative infection.
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