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Abstract: Defoliation is an inevitable abiotic stress for forage and turf grasses because harvesting,
grazing, and mowing are general processes for their production and management. Vegetative
regrowth occurs upon defoliation, a crucial trait determining the productivity and persistence of
these grasses. However, the information about the molecular regulation of this trait is limited because
it is still challenging to perform molecular analyses in forage and turf grasses. Here, we used
rice as a model to investigate vegetative regrowth upon defoliation at physiological and molecular
levels. This study analyzed stubble and regrown leaves following periodic defoliation using two
rice varieties with contrasting regrowth vigor. Vigorous regrowth was associated with maintained
chlorophyll content and photosystem II performance; a restricted and promoted mRNA accumulation
of sucrose synthase (SUS) I and III subfamilies, respectively; and reduced enzymatic activity of SUS.
These results suggest that critical factors affecting vegetative regrowth upon defoliation are de novo
carbohydrate synthesis by newly emerged leaves and proper carbohydrate management in leaves
and stubble. Physiological and genetic analyses have demonstrated that the reduced sensitivity to
and inhibited biosynthesis of cytokinin enhance regrowth vigor. Proper regulation of these metabolic
and hormonal pathways identified in this study can lead to the development of new grass varieties
with enhanced regrowth vigor following defoliation.
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1. Introduction

Defoliation is the premature removal of leaves by cutting or grazing, an inevitable
abiotic stress for forage and turf grasses. Upon defoliation, new leaves emerge from
the remaining stubble, defined as vegetative regrowth, a critical trait influencing the
productivity and persistence of these grasses. Many physiological studies have been
performed to elucidate the regulation of this commercially important trait. Defoliation
eliminates most photosynthetic tissues, substantially reducing or even shutting down
carbohydrate production by photosynthesis. In this situation, the emergence of new
leaves depends on carbohydrate reserves in bermudagrass (Cynodon dactylon), perennial
ryegrass (Lolium perenne), and tall fescue (Festuca arundinacea) [1–3]. The amount of
stubble left after defoliation reflects the level of carbohydrate reserves, a critical factor
affecting regrowth vigor. In orchardgrass (Dactylis glomerata), perennial ryegrass, and
timothy (Phleum pratense), low cutting height (i.e., intensive defoliation) resulted in
significant decreases in vegetative regrowth, relative to high cutting height (i.e., moderate
defoliation) [4,5].

In addition to carbohydrates stored before defoliation, those newly synthesized in
emerged leaves also play a critical role in regrowth vigor. Radioactive tracer experiments
in perennial ryegrass revealed that leaf elongation upon defoliation relied on carbohydrate
reserves only in the initial regrowth stage (0–3 days after defoliation), and carbohydrates
newly synthesized in emerged leaves were significant for vegetative regrowth 3 days or
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more after defoliation [6]. The dependence of vegetative regrowth on carbohydrates stored
in the remaining tissues may be linked to the amount of photosynthetic tissues left after
defoliation. When less than 65% of the leaf area was removed from perennial ryegrass,
defoliated plants did not need the recruitment of carbohydrate storage compounds to
growing leaves [7]. Thus, when sufficient photosynthetic tissues remain in defoliated
plants, carbohydrate reserves are not utilized to support vegetative regrowth.

Molecular studies have uncovered various regulatory mechanisms underlying plant
growth and development. However, molecular approaches have been rarely utilized for
vegetative regrowth because plant species used to investigate vegetative regrowth are not
suitable for molecular studies. Generally, forage and turf grasses have self-incompatibility,
polyploidy, limited mutant collections, and/or inadequate molecular information/tools,
which are major barriers to molecular analyses [8–10].

In the present study, we used rice (Oryza sativa L.) as a model to investigate vegetative
regrowth after defoliation. Rice has been used as a model, enhancing our understanding
of the biology in grasses [11,12]. Unlike other annual cereals, rice has a relatively strong
regrowth vigor, allowing farmers to harvest a second crop from a single plant [13,14]. Rice
is suitable for molecular studies because this grass has self-compatibility, a small genome
with high-quality sequences and annotations, a wealth of mutant collections, and various
molecular information/tools [15–17]. These characteristics make it possible to dissect
regulatory mechanisms of vegetative regrowth upon defoliation at the molecular level,
unfeasible for forage and turf grasses. We hypothesize that regrowth vigor is regulated
by the proper management of carbohydrate breakdown and photosynthesis. We also
evaluated the involvement of cytokinin in vegetative regrowth. These hypotheses were
tested by a combination of physiological and molecular approaches, shedding new insights
into the underlying mechanism of the critical but understudied trait in grasses.

2. Results
2.1. Vegetative Regrowth after Periodic Defoliation in Rice

This study investigated the degree of vegetative regrowth after periodic defoliation
in two rice varieties, Koshihikari and Takanari, in the vegetative stage (Figure 1a). Koshi-
hikari is a premium japonica cultivar with superior eating quality and sticky texture [18].
Koshihikari is not recognized as a high-yielding variety. Takanari is an indica cultivar that
exhibited the highest yield record in Japan [19]. Takanari is not categorized into high-
eating-quality varieties. Koshihikari and Takanari were used as parental lines to establish
reciprocal Chromosome Segment Substitution Lines (CSSLs) [19], which facilitate the iden-
tification of chromosomal segments associated with regrowth vigor after defoliation. In
every cutting cycle, the dry weight and area of harvested leaves were more significant in
Takanari than in Koshihikari (Figures 1b and S1a), indicating that Takanari exhibited a
greater regrowth vigor. The effect of cutting height and interval on vegetative regrowth was
assessed in Takanari and Koshihikari. Plants cut to 2.5 cm displayed a lower dry weight
and area of harvested leaves than those cut to 5 cm in both Takanari and Koshihikari in each
cutting cycle (Figures 1c and S1b), suggesting that the size of stubble positively correlates
with the degree of vegetative regrowth upon defoliation. Regarding cutting frequency,
plants cut in a 4-day interval showed a lower dry weight of harvested leaves than those cut
in a 7-day interval in both varieties in all cutting cycles (Figure 1d), although this trend was
observed only in the fourth regrowth cycle when the area of harvested leaves was analyzed
(Figure S1c). These data indicate that the length of a cutting interval is also linked with the
degree of vegetative regrowth.



Int. J. Mol. Sci. 2024, 25, 5070 3 of 16Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. Regrowth vigor after defoliation in rice. (a) Photos of rice plants regrown after defoliation. 

Plants were exposed to weekly clipping at 5 cm cutting height and regrown for 7 days. K, Koshihi-

kari; T, Takanari. (b) Relative regrowth of Koshihikari and Takanari after defoliation cycles. Relative 

regrowth was calculated by comparison with the dry weight of leaves clipped at the first defoliation 

in each variety. The data represent means ± SE from four replicates. Asterisks indicate significant 

differences between the two varieties (t-test; * p < 0.05, ** p < 0.01, *** p < 0.001). (c) Relative regrowth 

of Koshihikari and Takanari after defoliation at 5 or 2.5 cm cutting height. Plants were exposed to 

defoliation cycles every 7 days at distinct cutting heights. (d) Relative regrowth of Koshihikari and 

Takanari after defoliation at a 7- or 4-day interval. Plants were exposed to defoliation cycles at 5 cm 

cutting height at distinct regrowth intervals. In (c,d), Data represent means ± SE from four replicates. 

Bars not sharing the same letter significantly differ in each defoliation cycle (ANOVA followed by 

Tukey HSD test; p < 0.05). 

2.2. Carbohydrate Management in Rice Exposed to Periodic Defoliation 

Clipping at 2.5 and 5 cm cutting heights eliminates all leaf blades in rice, thus result-

ing in the loss of photosynthetic tissues. In this situation, defoliated rice relies on carbo-

hydrate reserves in the remaining stubble as energy sources for vegetative regrowth. Short 

cutting height significantly reduced regrowth vigor upon defoliation (Figures 1c and S1b), 

supporting the idea that carbohydrate reserves in the stubble are vital for vegetative re-

growth. To monitor the content of carbohydrate reserves in leaves and stubble over the 

cutting–regrowth cycles, total soluble carbohydrates and starch were quantified in these 

tissues of plants exposed to periodic defoliation (5 cm cutting height and 7 d interval) 

(Figure 2). In leaves and stubble, the levels of total soluble carbohydrates were considera-

bly more significant than those of starch. The total soluble carbohydrates in leaves were 

Figure 1. Regrowth vigor after defoliation in rice. (a) Photos of rice plants regrown after defoliation.
Plants were exposed to weekly clipping at 5 cm cutting height and regrown for 7 days. K, Koshihikari;
T, Takanari. (b) Relative regrowth of Koshihikari and Takanari after defoliation cycles. Relative
regrowth was calculated by comparison with the dry weight of leaves clipped at the first defoliation
in each variety. The data represent means ± SE from four replicates. Asterisks indicate significant
differences between the two varieties (t-test; * p < 0.05, ** p < 0.01, *** p < 0.001). (c) Relative regrowth
of Koshihikari and Takanari after defoliation at 5 or 2.5 cm cutting height. Plants were exposed to
defoliation cycles every 7 days at distinct cutting heights. (d) Relative regrowth of Koshihikari and
Takanari after defoliation at a 7- or 4-day interval. Plants were exposed to defoliation cycles at 5 cm
cutting height at distinct regrowth intervals. In (c,d), Data represent means ± SE from four replicates.
Bars not sharing the same letter significantly differ in each defoliation cycle (ANOVA followed by
Tukey HSD test; p < 0.05).

2.2. Carbohydrate Management in Rice Exposed to Periodic Defoliation

Clipping at 2.5 and 5 cm cutting heights eliminates all leaf blades in rice, thus resulting
in the loss of photosynthetic tissues. In this situation, defoliated rice relies on carbohydrate
reserves in the remaining stubble as energy sources for vegetative regrowth. Short cutting
height significantly reduced regrowth vigor upon defoliation (Figures 1c and S1b), supporting
the idea that carbohydrate reserves in the stubble are vital for vegetative regrowth. To mon-
itor the content of carbohydrate reserves in leaves and stubble over the cutting–regrowth
cycles, total soluble carbohydrates and starch were quantified in these tissues of plants
exposed to periodic defoliation (5 cm cutting height and 7 d interval) (Figure 2). In leaves
and stubble, the levels of total soluble carbohydrates were considerably more significant
than those of starch. The total soluble carbohydrates in leaves were greater in Takanari
than in Koshihikari in the 1st and 3rd regrowth cycles (Figure 2a). In contrast to leaves, the
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content of total soluble carbohydrates in stubble was larger in Koshihikari than in Takanari
in most regrowth cycles. The starch content in leaves was more significant in Koshihikari
than in Takanari only during the 2nd regrowth cycle (Figure 2b). The same trend was
observed in stubble before defoliation. It appears that leaves and stubble have distinct
roles in carbohydrate accumulation. In leaves, the total soluble carbohydrates and starch
levels remained stable over the regrowth cycles. However, in stubble, the contents of both
carbohydrate reserves declined by defoliation.
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Figure 2. The amount of carbohydrate reserves in leaves and stubble of rice plants exposed to
periodic defoliation (5 cm cutting height, 7 d interval). Total soluble carbohydrates (a) and starch
(b) were quantified in leaves and stubble in each defoliation cycle. Data represent means ± SE from
three replicates. Asterisks indicate significant differences between the two varieties (t-test; * p < 0.05,
** p < 0.01).

2.3. Gene Expression and Activities of Enzymes Associated with Carbohydrate Management in
Rice Exposed to Periodic Defoliation

Sucrose is the end product of photosynthesis and the primary sugar reserved and
transported in vegetative tissues of rice [20,21]. Sucrose synthase is a crucial enzyme for
sucrose degradation and is recognized as a biochemical marker for sink strength [22]. The
rice genome encodes seven sucrose synthase genes (SUSs). In this study, we monitored
the mRNA accumulation of all sucrose synthase genes in leaves and stubble over periodic
defoliation.

Because SUS5 has a 99.6% similarity with SUS7 in terms of nucleotide sequences,
gene-specific primers distinguishing these SUSs could not be designed. Therefore, the
mRNA accumulation of these genes was analyzed using a single primer pair recognizing
both transcripts. In leaves, SUS1, SUS2, SUS3, and SUS4 mRNAs were highly accumulated
in Koshihikari, relative to Takanari, in some regrowth cycles (Figure 3a). The other SUS
genes, SUS5 and SUS6, were considerably expressed in Takanari, compared to Koshihikari,
over periodic defoliation. Similar to leaves, SUS1, SUS2, and SUS3 mRNAs in stubble are
more highly expressed in Koshihikari than in Takanari, although no differences in SUS4
mRNA levels between the two varieties were detected (Figure 3b). The transcript levels of
SUS5 and SUS6 in stubble were greater in Takanari than in Koshihikari, consistent with the
results in leaves.

The enzymatic activity of sucrose synthase was determined in the direction of sucrose
degradation in leaves and stubble of rice plants exposed to periodic defoliation (Figure 3c).
In leaves, the sucrose synthase activity was considerably higher in Koshihikari than in
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Takanari in every regrowth cycle. The same trend was observed in stubble only before
defoliation and in the first regrowth cycle.
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3c). In leaves, the sucrose synthase activity was considerably higher in Koshihikari than 

Figure 3. Gene expression and enzymatic activity of sucrose synthase in leaves and stubble of rice
plants exposed to periodic defoliation (5 cm cutting height, 7 d interval). Relative mRNA levels of
genes encoding sucrose synthase were assessed by quantitative RT-PCR in leaves (a) and stubble
(b) in each defoliation cycle. Relative mRNA levels were calculated by comparison with the level in
Koshihikari on day 0 (set at 1.0). (c) The enzymatic activity of sucrose synthase was assayed in leaves
and stubble in each defoliation cycle. Data represent means ± SE from three replicates. Asterisks
indicate significant differences between the two varieties (t-test; * p < 0.05, ** p < 0.01, *** p < 0.001).

Although rice accumulates sucrose rather than starch in leaves, starch is still a critical
carbohydrate storage [23]. Among the enzymes involved in starch breakdown, α-amylases
are the major ones, and the rice genome contains 11 α-amylase genes (AMYs) [24,25]. In the
present study, seven AMY genes expressed in leaves and stubble were analyzed for their
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expression levels in rice plants exposed to periodic defoliation. All AMY genes surveyed
in leaves were highly expressed in Koshihikari, relative to Takanari, before defoliation or
during at least one defoliation cycle (Figure 4a). In stubble, this trend was observed in
AMY2A, AMY3C, AMY3D, AMY4A, and AMY5A (Figure 4b). The mRNA abundance of
AMY3A was higher in Takanari than in Koshihikari in the third regrowth cycle.
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Figure 4. Gene expression and enzymatic activity of α-amylase in leaves and stubble of rice plants
exposed to periodic defoliation (5 cm cutting height, 7 d interval). Relative mRNA levels of genes
encoding α-amylase were assessed by quantitative RT-PCR in leaves (a) and stubble (b) in each
defoliation cycle. Relative mRNA levels were calculated by comparison with the level in Koshihikari
on day 0 (set at 1.0). (c) Enzymatic activity of α-amylase was assayed in leaves and stubble in each
defoliation cycle. Data represent means ± SE from three replicates. Asterisks indicate significant
differences between the two varieties (t-test; * p < 0.05, ** p < 0.01, *** p < 0.001).

Regarding the enzymatic activity of α-amylase, no differences between the two vari-
eties were detected in leaves (Figure 4c). In stubble, however, Takanari displayed a higher
α-amylase activity than Koshihikari at most time points.

2.4. Effect of Photosynthesis on Vegetative Regrowth upon Defoliation in Rice

To evaluate the effect of photosynthesis on vegetative regrowth, plants grown under
regular growth conditions were defoliated and subsequently recovered under 12 h light
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and 12 h dark cycles (regular growth conditions) or constant darkness (Figure 5). Constant
darkness drastically repressed the vegetative regrowth of both varieties after the first defo-
liation as compared to light–dark cycles (Figure 5a,b). Under light–dark cycles, Takanari
exhibited more vigorous regrowth than Koshihikari. Conversely, under constant darkness,
Koshihikari showed active regrowth relative to Takanari. Upon the second defoliation,
leaves did not emerge from the stubble in either variety under constant darkness. These ob-
servations support the notion that photosynthesis by regrown leaves is vital for vegetative
regrowth upon defoliation.
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Figure 5. Vegetative regrowth after periodic defoliation (5 cm cutting height, 7 d interval) in rice under
light-dark cycles and constant darkness. (a) Photos of rice plants regrown after weekly defoliation
under light-dark cycles and constant darkness. K, Koshihikari; T, Takanari. (b) Relative regrowth of
rice plants exposed to weekly defoliation under light-dark cycles and constant darkness. Relative
regrowth was calculated by comparison with the dry weight of leaves clipped at the first defoliation
in each variety. Data represent means ± SE from four replicates. Asterisks indicate significant
differences between the two varieties (t-test; *** p < 0.001). The amount of total soluble carbohydrates
(c) and starch (d) in stubble of rice plants exposed to defoliation under light-dark cycles and constant
darkness. This experiment did not analyze leaves because sufficient leaves did not emerge from the
stubble under constant darkness. Data represent means ± SE from three replicates. Asterisks indicate
significant differences between the two light conditions (t-test; * p < 0.05, ** p < 0.01, *** p < 0.001).

The levels of carbohydrate reserves were monitored in the stubble of rice plants
exposed to periodic defoliation under light–dark cycles and constant darkness. In this
experiment, leaves were not subjected to carbohydrate assays because sufficient leaves did
not emerge under constant darkness. Constant darkness promoted the consumption of total
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soluble carbohydrates and starch in stubble of both accessions (Figure 5c,d). Interestingly,
reductions in total soluble carbohydrates and starch under constant darkness were more
evident in Koshihikari than in Takanari. These data are consistent with the observation that
Koshihikari displayed more active regrowth than Takanari under constant darkness.

To further examine the significance of photosynthesis in vegetative regrowth, we
investigated the photosynthetic capability of regrown leaves in rice exposed to periodic
defoliation (Figure 6). The amount of chlorophyll in leaves was not different between
Koshihikari and Takanari before defoliation, but it was significantly higher in Takanari
than in Koshihikari in every regrowth cycle. Regarding photosystem II performance, the
effective quantum yield of photosystem II (ΦPSII) in leaves was more significant in Takanari
than in Koshihikari before defoliation, and this trend was continuously observed in the
first regrowth cycle. Photochemical quenching (qP) was also higher in Takanari than in
Koshihikari in the first regrowth cycle. These data suggest that photosynthetic capability is
associated with regrowth vigor, especially in the early stage of periodic defoliation.
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Figure 6. The chlorophyll content and chlorophyll fluorescence in leaves of rice plants exposed to
periodic defoliation (5 cm cutting height, 7 d interval). The chlorophyll content was quantified using
leaf tissues clipped weekly. The effective quantum yield of photosystem II (ΦPSII) and photochemical
quenching (qP) were measured in the uppermost leaves of plants recovered for 7 days. Data represent
means ± SE from three replicates for the chlorophyll content and six replicates for ΦPSII and qP.
Asterisks indicate significant differences between the two varieties (t-test; * p < 0.05, ** p < 0.01,
*** p < 0.001).

2.5. Effect of Cytokinin on Vegetative Regrowth after Defoliation in Rice

Most traits involved in plant growth and development are regulated by phytohor-
mones. Vegetative regrowth is also a growth-related trait that a phytohormone would
promote or suppress. Of various hormones, cytokinin regulates shoot apical meristem
(SAM) activity, energy metabolism, and transport [26,27], a strong candidate for controlling
vegetative regrowth upon defoliation. To evaluate the influence of cytokinin in vegetative
regrowth, a synthetic cytokinin, 6-benzyl adenine (6-BA), was sprayed on rice plants ex-
posed to periodic defoliation. The exogenous application of 6-BA suppressed regrowth
vigor, especially in Koshihikari (Figure 7a). Significant reductions in vegetative regrowth
were observed in Takanari only when 200 µM 6-BA was sprayed, but 100 µM 6-BA was
sufficient for hampered regrowth in Koshihikari. To assess the sensitivity of the two va-
rieties to 6-BA more accurately, percent reductions in vegetative regrowth by 6-BA were
compared between the two varieties (Figure 7b). At both 100 and 200 µM 6-BA, vegetative
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regrowth in Koshihikari was more significantly suppressed than Takanari, indicating that
Koshihikari is more sensitive to cytokinin than Takanari.
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Figure 7. Effect of cytokinin on vegetative regrowth after periodic defoliation. (a) Fourteen-day-old
plants were exposed to weekly clipping at 5 cm cutting height and regrown for 7 days. The defoliation-
regrowth cycles were repeated four times. Upon the initial defoliation, mock, 100, or 200 µM 6-benzyl
adenine (6-BA; a synthetic cytokinin) was sprayed to plants daily until the end of the 4th regrowth.
Data represent means ± SE from four replicates. Asterisks indicate significant differences between
mock and 6-BA-treated samples (t-test; * p < 0.05, ** p < 0.01, *** p < 0.001). (b) Percent reduction in
relative regrowth by 6-BA treatment was calculated by dividing the relative regrowth of 6-BA (100
or 200 µM) treated plants by the relative regrowth of mock-treated plants in each defoliation cycle.
Data represent means ± SE from four replicates. Asterisks indicate significant differences between
the two varieties (t-test; * p < 0.05, ** p < 0.01, *** p < 0.001). (c) Fourteen-day-old plants were exposed
to weekly clipping at 5 cm cutting height and regrown for 7 days. The defoliation-regrowth cycles
were repeated three times. log-6 is a loss-of-function mutant of LONELY GUY, a cytokinin-activating
enzyme, in the Nipponbare background. Data represent means ± SE from four replicates. Asterisks
indicate significant differences between the two lines (t-test; *** p < 0.001).

Exogenous cytokinin application reduced vegetative regrowth upon defoliation, indi-
cating that cytokinin is a negative regulator for this trait. To further support this notion,
a cytokinin biosynthesis mutant, lonely guy-6 (log-6), was exposed to periodic defoliation
(Figure 7c). LOG is a phosphoribohydrolase-activating enzyme that converts a cytokinin
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nucleotide to an active free-base form of cytokinins in the final step of cytokinin synthesis.
The rice log-6 mutant lacks the ability to synthesize bioactive cytokinins [28]. The present
study showed that weekly defoliation gradually reduced vegetative regrowth in wild-type
Nipponbare. However, log-6 maintained regrowth vigor during periodic defoliation cycles.
This result is in accordance with the observation that exogenous cytokinin application
reduced vegetative regrowth. Altogether, it is concluded that cytokinin can serve as a
negative regulator for vegetative regrowth upon defoliation.

3. Discussion

Vegetative regrowth upon defoliation is a major agronomical trait that substantially
influences the yield and persistence of forage and turf grasses. However, molecular as-
pects of vegetative regrowth remain unclear, because self-incompatibility, polyploidy, and
limited molecular information and tools make it difficult to investigate these grasses at
the molecular level [8–10]. In this study, we applied rice as a model to study vegetative
regrowth upon defoliation because this grass species has diverse regrowth vigor among
varieties, self-compatibility, small genome size, and a wealth of molecular information and
tools [15–17].

A short cutting height (2.5 cm) significantly reduced vegetative regrowth upon de-
foliation in Takanari and Koshihikari relative to a long cutting height (5 cm) (Figures 1c
and S1b). These results reflect that the abundance of energy reserves in stubble, including
soluble carbohydrates and starch, affects regrowth vigor as observed in other forage and
turf grasses [1–3]. Total soluble carbohydrate and starch levels in stubble reduced over
the defoliation–regrowth cycles, whereas these carbohydrate reserves remained stable in
leaves, which can generate carbohydrates by photosynthesis (Figure 2). It appears that
the abundance of total soluble carbohydrates and starch in stubble dropped more signifi-
cantly in Koshihikari than in Takanari, which is inconsistent with the degree of vegetative
regrowth in these varieties (Figures 1b, 2 and S1a). Reductions in carbohydrate reserves
do not necessarily indicate the degree of carbohydrate consumption, because this analysis
merely determines the steady-state levels of carbohydrate reserves. Vigorous vegetative
regrowth in Takanari may be attributable to high carbohydrate consumption, which is
allowed by high carbohydrate production via photosynthesis, relative to Koshihikari. A
more abundant chlorophyll content and higher photosystem II performance in Takanari
than in Koshihikari (Figure 6) support this notion. The constant-darkness experiments
verified the significance of photosynthesis in vegetative regrowth (Figure 5). These results
emphasize that photosynthesis by newly emerged leaves plays a pivotal role in vegeta-
tive regrowth. Overall, it is likely that vigorous vegetative regrowth in Takanari results
from active photosynthesis by newly emerged leaves, which may allow high carbohydrate
consumption.

Unlike forage and turf grasses, high-quality, well-annotated genome sequences are
available in rice. Taking advantage of the genomic information in the model species,
we surveyed the complete set of sucrose synthase genes regarding mRNA accumulation
(Figure 3). In plants, sucrose synthase genes are classified into three subfamilies based on
phylogenetic analysis [22]. In rice, SUS1, SUS2, and SUS3 belong to the SUS I subfamily.
SUS4 is the sole member of the SUS II subfamily. SUS5, SUS6, and SUS7 are members of
the SUS III subfamily. In the present study, all SUS I gene transcripts (SUS1-3) tended to be
highly accumulated in leaves and stubble of Koshihikari, relative to Takanari. On the other
hand, the SUS III gene sub-family (SUS5-7) exhibited higher expression in Takanari than
in Koshihikari at most time points. These data have demonstrated that the reduced SUS I
mRNA and increased SUS III mRNA levels positively correlate with vigorous regrowth
upon defoliation. The antithetical regulation of SUS I and SUS III gene expression may be
crucial for fine-tuning sucrose synthase activity and carbohydrate management in leaves
and stubble of defoliated plants.

Surveying the expression patterns of all sucrose synthase genes in Arabidopsis re-
vealed that the SUS III subfamily (AtSUS5 and AtSUS6) was expressed only in specific
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tissues, whereas the SUS I and SUS II subfamilies exhibited broader expressions [22]. The
intron/exon structures of SUS III genes were also unique compared with those of SUS
I and SUS II. Regarding protein accumulation, the Arabidopsis SUS III subfamily was
specifically present in the phloem [29]. These data imply that the rice SUS III subfamily
may also be expressed in the phloem, contributing to increased sink strength [21]. Indeed,
a higher accumulation of SUS III subfamily mRNAs in Takanari than in Koshihikari over
the defoliation–regrowth cycles is associated with more active regrowth vigor following
defoliation (Figures 1 and 3).

We also investigated the mRNA accumulation of all α-amylase genes expressed in
vegetative tissues (Figure 4). The rice genome encodes 11 α-amylase genes (AMY1A,
AMY1B, AMY1C, AMY2A, AMY3A, AMY3B, AMY3C, AMY3D, AMY3E, AMY4A, and
AMY5A), which are categorized into five subfamilies (AMY1-5) [24,25]. The tissue and
organ specificity of AMY gene expression is not linked with subfamilies [24]. The present
study investigated the mRNA accumulation of all AMY genes expressed in leaves and
stubble (Figure 4). The transcript accumulation of several AMY genes in leaves was more
abundant in Koshihikari than in Takanari at many time points, but the α-amylase activity
was not significantly different between the two varieties over the regrowth cycles. A similar
trend was also observed in stubble. These data imply that α-amylase activity may not
be regulated at the mRNA accumulation level. Cereal seeds, including rice, contain α-
amylase inhibitors, likely to regulate seed development and germination [30,31]. A similar
mechanism may be involved in regulating starch catabolism in vegetative tissues.

Cytokinin regulates growth, metabolism, nutrient absorption, and transport [26,27],
all of which appear to be linked with regrowth vigor upon defoliation. The relationship
between cytokinin and regrowth has been investigated in forage and turf grasses. In
perennial ryegrass (Lolium perenne), defoliation decreased the concentrations of bioactive
cytokinins such as trans-zeatin (tZ) and trans-zeatin riboside (tZR) but increased the
content of another cytokinin form, cis-zeatin (cZ), in leaf sheaths [32]. In annual ryegrass
(L. multifolorum), the first defoliation increased the concentrations of ZR in new leaves and
stubble, but continuous defoliation decreased the ZR levels in both tissues [19]. Based on
these results, it is still unclear whether defoliation increases or decreases bioactive cytokinin
levels. The effect of cytokinin on vegetative regrowth is also ambiguous. Indeed, it was
shown that the exogenous application of a synthetic cytokinin, 6-BA, increased vegetative
regrowth in annual ryegrass relative to the non-spray controls [33]. Conversely, 6-BA spray
reduces the biomass of newly emerged leaves in annual ryegrass, depending on the time
of the spray [34]. These two studies also differed in the frequency of 6-BA spray and
plant age. Collectively, these results demonstrate that the effect of defoliation on cytokinin
accumulation and the impact of cytokinin application on vegetative regrowth depend on
plant age, frequency of defoliation, and frequency and time of cytokinin application.

The contradictory effect of cytokinin on shoot growth and physiology has been rec-
ognized in non-defoliated rice and other plants. Generally, cytokinin increases shoot cell
growth, chlorophyll accumulation, and photosynthetic activity [26,27]. However, loss-of-
function mutations of DECUSSATE in rice and ABERRANT PHYLLOTAXY1 in maize, both
of which are positive regulators for cytokinin signaling, increased the size of SAMs with
enhanced cell division activity even though cytokinin signaling was inhibited [35–37]. It is
anticipated that the role of cytokinin in shoot growth and physiology is determined by cell
phases at which cytokinin accumulation is promoted. When cytokinins were induced in the
cell expansion phase through upregulation of the agrobacterial isopentenyl transferase gene
(ipt) and downregulation of the barley cytokinin oxidase/ dehydrogenase gene (HvCKX2)
by a chemically inducible promoter, the leaf size, chlorophyll content, and photosynthetic
activity increased in Arabidopsis [38]. In contrast, cytokinin excess in the cell division
phase suppressed cell expansion, chlorophyll biogenesis, and photosynthesis. The present
study demonstrates that cytokinin can serve as a negative regulator for vegetative regrowth
upon defoliation (Figure 7). These data were obtained from plants exposed to cytokinin
daily and mutants in which cytokinin biosynthesis is constitutively inhibited. In addition,
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these plants were subjected to periodic defoliation for 3–4 weeks. Under these conditions,
cytokinin can first promote the growth of elongating leaves because most leaf cells are
in the expansion phase. However, after the maturity of the elongating leaves, cytokinin
suppresses the growth of the next and following leaves because the majority of leaf cells
are in the cell division phase. Altogether, these data imply that properly regulating cy-
tokinin levels in the cell division and expansion phases in shoots is necessary for enhanced
vegetative regrowth upon defoliation.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Rice (Oryza sativa L.) cv. Koshihikari, Takanari, and Nipponbare were used for this
study. A log-6 knockout mutant in the Nipponbare background, which does not synthesize
active cytokinin, was also analyzed in this study [28]. Seeds were sterilized in 3% (w/v)
sodium hypochlorite and 0.1% (v/v) Tween-20 for 10 min and rinsed thoroughly with
water. Sterilized seeds were germinated on wet paper towels for 5 days at 28 ◦C under 12 h
light (270 µmol/m2/s; fluorescent tubes, FL40S-W R F3, Panasonic, Osaka, Japan) and 12 h
dark cycles in an incubator. Seedlings were transplanted into pots (W × L × H = 92 mm ×
92 mm × 82 mm) containing a pre-fertilized soil mix (Kumiai rice seedling soil, No. 3,
Takara Industry, Gunma, Japan) with 9 seedlings per pot. Plants were grown at 28 ◦C under
12 h light (400 µmol/m2/s; LED lamps, HS180W/BGR001, Espec Mic, Osaka, Japan) and
12 h dark cycles in a growth chamber. Pots were placed in containers filled with water,
and water was supplied daily on the soil surface using a watering can. Light intensity was
measured by a light meter, LI-250A, equipped with a quantum sensor, LI-190R (LI-COR
Biosciences, NE, USA).

After 14 days, plants were cut to 2.5 or 5 cm above the soil surface with scissors at
midday and allowed to regrow for 4 or 7 days in a growth chamber under the conditions
described above. Weekly defoliation–regrowth cycles were repeated up to four times. In
each cycle, defoliated leaves and stubble were harvested, immediately frozen in liquid
nitrogen, and stored at −80 ◦C until use. For some experiments, defoliated leaves and
stubbles in the third or fourth regrowth cycle could not be analyzed, because sufficient
tissues were not obtained for biochemical and photosynthesis analyses.

4.2. Carbohydrate Assays

Total soluble carbohydrates were quantified using the method of [39]. Frozen tissues
(50 mg) were homogenized in 1 mL of 80% (v/v) ethanol and incubated at 80 ◦C for 20 min.
Following centrifugation, the supernatant was transferred to a new tube. The extraction
process was repeated twice more, with the three extracts combined and dried under a
vacuum. After rehydration in 1 mL of water, total soluble carbohydrates were determined
by the anthrone method, with glucose as the standard [20]. The extract (25 µL) was mixed
with 1 mL of 0.14% (w/v) anthrone solution in 100% sulfuric acid. Following the reaction at
100 ◦C for 20 min, A620 of the solution was determined with a spectrophotometer.

The starch content was assayed by the method of [40]. The pellet obtained after
ethanol extraction was washed with water and resuspended in 1 mL of water containing
10 units of heat-resistant α-amylase. The suspension was incubated at 95 ◦C for 15 min.
After cooling, 25 µL of 1 M sodium citrate (pH 4.8) and 5 units of amyloglucosidase were
added to the suspension. Following incubation at 55 ◦C for 1 h, the reaction mixture was
centrifuged for 30 min, and the supernatant (100 µL) was subjected to the anthrone assay
as described above.

4.3. Quantitative RT-PCR Analysis

Total RNA was extracted from frozen tissues (100 mg) using an RNeasy Plant Mini
kit (Qiagen, Hilden, Germany). Genomic DNA was eliminated by on-column digestion
using DNase I (Qiagen). cDNA (20 µL) was synthesized from 1 µg of total RNA using
a PrimeScript RT reagent kit (Takara Bio, Shiga, Japan). Oligo dT was used as a primer.
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Real-time PCR was performed in a 15 µL reaction using FastStart Essential DNA Green
Master (Roche, Basel, Switzerland) in the LightCycler 96 System (Roche). Amplification
specificity was validated by melt-curve analysis at the end of each PCR cycle. Relative tran-
script abundance was calculated using the comparative cycle threshold method. ACTIN1
(Os03g0718100) and UBIQUITIN1 (Os06g0681400) were used as normalization controls.
Sequences and annealing temperatures of primer pairs are listed in Table S1.

4.4. Enzyme Assays

The sucrose synthase activity was assayed in the sucrose cleavage direction by mea-
suring the UDP-dependent production of fructose with the enzymatic determination of
fructose. Frozen tissue (50 mg) was homogenized in 0.4 mL of cold extraction buffer
containing 100 mM HEPES-KOH (pH 7.5), 1 mM ethylenediaminetetraacetic acid (EDTA),
5 mM MgCl2, 5 mM dithiothreitol, 10 mM NaHSO3, and 1 mM phenazine methosulfate.
Following centrifugation for 20 min at 4 ◦C, the supernatant was desalted with a PD Mini-
Trap G-25 desalting column (Cytiva, MA, USA) equilibrated with the extraction buffer
(2 mL per sample) at 4 ◦C. A reaction mixture (450 µL) containing 50 mM HEPES-KOH (pH
7.0), 2 mM MgCl2, 1 mM EDTA, 15 mM KCl, 25 mM sucrose, and 1 mM UDP was mixed
with 50 µL of the desalted extract and incubated at 30 ◦C for 30 min. For blank reactions,
UDP was omitted from the reaction mixture. The reaction was stopped by heating at 100 ◦C
for 2 min. Fructose was quantified enzymatically by coupling to the reduction of NADP+.
The reaction mixture (400 µL) was combined with the assay buffer (600 µL) containing
50 mM HEPES-KOH (pH 7.0), 8 mM MgCl2, 1.5 mM ATP, 2 mM NADP+, 1 U/mL of
hexokinase, 4 U/mL of phosphoglucose isomerase, and 1 U/mL of Glucose-6-phosphate
dehydrogenase and incubated at 30 ◦C for 15 min. After the reaction, A340 was measured
using a spectrophotometer. One unit of sucrose synthase is defined as the amount of
enzyme required to release 1 µmol of fructose in 1 min.

The activity of α-amylase was determined using an α-amylase assay kit (Kikkoman,
Tokyo, Japan). Frozen tissue (50 mg) was homogenized in 400 µL of a cold extraction buffer
containing 50 mM sodium acetate (pH 5.3) and 0.5 mM CaCl2. The extract was slowly
agitated at 4 ◦C for 3 h. The homogenate was centrifuged twice at 4 ◦C for 15 min. The
supernatant (90 µL) was added to a reaction mixture containing 150 µL of the substrate
solution and 150 µL of the enzyme solution in the kit. The mixture was incubated at 37 ◦C
for 20 min, and the reaction was stopped by adding 600 µL of the stop solution. A400 of the
reaction was measured using a spectrophotometer. One unit of α-amylase is defined as the
amount of enzyme required to release 1 µmol of 2-chloro-4-nitrophenol (CNP) in 1 min.

4.5. Chlorophyll Content and Fluorescence Measurements

Chlorophyll content was quantified from 50 mg of defoliated leaves in 5 mL of 100%
methanol, as described by [41]. Following centrifugation at 4 ◦C for 20 min, A652.0 and
A665.2 of the supernatant were measured with a spectrophotometer.

Chlorophyll fluorescence was determined on the fully opened, uppermost leaves of
regrown plants using a portable chlorophyll fluorometer (MINI-PAM-II; WALZ, Effeltrich,
Germany) equipped with a leaf-chip holder. Following a 30 min dark adaptation using a
dark leaf clip, leaves were exposed to continuous actinic light (1500 µmol/m2/s) for 5 min,
and then chlorophyll fluorescence parameters were determined. The effective quantum
yield of photosystem II photochemistry (ØPSII) and photochemical quenching (qP) were
calculated as (F′

m − F′)/F′
m and (F′

m − F)/(F′
m − F′

0) [42].

4.6. Cytokinin Response Assays

For cytokinin treatment experiments, Koshihikari and Takanari at 14 days old were
exposed to periodic defoliation as described in Section 4.1. Upon the first defoliation, a
solution containing 100 or 200 µM of a synthetic cytokinin, 6-benzyl adenine (6-BA), in 0.1%
(v/v) dimethyl sulfoxide (DMSO) or mock solution (0.1% (v/v) DMSO) was sprayed onto
plants. Spray treatment was continued on a daily basis until the end of the fourth regrowth
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cycle. For cytokinin biosynthesis mutant analysis, a log-6 knockout mutant [28] and wild-
type (cv. Nipponbare) plants grown for 14 days were subjected to weekly defoliation as
described in Section 4.1. For both cytokinin treatment and mutant analysis, shoot tissues
regrown from defoliated plants were harvested, dried, and weighed.

4.7. Statistical Analyses

Statistical analyses were carried out using SPSS Statistics 23 (IBM, New York, NY, USA).
Student’s t-test was performed to compare two datasets. For multiple mean comparisons,
ANOVA with Tukey’s honest significant test was utilized.

5. Conclusions

This study has confirmed and identified physiological and molecular traits associated
with vegetative regrowth upon defoliation using rice as a model. Such traits include
photosynthesis by newly emerged leaves, a reduced and increased transcript accumulation
of SUS I and SUS III subfamilies, respectively, reduced sucrose synthase activity, and
dampened sensitivity to cytokinin. Most of these traits have been recognized owing to
the usage of rice as plant materials. The data presented here and in past publications
suggest that vital components influencing regrowth vigor are the de novo production
of carbohydrates by newly emerged leaves, the proper management of carbohydrate
reserves in leaves and stubble, and the fine-tuning of cytokinin synthesis and signaling
in shoots. Due to the conserved status of regulatory mechanisms underlying growth and
development within the grass family (Poaceae) [15–17], the findings obtained in this study
can be applicable to identify target genes and marker phenotypes used for the development
of new varieties with enhanced regrowth vigor in forage and turf grasses.
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