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Abstract: Mycoses are one of the major causes of morbidity/mortality among immunocompro-
mised individuals. Considering the importance of these infections, the World Health Organization
(WHO) defined a priority list of fungi for health in 2022 that include Candida albicans as belonging
to the critical priority group and Pichia kudriavzevii (Candida krusei) to the medium priority group.
The existence of few available antifungal drugs, their high toxicity, the acquired fungal resistance,
and the appearance of new species with a broader spectrum of resistance, points out the need for
searching for new antifungals, preferably with new and multiple mechanisms of action. The cyclam
salt H4[H2(4-CF3PhCH2)2Cyclam]Cl4 was previously tested against several fungi and revealed an
interesting activity, with minimal inhibitory concentration (MIC) values of 8 µg/mL for C. krusei
and of 128 µg/mL for C. albicans. The main objective of the present work was to deeply understand
the mechanisms involved in its antifungal activity. The effects of the cyclam salt on yeast metabolic
viability (resazurin reduction assay), yeast mitochondrial function (JC-1 probe), production of reactive
oxygen species (DCFH-DA probe) and on intracellular ATP levels (luciferin/luciferase assay) were
evaluated. H4[H2(4-CF3PhCH2)2Cyclam]Cl4 induced a significant decrease in the metabolic activity
of both C. albicans and C. krusei, an increase in Reactive Oxygen Species (ROS) production, and an
impaired mitochondrial function. The latter was observed by the depolarization of the mitochondrial
membrane and decrease in ATP intracellular levels, mechanisms that seems to be involved in the
antifungal activity of H4[H2(4-CF3PhCH2)2Cyclam]Cl4. The interference of the cyclam salt with
human cells revealed a CC50 value against HEK-293 embryonic kidney cells of 1.1 µg/mL and a
HC10 value against human red blood cells of 0.8 µg/mL.
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1. Introduction

Fungal infections are a public health problem, related with infections that can range
from mild superficial to systemic and opportunistic diseases, with a high degree of as-
sociated mortality [1,2]. The emergence of new species, the rise of resistance, and the
increase in the number of immunosuppressed people susceptible to serious infections,
among other factors, are leading health and research institutions to become more concerned
about this type of infections [1,2]. In 2022, the World Health Organization (WHO) drew
up a document identifying some priority fungi, including Candida albicans (critical group)
and Pichia kudriavzevii (Candida krusei) (medium group) [3]. One of the main factors consid-
ered for the classification was the antimicrobial resistance. Concern about antimicrobial
resistance is also reflected in the WHO’s One Health approach in which the human–animal-
environment trilogy is an interdependent determinant of the health of all others, namely
human health [4].

One of the strategies to try to overcome the problem of antifungal resistance is the
discovery of new molecules with antifungal activity and the potential to be introduced into
therapy, either as monotherapy or in combination with conventional antifungal drugs [5,6].

The antifungal activity of the cyclam salt H4[H2(4-CF3PhCH2)2Cyclam]Cl4 (compound 1),
depicted in Figure 1, was previously studied by some of us and showed the ability to inhibit
the growth of C. krusei and C. albicans [7] and to interfere with the yeasts virulence factors,
as catalase activity, biofilm formation and C. albicans dimorphic transition [8].

Mitochondria are responsible for yeast metabolism and their dysfunction, caused by
drugs, influences viability, proliferation, virulence and drug resistance [9–12]. Thus, mito-
chondria are currently considered a target for the development of antifungal drugs [9,11,12].
The effect of antifungal drugs on mitochondria may include increased permeability, adeno-
sine triphosphate (ATP) alterations, increased reactive oxygen species (ROS) production
and induction of apoptosis [12].

For this reason, the interference of compound 1 on C. krusei and C. albicans mitochon-
dria was studied to elucidate its mechanism of antifungal action.
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Figure 1. Chemical structure of H4[H2(4-CF3PhCH2)2Cyclam]Cl4 (1).

2. Results
2.1. Effects on Yeasts’ Metabolic Activity—Rezazurin Reduction Assay

To evaluate a possible interference of compound 1 in the metabolic activity of both C.
krusei and C. albicans, the resazurin (REZ) reduction assay was performed. As observed
in Figure 2, the compound significantly reduced C. krusei metabolic activity when tested
at 16 µg/mL (2× MIC), with a value of 66.4% when compared with control yeasts (100%).
Regarding C. albicans, compound 1 was able to reduce the metabolic activity in all tested
concentrations, (256 (2× MIC), 128 (MIC) and 64 (MIC/2) µg/mL), significantly decreasing
REZ reduction to 84.4%, 80.9% and 84.3%, respectively (Figure 2).
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Figure 2. Effects of different concentrations of compound 1 on the metabolic activity of (a) Candida
krusei ATCC 6258 and (b) Candida albicans ATCC 10231. Results are presented as Mean + SD from
4 or 5 independent experiments, performed in duplicate. * p < 0.05; ** p < 0.01; *** p < 0.001. MIC,
minimal inhibitory concentration.

2.2. Effects on Yeasts’ Mitochondrial Membrane Potential—JC-1 Assay

The capability of compound 1 to interfere with yeasts mitochondria was evaluated
trough the JC-1 assay, which allows one to evaluate the mitochondrial membrane poten-
tial [13]. JC-1 can selectively enter the mitochondria and reversibly change its colour from
red to green as the membrane potential decreases. At a high concentration of JC-1 (when
∆Ψm is also high), the dye aggregates, yielding a red coloured emission. On the other hand,
when JC-1 is in a low concentration (when ∆Ψm is low), it produces a green fluorescence.
Therefore, the mitochondrial depolarization is indicated by a decrease in the red/green
fluorescence intensity ratio. Indeed, the decrease in the aggregate fluorescent count is
indicative of depolarization, whereas an increase is indicative of hyperpolarization [14].
As represented in Figure 3, compound was capable of significantly reducing mitochon-
drial membrane potential, promoting a depolarization of the mitochondrial membrane.
Regarding C. krusei, compound reduced JC-1 ratio only when tested at the highest concen-
tration (16 µg/mL, i.e., 2× MIC), significantly reducing JC-1 ratio to 84%, when compared
with 100% of control. On the other hand, the compound promoted a mitochondrial mem-
brane depolarization of C. albicans to all tested concentrations, an effect that occurred in
a concentration-dependent manner, significantly decreasing JC-1 ratio values to 29.7%,
36.4% and 63.6% for 256 (2× MIC), 128 (MIC) and 64 (MIC/2) µg/mL, respectively, thus
indicating the ability of compound 1 to significantly induce mitochondrial membrane
depolarization in C. albicans (Figure 3). CCCP (100 µM) was used as a positive control
for mitochondrial membrane depolarization, causing a significant reduction in JC-1 ratio
to 39.9% and 26.1% in Candida krusei and Candida albicans, respectively (Supplementary
Materials—Figure S1).

2.3. Effect on Intracellular ROS Levels Production

Regarding the effects of compound 1 on ROS production, the intracellular levels of
ROS were evaluated after 2 and 6 h of exposure, in the two yeasts, by using the DCFH-DA
probe. After 2 h of incubation, the compound did not promote any significant effects on
C. krusei ROS intracellular levels, but significantly increased ROS intracellular levels on
C. albicans, when tested at the highest concentration (ROS intracellular levels significantly
increased to 163.5%, 2 h after exposure to 256 µg/mL, when compared with 100% of control
yeasts) (Figure 4).
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Figure 3. Effects of different concentrations of compound 1 on the mitochondrial membrane potential
(∆Ψm) of (a) Candida krusei ATCC 6258 and (b) Candida albicans ATCC 10231, evaluated using the
JC-1 dye. Results are presented as Mean + SD from 4 or 5 independent experiments, performed in
duplicate. * p < 0.05; **** p < 0.0001. MIC, minimal inhibitory concentration.
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Figure 4. Effects of compound 1 on reactive oxygen species (ROS) production in (a) Candida krusei
ATCC 6258 and (b) Candida albicans ATCC 10231 after 2 and 6 h of treatment. Results are presented
as Mean + SD from 4 or 5 independent experiments, performed in duplicate [* p < 0.05, ** p < 0.01,
*** p < 0.001 and **** p < 0.0001, for comparisons between concentrations at each timepoint; # p < 0.05
and #### p < 0.0001, for comparisons between timepoints at each concentration]. MIC, minimal
inhibitory concentration.

However, a significant increase on ROS intracellular levels was observed for C. krusei
upon exposure for 6 h to the highest concentration of the compound (2× MIC, 16 µg/mL,
125.2%), while for C. albicans, significantly increased ROS levels were observed for 2× MIC
and MIC (153.3% and 196.2%, respectively) (Figure 4). t-BHP (500 µM) was used as a
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positive control for ROS generation, causing a significant increase in ROS intracellular
levels, both 2 h and 6 h after incubation, and for the two yeasts (Supplementary Materials—
Figure S2 for results at 2 h and Figure S3 for results at 6 h).

2.4. Effect on Total ATP Intracellular Levels

The effect of compound 1 on the intracellular ATP levels was also evaluated to more
deeply understand if the depolarization of the mitochondrial membrane results in ATP
depletion. For C. krusei and C. albicans, a significant decrease in ATP intracellular levels was
observed for 2× MIC, which is in line with the results previously presented (depolarization
of mitochondrial membrane and generation of ROS). In fact, in C. krusei, the compound
significantly reduced the ATP intracellular levels to 63.4% (when compared with 100% of
control yeasts), while in C. albicans it promoted a significant decrease of ATP intracellular
levels to 60% (Figure 5).
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2.5. Effect on the Viability of Human Cells

Compound 1 was evaluated at the screening program of CO-ADD for the elucidation
of its possible cytotoxic effect against human cell lines. The CC50 value against the HEK-293
cell line and the HC10 value on human erythrocytes were of 1.1 and 0.8 µg/mL, respectively.
Compound 1 was thus considered cytotoxic to human cells.

3. Discussion

The occurrence of fungal infections has seen a dramatically rise in recent years. Despite
being often overlooked, serious mycoses afflict over 300 million individuals globally,
resulting in an annual mortality rate of over 1.5 million [15]. The primary contributors to
this mortality are pathogenic yeasts such as Candida, Cryptococcus, and Pneumocystis, as well
as filamentous fungi like Aspergillus. Among these, Candida spp. are the most prevalent
culprits for invasive mycoses [16]. Candida albicans stands out as the most common cause of
candidiasis, though other Candida species also play significant roles in clinical scenarios,
accounting for approximately 35–65% of candidemia cases. Notably, infections caused by
C. krusei are recognized for their elevated mortality rates (40–58%) and limited response to
standard antifungal treatments [17].

Cyclams are macrocyclic polyamines which have demonstrated medical interest,
namely as antibacterial, antifungal and antiparasitic agents [18–26]. The cyclam salt
H4[H2(4-CF3PhCH2)2Cyclam]Cl4 (compound 1) was previously studied against C. kru-
sei and C. albicans, and demonstrated a relevant antifungal activity, with minimal inhibitory
concentration (MIC) values of 8 µg/mL for C. krusei and of 128 µg/mL for C. albicans [7].
More recently, this compound revealed to inhibit biofilm production and catalase activity,
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being able to interfere with C. albicans dimorphic transition [8]. Given those results, the po-
tential mechanisms involved in the activity of this cyclam derivative were further studied.

The classic antifungal drugs used in therapy mainly target the cytoplasmic membrane
by binding to ergosterol (polyenes) or by inhibiting ergosterol synthesis (azoles and ally-
lamines). Later, a group of compounds with an action on the cell wall (echinocandins and a
triterpenoid) has been introduced. The search for compounds with new targets of action or
with multiple mechanisms of action is necessary in order to broaden activity, reduce toxicity
and overcome the emergence of resistance. More recently, new compounds with different
mechanisms have emerged, including fosmanogepix (an inhibitor of the Gwt1 enzyme) and
olorophim (an inhibitor of the dihydroorotate dehydrogenase enzyme) [27]. Mitochondria
is an essential target for the cell. Thus, compounds that act exclusively or partially on this
target may show antifungal activity and be useful in the treatment of fungal infections [12].

For that purpose, and to understand if compound 1 had the ability to reduce the yeasts
metabolic viability, REZ reduction assay was carried out. REZ solution is a blue-coloured
solution, which shows little to no intrinsic fluorescence. When REZ diffuses through the cell
membranes it is metabolically reduced by viable cells to the fluorescent to a pink-coloured
product, resorufin. By measuring the fluorescence of this compound, it is possible to
calculate the percentage of metabolic viable cells [28]. Accordingly, compound 1 had effect
on both yeasts, significantly decreasing yeast metabolic activity, although this effect was
more markedly observed on C. albicans. This reduction in metabolic activity suggests an
impact on the organism’s ability to utilize alternative carbon sources and maintain normal
cellular functions.

Mitochondria are critical for Candida’s metabolism, stress response, and virulence [10].
Therefore, three assays were performed to analyse the influence of compound 1 on the
proper functioning of this organelle. In all assays, the compound demonstrated to interfere
with C. albicans mitochondria. The compound significantly reduced mitochondrial mem-
brane potential in both C. albicans and C. krusei, promoting its depolarization. Therefore,
the observed effects point towards mitochondrial dysfunction, which can disrupt energy
production (resulting in a reduction of ATP production), calcium balance, ROS production
and cellular processes essential for the organism’s survival [14]. Accordingly, our results
are in line with the literature, given that compound 1 promoted a significant increase in
ROS production and a significant decrease in ATP intracellular levels in C. albicans, which
agrees also with the observed decrease in mitochondrial membrane potential. The same
happened for C. krusei, but in a lighter extent, which demonstrates a greater antifungal
potential of this compound against C. albicans. The significant decrease in intracellular ATP
levels caused by compound 1 thus clearly highlights its influence on energy metabolism in
C. albicans and C. krusei. Furthermore, ATP is a critical energy source for cellular functions,
and a decrease in ATP levels can impair various biological processes necessary for the
organism’s viability [29].

Overall, compound 1’s effects on C. albicans suggest a multi-faceted impact on the
organism’s cellular functions. It significantly reduced metabolic activity (as seen through
REZ reduction), disrupted mitochondrial function (evidenced by increased ROS production
and mitochondrial membrane depolarization), and significantly decreased ATP levels,
highlighting its influence on energy metabolism within the cells. The decreased sensitivity
of C. krusei to compound 1 can be potentially justified by the distinct metabolic features of
C. krusei and lower proteolytic potential when compared to C. albicans, which can impact
its susceptibility to antifungal agents like compound 1 [30]. Furthermore, C. krusei exhibits
differences in cell wall composition/structure compared to C. albicans, which can also
influence its response to antifungal compounds like compound 1. In addition, C. krusei
is intrinsically resistant to fluconazole, both in vitro and in vivo [29,31,32]. This inherent
resistance in C. krusei makes it more challenging to treat compared to other Candida species
like C. albicans. Moreover, genetic determinants may also play a role in the resistance
mechanisms of C. krusei, affecting its susceptibility to antifungal agents [33]. Variations in
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genetic factors between Candida species can thus potentially contribute to differences in
resistance/sensitivity levels.

For an antimicrobial compound to be considered promising for therapeutic use, one
of the parameters that is usually valued is the absence of toxicity to human cells [34,35].
Haemolytic activity in human erythrocytes is one of the most widely used tests for screening
the cytotoxic activity of new bioactive compounds [34,35]. One of the problems with the
haemolytic activity of these compounds is the limitation they impose on intravenous
administration [36]. The erythrocyte membrane is a representative model of other cells,
but there are studies which show that the sensitivity of erythrocytes to cytotoxicity may
be greater than that of other human cells [34,35]. Moreover, the toxicity seen in in vitro
tests is not always observed when in vivo tests are carried out [34]. In addition, one
way of assessing the toxicity of compounds is to determine their effect on the metabolic
viability of normal (i.e., non-tumour) cell lines [37,38]. One of the cell lines used for this
purpose is the HEK-293 cell line (human kidney cells) [37,38]. Various strategies have
been developed to avoid the haemolytic and cytotoxic activity of the compounds, such
as their molecular modification [39] or the use of drug delivery systems, some already in
clinical use and others being evaluated in clinical trials [40]. Amphotericin B is a good
example of an antifungal drug widely used in the treatment of serious systemic infections,
with a broad spectrum of action and a very low level of resistance, but which is very toxic
to humans [41–44]. The toxicity associated with amphotericin B has implications for its
clinical use, which is limited to inpatients due to the need, among other factors, for slow
continuous intravenous infusion and the permanent need to monitor renal toxicity and
body temperature [41–44]. For this reason, new therapeutic systems have been developed
for administering this drug, and it continues to be used in therapy [41–43]. Also, to
enable the use of nystatin for systemic use, different formulations are being tested [45].
As already stated, compound 1 has shown toxicity at the concentrations at which it is
active as an antifungal. Therefore, molecular modifications or the development of drug
delivery systems could be studied in order to increase its selectivity for the fungal cells
and reduce its toxicity to humans. To reduce the concentrations to be used, synergism
studies can be carried out using different compounds with antifungal activity. Associations
of compounds with synergistic effects are a strategy to lower concentrations, toxicity and
circumvent possible emergence of resistance, particularly if the compounds have different
mechanisms of action. We foresee that incorporating the compound in drug nano-carriers,
such as liposomes, polymer nanoparticles or inorganic nanoparticles that can be delivered
specifically to the microbial cells may reduce cytotoxicity to the host.

4. Materials and Methods
4.1. Standards and Reagents

Dimethyl sulfoxide (DMSO), 3-(N-morpholino) propane-sulfonic acid (MOPS), re-
sazurin (REZ), tert-butyl hydroperoxide (t-BHP), carbonyl cyanide m-chlorophenyl hydra-
zone (CCCP), luciferase from Photinus pyralis (firefly) and 2′,7′-dichlorofluorescin diacetate
(DCFH-DA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). RPMI-1640 broth
medium (with L-glutamine, without bicarbonate and with the pH indicator phenol red)
was purchased from Biochrom AG (Berlin, Germany). Phosphate buffered saline (PBS) was
purchased from Fisher Reagent (Geel, Belgium). Potassium hydrogen carbonate (KHCO3),
sodium dihydrogen phosphate dihydrate (Na2H2PO4.2H2O), adenosine 5′-triphosphate
disodium salt hydrate and JC-1 were acquired from Thermo Fisher Scientific (Franklin,
MA, USA). Perchloric acid 70% (HClO4) and Titriplex III (EDTA, disodium salt dihydrate)
were obtained from Merck (Darmstadt, Germany). Sodium hydroxide (NaOH) was ob-
tained from VWR (Fontenay-sous-Bois, France). D-Luciferin sodium salt was obtained
from Abcam (Cambridge, United Kingdom).

Cyclam salt H4[H2(4-CF3PhCH2)2Cyclam]Cl4 (compound 1) was synthesized according
to a previously published procedure [22].
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4.2. Effects on Yeasts’ Metabolic Activity—REZ Reduction Assay

The effect of the cyclam salt on yeasts metabolic viability was evaluated through the
REZ reduction assay. Suspension of yeasts (C. krusei ATCC 6258 and C. albicans ATCC
10231) with a final cell density of 0.5–2.5 × 103 CFU/mL were prepared in RPMI-1640
medium (RPMI-1640 with MOPS, pH 7.4), and incubated for 24 h at 37 ◦C. After this
period of time, and using a 48-well plate, 990 µL of yeasts suspension were added in
each well. Compound 1 was then prepared in RPMI-1640 medium to obtain the desired
concentrations, and 10 µL was added to each well (final concentrations: 2× MIC, MIC
and MIC/2), and incubated for 90 min at 37 ◦C. Yeasts were incubated with 10 µL of REZ
prepared in RPMI-1640 medium (final concentration of 10 µg/mL) for 30 min at 37 ◦C.
The fluorescence was measured using a multi-well plate reader (Synergy HT plate reader;
BioTeck Instruments, Highland Park, IL, USA), using excitation and emission wavelengths
of 560 nm and 590 nm, respectively. The effects of compound 1 on yeast’s metabolic activity
was evaluated by the percentage of REZ reduction relatively to control yeasts. At least four
independent experiments were performed in duplicate.

4.3. Effects on Yeasts’ Mitochondrial Membrane Potential—JC-1 Assay

The effect of compound 1 on yeast mitochondrial membrane potential was evaluated
through the JC-1 assay [44]. Suspension of yeasts (C. krusei ATCC 6258 and C. albicans
ATCC 10231) with a final cell density of 0.5–2.5 × 103 CFU/mL were prepared in RPMI-
1640 medium, and these working suspensions were placed into micro tubes (1 mL), and
incubated for 24 h at 37 ◦C. Then, micro tubes were centrifuged at 15,493× g for 5 min. To
the obtained cell pellet, compound 1 was added (at different concentrations and prepared
in RPMI-1640 medium), and yeasts were further incubated for 2 h at 37 ◦C. Yeasts were then
centrifuged (15,493× g for 5 min) and the obtained pellets were incubated for 30 min with
1 mL of JC-1 (10 µM) prepared in PBS. After this incubation period, cells were centrifuged
at 15,493× g, for 5 min, and 500 µL of PBS were added to each pellet, and centrifuged
again (in the same conditions). Finally, 500 µL of PBS were added to each pellet, and
transferred to a 24-well plate. Fluorescence was measured in a multiwell plate reader
(PowerWave-X, BioTek Instruments, Winooski, VT, USA) at 535 nm excitation and 595 nm
emission wavelengths for JC-1 aggregates, and at 485 nm excitation and 535 nm emission
wavelengths for JC-1 monomers. Results were analysed by the ratio between red and
green fluorescence intensity, and expressed as percentage of control yeasts. At least four
independent experiments were performed in duplicate. CCCP (100 µM, 2 h of incubation)
was used as positive control for mitochondrial depolarization.

4.4. Effect on Intracellular ROS Level Production

To evaluate the effect of compound 1 on the production of ROS, suspension of
yeasts (C. krusei ATCC 6258 and C. albicans ATCC 10231) with a final cell density of 0.5–
2.5 × 103 CFU/mL were prepared in RPMI-1640 medium, and these working suspensions
were placed into micro tubes (1 mL), and incubated for 24 h at 37 ◦C. Then, micro tubes
were centrifuged at 15,493× g for 5 min. To the obtained cell pellet, compound 1 was added
(in different concentrations and prepared in RPMI-1640 medium) and incubated for 2 or
6 h at 37 ◦C. Yeasts were then centrifuged (15,493× g for 5 min) and the obtained pellets
exposed to DCFH-DA (50 µM, prepared in PBS) transferred to a 48-well plate, and further
incubated for 30 min. After this incubation period, the fluorescence was measured in a
multiwell plate reader (PowerWave-X, BioTek Instruments, Winooski, VT, USA) using an
excitation wavelength of 485 nm and an emission wavelength of 590 nm. The effects of
the compound on intracellular ROS level production were expressed as percentage over
control yeasts. At least four independent experiments were performed in duplicate. t-BHP
was used as a positive control.
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4.5. Effect on Total ATP Intracellular Levels

To evaluate the effect of compound 1 on intracellular ATP levels, suspension of
yeasts (C. krusei ATCC 6258 and C. albicans ATCC 10231) with a final cell density of 0.5–
2.5 × 103 CFU/mL were prepared in RPMI-1640 medium. These working suspensions
were placed into micro tubes (1 mL), and incubated for 24 h at 37 ◦C. Then, micro tubes
were centrifuged at 15,493× g for 5 min. To the obtained yeasts pellets, compound 1 was
added (in different concentrations and prepared in RPMI-1640 medium), and incubated for
2 h at 37 ◦C. After the incubation period, micro tubes were centrifuged for 5 min, at 250× g.
Then, supernatant from each micro tube was discarded and ice-cold 5% HClO4 was added,
followed by incubation of 30 min at 4 ◦C (for protein precipitation). After, the micro tubes
were centrifuged at 15,493× g for 10 min. The acidic supernatants where then collected and
stored at −80 ◦C until further determination of ATP content. The obtained cell pellets were
resuspended in 1 M NaOH (overnight, at 4 ◦C), and then stored at −20 ◦C until being used
for protein quantification.

For the determination of ATP intracellular levels, ATP standards solutions (0–16 µM)
were prepared in 5% HClO4 for the creation of ATP calibration curves and stored at −80 ◦C
until further use. The acidic supernatant samples and standards were neutralized with
ice-cold 0.76 M KHCO3 (1:1) and mixed by vortex. The micro tubes were then centrifuged,
for 10 min at 13,000 rpm (4 ◦C). All the procedures of samples and standards preparation
were always performed on ice. Using a white 96-well plate, 75 µL of the neutralized
supernatants of samples or standards were pipetted in duplicate. Already in the plate
reader, 75 µL of the D-luciferin–luciferase solution [0.15 mM luciferin and 3,000,000 light
unit’s luciferase/mL prepared in a 7.6 pH buffer solution (50 mM glycine; 10 mM MgSO4;
1 mM Trizma; 0.55 mM EDTA and 1% BSA)] were added, and bioluminescence immediately
measured at 560 nm (28 ◦C), in a multiwell plate reader (PowerWave-X, BioTek Instruments,
Winooski, VT, USA). t-BHP was used as a positive control. The ATP intracellular content
in the samples was normalized to the protein content, which was quantified using the
Bio-Rad DCTM protein assay kit. At least five independent experiments were performed
in duplicate, and the results were expressed as percentage over control yeasts.

4.6. Cytotoxicity on Human Cells

Compound 1 was submitted to the screening program of the Community for Open
Antimicrobial Drug Discovery CO-ADD [46] and its effect on the metabolic viability of the
Human Embryonic Kidney 293 (HEK-293) immortalised cell line and its ability to cause
the haemolysis of human red blood cells were evaluated. Briefly, and accordingly with
CO-ADD information on their report, compound 1 was dissolved on DMSO (being 0.5%
the maximum concentration used in the assays) and serial concentrations (1:2) were placed
on the test plates (maximum concentration tested = 32 µg/mL and minimum concentra-
tion tested = 0.25 µg/mL). The interference with HEK-293 cell line metabolic viability
was evaluated by the REZ reduction assay by adding this reagent at a concentration of
25 mg/mL, followed by a 3 h incubation on a CO2 (5%) incubator, at 37 ◦C. Fluorescence
was read (excitation: 530/10 nm and emission: 590/10 nm; Tecan M1000 Pro monochro-
mator plate reader) after the incubation period for compound 1 treated samples, negative
control (free cell culture media) and positive control (cells without treatment). Results were
expressed as concentration corresponding to 50% of toxicity (CC50) after designing a curve
of inhibition versus log concentration values, and fitting those values using the function
of Sigmoidal dose–response, with variable values (of top, bottom and slope), using the
Pipeline-Pilot’s dose–response software (Dassault Systèmes, Version 18.1 (May 2018)). For
the haemolytic assay the procedure was similar of that used for REZ and concentration at
50% haemolytic activity (HC50) was determined. The HC10 value was calculated using the
following equation:

HC10 = HC50*(10/90)ˆ(1/Slope). Compounds with CC50/HC10 ≤ maximum tested
concentration were defined as having toxicity.
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4.7. Statistical Analysis

GraphPad Prism 9 for MacOS (GraphPad Software, San Diego, CA, USA) was used for
all statistical analysis. To perform the statistical comparisons between the tested conditions,
one-way ANOVA was used, followed by the Dunnett’s multiple comparisons test. For
experiments with two variables (ROS intracellular levels), two-way ANOVA followed
by the Šídák’s multiple comparisons test was used. Details of the performed statistical
analysis are described in the figure legend and, in all cases, p values smaller than 0.05 were
considered significant.

5. Conclusions

Overall, the obtained data suggest that the exposure of both C. albicans and C. krusei to
H4[H2(4-CF3PhCH2)2Cyclam]Cl4 resulted in a significant increase in ROS intracellular levels,
accompanied by a significantly decreased metabolic activity and an impaired mitochondrial
function. These effects collectively indicate a profound impact on the organism’s cellular
functions, particularly on energy metabolism and overall cellular health.
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