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Abstract: Parkinson’s disease (PD) significantly impacts millions of individuals worldwide. Although
our understanding of the genetic foundations of PD has advanced, a substantial portion of the
genetic variation contributing to disease risk remains unknown. Current PD genetic studies have
primarily focused on one form of genetic variation, single nucleotide variants (SNVs), while other
important forms of genetic variation, such as structural variants (SVs), are mostly ignored due to
the complexity of detecting these variants with traditional sequencing methods. Yet, these forms of
genetic variation play crucial roles in gene expression and regulation in the human brain and are
causative of numerous neurological disorders, including forms of PD. This review aims to provide a
comprehensive overview of our current understanding of the involvement of coding and noncoding
SVs in the genetic architecture of PD.
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1. Introduction
1.1. Genetics of Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and
the most common movement disorder worldwide. It affected approximately 6.2 million
individuals in 2015, with predictions estimating this number to double by 2040 [1]. PD
has a known genetic component and can be both monogenic and apparently sporadic in
nature. Mendelian forms of disease result from highly penetrant, disease-causing variants.
Over twenty associated genes have been identified, although robust replication for the
majority of these is missing [2]. On the other hand, sporadic PD is caused by common
variants with moderate to low risk that increase disease susceptibility. To date, the majority
of sporadic PD genetic studies have used large-scale genome-wide association studies
(GWASs) focused on single nucleotide variants (SNVs) [3,4]. Through this work, over
one hundred independent risk loci have been associated with apparently sporadic PD.
However, these common variants explain around 16–30% of the heritable component of
PD, leaving a large portion of the genetics of PD unknown [5,6].

1.2. Coding vs. Noncoding DNA

DNA can be categorized as either coding or noncoding. Coding DNA refers to
regions of the genome that encode proteins, representing approximately 1.5% of the human
genome [7]. In contrast, noncoding regions of the genome comprise the vast majority of
DNA and include important regulatory elements and noncoding RNAs.

Causal variants identified in neurodegenerative diseases so far have tended to be
located in coding regions of DNA, as these are more likely to have a substantial functional
impact and are thus implicated in monogenic forms of disease. However, the majority
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of common variants identified through GWASs are located in noncoding regions, which
cumulatively contribute to disease risk. Despite being located in a noncoding region of
the genome, these variants can still influence gene expression, protein function, and other
molecular processes, thereby contributing to the risk of developing a disease or influencing
a trait.

1.3. Structural Variants

The unaccounted “missing heritability” of PD is likely due to the fact that most existing
genetic studies have focused on SNVs. Unlike SNVs that result in a single nucleotide change,
structural variants (SVs) are any genomic rearrangement including fifty or more nucleotides,
and these regions contribute to a more substantial amount of variation in the human genome
compared to SNVs [8]. SVs are commonly classified as deletions, duplications, insertions,
inversions, and translocations, each portraying distinctive combinations of gains, losses, or
rearrangements within the DNA sequence [9,10]. Additionally, SVs include copy number
variants (CNVs) and retrotransposon insertions such as Alu, LINE-1, and SINE-VNTR-
Alu (SVA) elements, which can integrate themselves into the human genome. Finally,
complex SVs constitute intricate combinations of these events. These genomic variations
can considerably influence phenotypes by disrupting gene function, regulation, or altering
gene dosage. Recent studies demonstrate that SVs drive functional changes not only across
diverse populations but also within various cell and tissue types [10,11] (Figure 1a).
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Figure 1. (a) Overview of different types of SVs. Each arrow represents a sequence of DNA. The
blue portions of the arrows represent a variant. The first row of arrows represents the original DNA
sequence while the second row of arrows represents the mutated DNA sequence. (b) Overview of the
main technologies used to detect SVs. Created with BioRender.com (accessed on 16 January 2024).

1.4. Methods for Detecting Structural Variants

There are several methods for detecting SVs, including molecular assays, short-read
DNA sequencing, and, more recently, long-read DNA sequencing (Figure 1b). Many of the
first PD SV genetic studies used molecular techniques, such as quantitative polymerase
chain reaction (qPCR), multiplex ligation-dependent amplification (MLPA), fluorescent
in situ hybridization (FISH), and other microarrays to detect gene dosage. qPCR, in
comparison to standard PCR, uses fluorescent labeling to measure the amount of PCR
product in real time, which allows for more accurate quantification. MLPA is a variation of
a multiplex PCR, which uses probes rather than primers to detect a target sequence and
amplifies ligated probes, which can then be quantified using capillary electrophoresis. FISH

BioRender.com
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uses fluorescent probes to precisely localize a specific DNA sequence in an individual cell.
However, these methods cannot provide sequence information. Short-read sequencing is a
widely used technique in genomics that involves sequencing DNA fragments of relatively
small length (typically ranging from 50 to 300 nucleotides). This approach, employed
in technologies such as Illumina sequencing, is known for its high throughput and cost-
effectiveness. In recent years, hundreds of tools have been developed for detecting SVs from
short-read sequencing data, and using these tools, several groups have been successful in
identifying SVs associated with disease risk [12–14]. However, short-read sequencing faces
challenges in accurately calling SVs due to limitations in read length, difficulty in spanning
large-scale variations, issues with repetitive regions, and potential chimeric read alignment,
which often lead to spurious associations that lack replication. In comparison, “third
generation” long-read sequencing technology makes it possible to sequence much larger
stretches of DNA. Technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) generate reads spanning tens of thousands to millions of base pairs.
Because of this, long-read sequencing offers advantages in resolving complex genetic
variation, including repetitive regions and SVs. This technology is particularly valuable for
de novo genome assembly, accurately identifying large-scale SVs, and providing a more
comprehensive view of the genome’s architecture. Figure 2 gives a detailed overview of
the different capabilities of short- and long-read DNA sequencing technologies.
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left panel displays short blue lines representing reads from short-read sequencing, and the right
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are variants. Adapted from Kono and Arakawa [15]. Created with BioRender.com (accessed on
16 January 2024).
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1.5. Structural Variants in Neurological Conditions

SVs are well-established drivers of gene regulation in the human brain. In a recent
study, Han and colleagues integrated SV calls from nearly fifteen thousand individuals
with short-read bulk RNA-sequencing datasets from human post-mortem brain tissue.
Through this work, they identified many coding SVs that overlapped with gene expression
outliers [11]. Additionally, the authors of a large-scale study performed SV quantitative trait
locus (QTL) analyses, and they reported that more than three thousand SVs impact histone
modifications, mRNA expression, mRNA splicing, and protein abundance in brain-based
short-read datasets [16]. Due to their potential to exert profound phenotypic influences in
the brain, numerous mostly coding SVs have been linked with neurological conditions [13]
and neurodevelopmental/neuropsychiatric disorders [17]. For example, Phelan-McDermid,
or 22q13 deletion syndrome, which most commonly results in intellectual disability (ID),
developmental delay, delayed or absent speech, and hypotonia, all of varying severity,
can be caused by a deletion at the SHANK3 gene [18]. Syndromic X-linked ID Lubs type
is caused by a duplication of the gene MECP2, which almost exclusively occurs in males
and is characterized by ID, developmental delay, recurrent infections, delayed speech
and motor, hypotonia, seizures, and gastrointestinal dysfunction [19]. Further, Duchenne
Muscular Dystrophy can be caused by deletions or duplications in the DMD gene [20],
and deletions at the SPAST gene lead to hereditary spastic paraplegia [21]. In addition to
coding SVs being causative of monogenic conditions, there are several SVs that significantly
increase an individual’s risk of disease. One example of this is a deletion at 1q21.1, which
is associated with an increased risk of autism spectrum disorder (ASD), attention deficit
hyperactivity disorder (ADHD), schizophrenia, ID, epilepsy [22], and parkinsonism [23].

In the context of SVs and their role in various forms of parkinsonism, it is noteworthy
that a rare SV is associated with X-linked Dystonia Parkinsonism (XDP). XDP, also known
as Lubag syndrome, is a rare genetic movement disorder characterized by progressive
dystonia and parkinsonism, endemic to the island of Panay in the Philippines [24]. Specifi-
cally, XDP is associated with an insertion of an SVA retrotransposon that is inserted into
intron 32 of the TAF1 gene [25–27]. This SVA contains a hexameric DNA repeat domain
(CCCTCT)n that is variable in length across patients, and the length of this expansion
inversely correlates with age at onset (AAO). To understand the functional impact of the
SVA, Aneichyk and colleagues demonstrated in cell models that this variant altered TAF1
splicing and decreased expression of the full-length transcript [28]. Additionally, using
induced pluripotent stem cell (iPSC) lines derived from XDP patients, Rakovic and col-
leagues showed that removal of the SVA using genome editing can successfully rescue
TAF1 expression [29], highlighting the causative nature of the SVA.

This review highlights key studies that have identified SVs associated with monogenic
forms of PD (detailed in Supplementary Table S1), which are mostly in coding regions of the
genome. We also outline SVs associated with the risk of apparently sporadic PD and finally
detail ongoing research efforts to comprehensively catalog SVs in PD through large-scale
long-read sequencing initiatives. Notably, while several studies have also reported repeat
expansions that are associated with PD, these will not be discussed in the present review as
our focus is on SVs.

2. Monogenic Parkinson’s Disease
2.1. Autosomal Dominant Parkinson’s Disease
SNCA/PARK1

The SNCA gene, Synuclein Alpha, is located on chromosome 4 (chr4:89724099–89837161)
and encodes presynaptic neuronal protein alpha-synuclein [30–32]. A build-up of this
protein in the brain is the major constituent of Lewy bodies, the main pathological hallmark
of synucleinopathies, including PD. Although PD was originally believed to be caused
only by environmental factors, in 1997, a missense SNV in SNCA was associated with
PD [33]. Other point mutations at this locus have also been identified to cause familial
PD [34–37]. However, the first time an SV was associated with SNCA was in 2003, when a



Int. J. Mol. Sci. 2024, 25, 4801 5 of 15

deleterious triplication of the entire gene was found in a family with autosomal dominant
PD [38]. Following this, further studies have continued to identify SNCA multiplications
(CNVs) as a rare cause of familial parkinsonism [39–46]. In addition to multiple SNCA
triplication studies in individuals of European ancestry, other studies have reported this
multiplication in other populations, such as the Japanese [44,46], Korean [39], South African,
and Tunisian [31] populations.

Multiplications of SNCA include triplications and duplications. A heterozygous
triplication has three copies of the SNCA gene on one allele and a single copy of the
gene on the other allele, meaning a triplication carrier has a total of four copies of SNCA.
A heterozygous duplication carrier has two copies of the SNCA gene on one allele and one
copy on the other, for a total of three copies. Duplication carriers can also be homozygous,
meaning they have two copies of SNCA on each allele for a total of four copies. In a
large family study that comprised 264 families with typical autosomal dominant PD and
22 families with atypical autosomal dominant parkinsonism, about 1.5% of families with
typical autosomal dominant PD had an SNCA duplication, while 4.5% of atypical families
had a triplication [47]. In the typical PD population, duplications are more frequent than
triplications. Most multiplications of this locus involve more than one gene and vary
widely in length. Differences in multiplication length between families indicate that SV
events occurred independently [31]. The rise of these de novo variations may be due to
flanking repeat regions, which could cause genomic instability in this region and lead to
gaps and breaks [41].

Along with being disease-causing, SVs at the SNCA gene are disease-modifying as
the SNCA copy number determines the AAO and severity of symptoms, indicating a
gene dosage effect. These multiplications are not only limited to SNCA but can include
any number of neighboring genes, from two or three to dozens. However, neither the
number of genes nor the size of the multiplication seems to have an effect on disease
severity. The phenotype for duplication carriers includes symptoms similar to that of
typical PD patients. These symptoms include mild to moderate common parkinsonism
motor symptoms, such as postural instability and resting tremor, with little to no cognitive
or autonomic dysfunction. However, some individuals have an SNCA duplication but
no clinical presentation [44], while others show symptoms similar to that of atypical
parkinsonian syndromes [39]. It is unclear why this phenotypic heterogeneity occurs,
though it could be linked to other genetic modifiers. The phenotype for patients carrying
the triplication, along with homozygous duplication carriers, however, includes atypical
features reminiscent of dementia with Lewy bodies (DLB). SNCA triplication causes early
AAO (younger than 50 years) with rapidly evolving, aggressive symptoms, both motor
and non-motor, suggesting complete penetrance. Compared to heterozygous duplication
carriers, triplication carriers’ motor symptoms are those typically associated with PD,
while non-motor symptoms include cognitive impairment and dysautonomia [40]. SNCA
triplication can also cause levodopa-induced dyskinesia.

A number of studies have looked into the functional effects of these multiplications,
particularly the triplication, in vitro and post-mortem. iPSCs derived from patients with
an SNCA triplication recapitulate the accumulation of alpha-synuclein and doubling of
gene expression [48] as seen in post-mortem blood and brain samples [49]. Various patho-
physiological mechanisms have been reported to be triggered by overexpression of SNCA
in mature iPSC-derived dopaminergic cells, such as elevated oxidative stress [50] and
mitochondrial [51] and lysosomal dysfunction [52]. Studies have indicated that the SNCA
locus triplication can impair neuronal differentiation and maturation in PD [53]. Severe
neuronal degeneration in the substantia nigra, locus ceruleus, basal nucleus of Meynert,
and hippocampal cornu ammonis has been seen in both triplication [40] and duplication
carriers [54].
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2.2. Autosomal Recessive Parkinson’s Disease
2.2.1. PRKN/PARK2

A few years before the SNCA triplication was discovered, the Parkin RBR E3 ubiquitin-
protein ligase (PRKN) gene was first characterized in 1998 when Kitada and colleagues [55]
investigated a very large gene consisting of 1.3 Mb and 12 exons on chromosome 6
[chr6:161347417–162727766] [32]. This study identified a Japanese patient with autosomal
recessive juvenile parkinsonism who was missing five exons (exons 3–7). This same study
also identified an exon 4 deletion in four separate autosomal recessive PD families.

Parkin is an E3 ubiquitin ligase responsible for catalyzing the ubiquitination process
and thus the degradation of aberrant proteins. Studies using fibroblasts from PRKN SV
carriers implicate a loss of ubiquitin ligase function, ultimately leading to the pathogenesis
of PD. Proteins are no longer effectively degraded by the parkin-dependent ubiquitin
proteasome pathway, which leads to a protein build-up in substantia nigra pars compacta
neurons [56]. PRKN SV patient fibroblasts [57,58] and mouse models [59–61] have been
used to exhibit PRKN loss-of-function effects such as mitochondrial dysfunction and
oxidative stress. Neuropathologically, PRKN-linked PD cases show significant substantia
nigral degeneration and generally lack Lewy bodies [62–66]. Cases absent of Lewy bodies
may be due to a younger AAO.

Causative SVs in PRKN have been reported in several other disorders [67], such as
ADHD [68], cancer [69], and ASD [70,71]. PRKN variants are the most common cause of
autosomal recessive PD, affecting 12.5% of individuals (who are either homozygous or
compound heterozygous) in this population, and 42.2% of PRKN mutation carriers have an
AAO less than 21 years [72]. SVs in this region account for 43.2% of PRKN mutations in
autosomal recessive PD [73].

PRKN is located in FRA6E, a frequently observed common fragile site in the human
genome, making it susceptible to gaps and breaks [74]. Deletions are the most common SVs
among PRKN mutations. These deletions can encompass multiple exons or just one. The
majority of exonic deletions span the noncoding region of PRKN between exons 2 and 4,
and within this exonic region, patients most frequently carry deletions of exon 3 [73,75,76].
Patients with PRKN mutations on both alleles present with typical early-onset parkinson-
ism, including slow disease progression, positive levodopa responsiveness, absence of
cognitive decline, resting tremor, rigidity, and levodopa-induced dyskinesia. Duplications,
triplications, and occasionally inversions have also been reported as a cause of PRKN
autosomal recessive PD [77].

There has been controversy among PRKN pathogenicity in heterozygous patients.
Although homozygous and compound heterozygous carriers show a strong association
with PD, researchers have also investigated heterozygous carriers with debate among
the findings. In some studies, PRKN monoallelic mutations were indicated to be disease-
causing [78]. However, evidence shows that these heterozygous participants were in-
correctly genotyped due to researchers missing second PRKN mutations. In a pair of
monozygotic twins presenting with early-onset PD, a very large, novel inversion spanning
PRKN exons 1–11 was identified using long-read sequencing and went undetected using
both short-read whole exome sequencing and MLPA [79]. After validating genotyping
methods, heterozygous carriers were not found to be at higher risk for PD compared to
those without a PRKN mutation [76,77]. Single PRKN mutations are relatively common in
the general population at around 1.8%.

2.2.2. PARK7/DJ-1

Following the discovery of the deletion at PRKN was the identification of an SV at
Parkinson’s disease gene 7 (PARK7), formerly known as DJ-1, located on chromosome 1
[chr1:7961711–7985505] [32]. In 2003, PARK7 was first characterized when a 14 kb ho-
mozygous deletion of exons 1–5 was identified in a Dutch family with early-onset parkin-
sonism [80]. Mutations in PARK7, encoding the deglycase protein DJ-1, are a rare cause
of familial autosomal recessive PD, affecting less than 2% of cases [81,82]. Although the
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majority of pathogenic variants in this gene are attributed to missense/nonsense muta-
tions [73], exonic rearrangements have been identified, including a homozygous deletion
of exon 5 [83] and another homozygous deletion of PARK7 exons 1–5. This homozygous
deletion of exons 1–5 was present with a second homozygous deletion of exons 1–6 in
the neighboring gene TNFRSF9 [84]. Individuals with homozygous SVs at PARK7 tend to
present with early-onset (20s and 30s) PD with typical features and a suitable levodopa
response. A loss-of-function effect is observed in the same Dutch family with the homozy-
gous 1–5 exonic deletion [80], but studies have yet to investigate the downstream effects
of these large SVs in PARK7. The function of PARK7 is hypothesized to play a protective
role against oxidative stress and neuroinflammation, but the exact mechanism by which it
performs this is still debated [85].

2.2.3. PINK1/PARK6

The next SV-harboring gene discovered in autosomal recessive PD was P-TEN-induced
putative kinase 1 (PINK1). PINK1 was first associated with PD in 2004 when Valente and
colleagues [86] identified a nonsense and a missense variant located on chromosome 1
[chr1:20633458–20651511] in three consanguineous parkinsonian families [32]. Similar
to PARK7, PINK1 mutations are primarily missense [73,87], but SVs have additionally
been identified at this locus. SVs include homozygous deletions of exons 6–8 [88], a
compound heterozygous deletion of the entire PINK1 gene [89], homozygous deletions of
exons 4–8 [90], homozygous deletions of exons 2–4, homozygous deletions of exon 4, and
homozygous deletions of exon 5 [83]. PINK1 SV carriers tend to have a younger AAO but
largely resemble typical idiopathic PD patients with features including a suitable levodopa
response and a lack of dementia. PINK1 phosphorylates parkin and ubiquitin to degrade
damaged mitochondria [91]. Although mouse models have yet to accurately mirror the
neurodegeneration seen in PD patient brains, more recent studies in monkeys with PINK1
deletions show deterioration of the cortex, striatum, and substantia nigra [92,93].

3. Apparently Sporadic Parkinson’s Disease
22Q11.2 Deletion

In addition to SVs being implicated as causative of monogenic forms of PD, numerous
instances highlight SVs that are also genetic risk factors. One such region is located on
chromosome 22q11.2, a segment in the human genome prone to meiotic chromosome
rearrangements. These rearrangements can result in deletions, contributing to a spectrum
of heterogeneous disorders. Among these, 22q11.2 deletion syndrome (22q11.2DS), his-
torically known as DiGeorge syndrome, is the most common and well characterized of
these disorders, occurring in ~1 in every 4000 live births [94–97]. The deletion can span
1.5–3 Mb and primarily arises de novo, although 5% of the events are inherited and the
clinical phenotype varies widely. These include medical features such as congenital heart
disease, autoimmune disease, immunodeficiency, palatal abnormalities, developmental
delays, and learning difficulties [98].

Several studies have established a link between 22q11.2DS and increased risk of PD.
Early independent case reports documented the co-occurrence of early-onset parkinsonism
and 22q11.2DS [99,100]. Further, Butcher and colleagues reported that in a group of
68 young adults (18–34 years) with the syndrome, four had been diagnosed with early-
onset PD [101]. The authors concluded that individuals with 22q11.2DS are estimated
to have at least a twenty times increased risk of PD compared with estimates for the
general population. Expanding on this association, in 2016, Mok and colleagues conducted
an extensive analysis using SNV array datasets [102]. Their large-scale investigation of
22q11.2 deletions involved 9387 cases with apparently sporadic PD and 13,863 controls from
European ancestry. Through this work, they identified that chromosome 22q11.2 deletions
were enriched in PD cases (8 carriers in PD cases and none in controls). Moreover, PD
patients carrying a deletion had an earlier AAO compared to non-carriers (mean 42.1 years
vs. mean 61 years, respectively).
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4. Structural Variants as PD Genetic Risk Factors

Large-scale GWASs have enabled well-powered and unbiased analyses for identifying
genetic risk factors. These genetic studies have played a fundamental role in discovering the
PD risk loci known today. But, traditionally, due to the instability of accurately genotyping
SVs at scale, these studies only focused on SNVs. Recent advances in short-read sequencing
technologies and SV detection tools now allow for assessing the contribution of SVs to
disease risk in large cohorts. Through this, large-scale SV GWASs have begun to identify
SV genetic risk factors associated with various neurodegenerative diseases, including
amyotrophic lateral sclerosis [103], Alzheimer’s disease [104], non-Alzheimer’s dementias
(Lewy body dementia and frontotemporal dementia) [13], and PD [12].

In 2023, the first PD SV GWAS leveraged the SV detection tool GATK-SV [105] and
called SVs using short-read sequencing whole-genome data from 2585 PD cases and
2779 controls from European ancestry. GATK-SV is a “gold standard” SV discovery
pipeline developed by the Broad Institute that runs five different SV tools to capture all
types of SVs. Using machine learning algorithms, it then merges together and filters the
SV calls and outputs one final group vcf file that can be used for downstream genetic
analyses [106]. Overall, after the implementation of this pipeline in the PD dataset, over
200,000 SVs were identified, and a mean of ~5600 SVs were detected per genome. Given
that short-read sequencing data can still yield many false positives, especially in repetitive
regions, it is crucial to validate all SVs of interest with additional molecular assays such as
PCR or long-read DNA sequencing [107]. After generating high-quality ONT long-read
sequencing from a subset of matched samples, each genome carried a mean of ~27,000 SVs
overall. Through ONT validation, three deletions were confirmed that tagged known PD
SNVs. Despite identifying these new SVs associated with PD risk, further benchmarking
studies comparing the short- and long-read sequencing data demonstrated that ~30% of
the SVs detected using short-read sequencing methods were false positives, and ~85%
of the SVs detected by the long-read sequencing data were missed by the short-read
caller [12]. This highlights that, although analysis of SVs using short-read sequencing
datasets can yield valuable insights, it lacks the power to accurately detect most of the SVs
in the human genome.

5. Future Directions

To elucidate the genetic architecture of PD on a global scale, it is crucial to assess
the impact of genetic variation across large, diverse populations. To date, however, the
majority of PD GWASs have only been based on European samples. In fact, a recent
systematic review quantifying the non-European representation in existing PD GWAS
efforts revealed that, despite comprising only 16% of the global population, ~62% of
all participants in PD genetic studies were European. This disparity was even more
pronounced for neurodegenerative diseases as a whole, with only ~20% of participants in
these GWASs being of non-European ancestry. Although there are several consortia-based
efforts to improve diversity in PD research, much more is needed to better understand the
risk of PD in other populations [108].

Gaining a comprehensive understanding of PD genetics, as outlined throughout this
review, also requires the analysis of all forms of genetic variation, extending beyond just
SNVs. Although most of the new efforts in the PD space are still focused on generating
SNV datasets, these datasets can still be leveraged in conjunction with new SV reference
panels to impute SVs into large datasets to gain valuable insights into the role of SVs.
Additionally, there are several large-scale long-read sequencing efforts that aim to catalog
SVs across diverse populations, including NIH-led initiatives such as the All of Us (AOU)
initiative [109] and the Center of Alzheimer’s Disease and Related Dementias (CARD) long-
read sequencing initiative [110,111]. Most importantly, in terms of PD-specific initiatives,
the Global Parkinson’s Genetics Program (GP2) is conducting a large-scale ONT long-read
initiative, which is split broadly into two sections [112,113]. The first section is part of
the “Monogenic Network”, whereby samples that have been prioritized based on AAO,
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family structure, and negative results from short-read sequencing will undergo long-read
sequencing to identify new causal variants. Additionally, ~1000 samples will be sequenced
from a cohort of apparently sporadic PD patients and controls with the aim of identifying
new genetic risk factors and resolving existing known risk loci.

Finally, another promising avenue for future research involves studying the impact
of somatic SVs in PD. While the present review has focused on germline SVs, which are
genetic variations that can be inherited from parent to offspring, somatic variation is a
genetic variation that occurs post-zygotically and can consequently lead to mosaicism
in the human brain. However, detecting somatic variation accurately is challenging
and often requires high-depth sequencing to reliably identify variants present in a small
subset of cells. Despite these difficulties, recent studies have started to address the role of
somatic SVs in PD. Mokreter and colleagues detected somatic SVs in SNCA in multiple
synucleinopathies, including PD and multiple system atrophy (MSA) [114], and using
single-cell whole genome sequencing (WGS), Perez-Rodriguez and colleagues report that
MSA patients have large CNVs in approximately 30% of all cells [115]. But, these studies
have been limited by current technology, which has prevented them from accurately
determining the breakpoints of somatic SVs, analyzing a large number of samples, and
detecting CNVs smaller than 1 Mb in size. Moving forward, advancements in tools
combining high-throughput long-read sequencing and single-cell methods to overcome
previous limitations hold the potential to offer a more comprehensive understanding of
the impact of somatic SVs in PD in the future.

Conclusions

While many SVs are known to be associated with PD, our understanding of the overall
role that SVs play in PD genetics remains very incomplete. This review highlights that
conventional techniques frequently miss potential disease-relevant SVs, as exemplified by
the recent identification of a large, rare PRKN inversion observed in Japanese PD patients.
Long-read sequencing emerges as a powerful tool for resolving these complicated regions
of the genome, making ongoing research initiatives that leverage long-read sequencing
on a population scale particularly promising. The insights gained from these initiatives
are anticipated to revolutionize our understanding of the genetic basis of PD, ultimately
facilitating the development of more targeted and effective therapeutic interventions.
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Abbreviations

22q11.2DS 22q11.2 deletion syndrome
AAO Age at onset
aCGH Array comparative genomic hybridization
ADHD Attention-deficit hyperactivity disorder
ASD Autism spectrum disorder
AOU All of Us
CARD Center for Alzheimer’s and Related Dementias
CNV Copy number variant
DaTSCAN Dopamine transporter scan
DHPLC Denaturing high performance liquid chromatography
DLB Dementia with Lewy bodies
FISH Fluorescent in situ hybridization
GP2 Global Parkinson’s Genetics Program
GWAS Genome-wide association study
ID Intellectual disability
iPSC Induced pluripotent stem cell
MRI Magnetic resonance imaging
MLPA Multiplex ligation-dependent amplification
MSA Multiple system atrophy
NGS Next-generation sequencing
ONT Oxford Nanopore Technologies
PARK Parkinson’s disease gene
PD Parkinson’s disease
PET Positron emission tomography
PINK1 P-TEN-induced putative kinase 1
PRKN Parkin RBR E3 ubiquitin-protein ligase
qPCR Quantitative polymerase chain reaction
QTL Quantitative trait locus
SNCA Synuclein alpha
SPECT Single-photon emission computed tomography
SNV Single nucleotide variant
SV Structural variant
SVA SINE-VNTR-Alu
WGS Whole genome sequencing
XDP X-linked Dystonia Parkinsonism
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