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Abstract: The one-pot template reaction between 2-(diphenylphosphino)benzaldehyde, benzylamine
and copper(I) iodide yields the dinuclear copper complex (P∩N)2Cu2I2, as revealed by single-crystal
X-ray diffraction.
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1. Introduction

P∩N ligands are used in many areas of coordination chemistry due to their advanta-
geous and tunable ligand properties. Many architectures are feasible. Besides the length
of the bridge between the phosphorus and nitrogen atoms, the properties of the N-donor
atom can vary: for example, the nitrogen atom can be part of a N heterocycle or it can
be found as part of an amine, imine, or amide group. A huge number of variations in
P∩N ligands have been realized, and their use covers practically all areas of coordination
chemistry from basic synthetic and structural research to more applied fields like catalysis
and optoelectronics [1–8]. Many P∩N ligands, e.g., Ph2P(s-py) (with s-py = substituted
2-pyridyl-type moiety), are commercially available and, hence, broadly used.

An easy variation in P∩N ligand properties can be realized by imine formation,
according to Scheme 1. Commercially available 2-(diphenylphosphino)benzaldehyde is
a particularly attractive platform as it can give access to a wide variety of P∩N ligands.
Imine formation is a very efficient process, which does not require demanding reaction
procedures. In principle, all types of primary amines—aromatic or aliphatic—react in high
yields under mild conditions [9–21]. In this context, of particular interest might be the use
of oligo-amines, which lead to the formation of polydentate P∩N ligands [22,23], or the use
of chiral amines [24].
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optoelectronics [1–8]. Many P∩N ligands, e.g., Ph2P(s-py) (with s-py = substituted 2-
pyridyl-type moiety), are commercially available and, hence, broadly used. 

An easy variation in P∩N ligand properties can be realized by imine formation, ac-
cording to Scheme 1. Commercially available 2-(diphenylphosphino)benzaldehyde is a 
particularly attractive platform as it can give access to a wide variety of P∩N ligands. Imine 
formation is a very efficient process, which does not require demanding reaction proce-
dures. In principle, all types of primary amines—aromatic or aliphatic—react in high 
yields under mild conditions [9–21]. In this context, of particular interest might be the use 
of oligo-amines, which lead to the formation of polydentate P∩N ligands [22,23], or the 
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Scheme 1. Versatile access to P∩N ligands starting from 2-(diphenylphosphino)benzaldehyde and 
a primary amine. 
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Scheme 1. Versatile access to P∩N ligands starting from 2-(diphenylphosphino)benzaldehyde and a
primary amine.

Our interest in P∩N copper(I) complexes comes from the fact that many of them
feature interesting luminescence properties. For example, Ph2P(s-py)-type ligands form
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complexes of the type (P∩N)3Cu2X2 (X = Cl, Br, I) with a 3:2 stoichiometry with one bridging
bidentate P∩N ligand and two monodentate P∩N ligands bound via the P atoms [25]. The
halides build the bridge between the two copper atoms. It should be noted that other
stoichiometries are also known for Ph2P(s-py)-type ligands [2,25–27]. These complexes
often show extremely high emission quantum yield with comparable low emission lifetimes
due to thermally activated delayed fluorescence, which makes them interesting candidates
for OLED applications. It has been shown that OLEDs using those emitters are, indeed,
promising alternatives to expensive emitter molecules based on iridium [1,28–32].

To investigate whether ligands bearing an imine group, as shown in Scheme 1, also
form photophysically interesting complexes, the synthesis of a copper(I) iodide complex
was undertaken with R = benzyl. The ligand with R = Bn is not new but has already
been used for the complexation of Re(I) [33], Fe [34], Co [35], Pd [36–40], Rh [41], Ru [42],
Au [9,43], Pt [9,44], Ir [45], and Cu [46].

2. Results and Discussion

The original idea was to synthesize a complex with a 3:2 stoichiometry, like those of
the type (P∩N)3Cu2X2 (vide supra). Therefore, the stoichiometry, as described in Section 3,
follows this 3:2 relation.

The title compound was synthesized in a very simple one-pot reaction (Scheme 2). Such
a template synthesis facilitates the procedure even more as it saves the isolation/purification
step of the P∩N ligand. First, 2-(diphenylphosphino)benzaldehyde and benzylamine were
stirred for 3 h under ambient conditions in dichloromethane [33]; then, solid copper(I) iodide
was added. Immediately, a dark-orange solution was formed. After stirring overnight, the
formed orange-red powder was isolated by decantation and dried in vacuo. Not untypical for
copper halide complexes bearing phosphane ligands, the resulting compound was only very
slightly soluble in standard, non-coordinating solvents. In donating solvents like hot pyridine
and acetonitrile, the complex is sparingly soluble; however, it is doubtful that the complex
also remains in its dimeric form in solution. Because of this low solubility in non-coordinating
solvents, no NMR spectra were recorded.
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Scheme 2. Synthesis of title compound 1.

The complex could be recrystallized from hot acetonitrile, yielding well-shaped red
crystals. The single-crystal X-ray diffraction analysis revealed that instead of the intended
3:2 stoichiometry, a dinuclear complex with a 1:1 composition was formed, as shown
in Figure 1. The copper atom is surrounded by a nitrogen atom, a phosphorus atom,
and two iodine atoms in a distorted tetrahedral environment with the iodine atoms in a
bridging binding mode. The central {Cu2I2} core is somewhat asymmetric with two similar
but yet different Cu–I bond lengths of 2.579(1) Å (Cu1–I1) and 2.698(1) Å (Cu1–I1i). The
nitrogen atoms are in a cis-configuration, rendering the whole complex inversion symmetric.
The overall structure is very similar to a copper(I) iodide complex, bearing a closely
related P∩N ligand [47]. The Cu1–N1 bond length (2.127(3) Å) is in the range typical for
sp2-hybridized nitrogen atoms [2,25]. The Cu1–P1 bond length (2.227(1) Å) is in the
expected range. The bite angle of the P∩N ligand is 89.79(7)◦, and the Cu1–I1–Cu1i angle
is 70.10(2)◦. Cuprophilic interactions do not play a considerable role in the formation of
the dimeric structure, as the Cu. . .Cu separation is 3.032 Å and, thus, well beyond the sum
of the van der Waals radii of 2.8 Å [48]. All lengths and angles are, thus, as expected for a
complex with a {Cu2I2} structure [49–51].
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Figure 1. Molecular structure of title compound (displacement parameters are drawn at 50% probabil-
ity level). Selected bond length (Å) and angles (◦): Cu1–I1 2.579(1), Cu1–I1i 2.698(1), Cu1–N1 2.127(3),
Cu1–P1 2.227(1), N1–Cu1–P1 89.79(7), I1–Cu1–I1i 109.90(2), Cu1–I1–Cu1i 70.10(2). Symmetry code:
i = −x + 1, −y, −z + 1.

In the ESI mass spectrum, the fragment [L2Cu]+ (L = ligand) can be detected as the most
intense signal. Other fragments could not be assigned with high confidence (cf. Figure S2). The
IR spectrum features signals at 1628 and 1432 cm−1, which is characteristic of the C=N stretch
vibration and the P–phenyl group, respectively [12,52–56]. Contrary to many other related
dinuclear complexes, 1 does not feature any observable photoluminescence at room temperature
upon excitation with a UV light. This can be explained by an absence of low-lying π* orbitals,
including the imine nitrogen atom, as the luminescence of such dinuclear copper(I) complexes
is often based on a d→π* metal-to-ligand-transfer-excited state [56].

3. Experimental Methodology
3.1. General

All solvents and starting materials were commercially available and used without
further purification. Elemental analyses were carried out by the Center for Chemical Anal-
ysis of the Faculty of Natural Sciences of the University Regensburg. The IR spectrum
was recorded on a Bruker Alpha II spectrometer equipped with a Platinum ATR mod-
ule. Single-crystal structure analysis was carried out on an STOE-IPDS diffractometer
(STOE & Cie GmbH, Darmstadt, Germany) with graphite-monochromated Mo-Kα radia-
tion (λ = 0.71073 Å). The structure was solved by direct methods (SIR-97 [57]) and refined
with olex2.refine [58] in Olex2 [59]. The H atoms were calculated geometrically, and a
riding model was applied in the refinement process.

3.2. Synthesis of Diiodido-bis{N-[2-(diphenylphosphino)benzylidene]benzylamine-κ2N,P}
dicopper(I), 1

2-(Diphenylphosphino)benzaldehyde (0.10 g, 0.34 mmol) and benzylamine (37 mg,
0.34 mmol) were dissolved in 30 mL of dichloromethane and stirred for 3 h. Copper(I)
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iodide (44 mg, 0.23 mmol) was added in one portion. The color of the solution turned
immediately dark orange. The reaction mixture was stirred overnight. The orange-red
powder formed was isolated by decanting and was dried in a vacuum. As soon as the
complex precipitated from the reaction mixture, it was not sufficiently soluble in common
weakly or non-coordinating solvents to perform NMR spectroscopy. Nicely shaped, red
single crystals suitable for single-crystal X-ray diffraction were obtained by cooling a
hot-filtrated solution of the title compound in acetonitrile.

Yield: 0.11 g, 84% based on CuI. Elemental analysis calc. for C52H44Cu2I2N2P2
(1139.79 g· mol−1): C 54.79%; H 3.89%; N 2.46%; found: C 55.67%; H 3.96%; N 2.50%.
MS(EI) (dcm/MeOH + 10 mM NH4Ac): m/z 821.3 [L2Cu]+. IR (ATR, cm−1): 3034, 3000,
2883, 2843, 1628, 1477, 1432, 1092, 1024, 766, 744, 691, 513, 480, 430. The IR spectrum can be
found in the Supplementary Materials.

Crystal data for C52H44Cu2I2N2P2 (M = 1139.73 g/mol): monoclinic, space group
P21/n (no. 14), a = 15.916(3) Å, b = 9.226(1) Å, c = 15.939(3) Å, β = 95.94(2)◦, V = 2328.0(7) Å3,
Z = 2, T = 297 K, µ(CuKα) = 2.346 mm−1, Dcalc = 1.626 g/cm3, 24633 reflections measured
(2.8◦ ≤ 2Θ ≤ 25.91◦), 4505 unique (Rint = 0.042, Rsigma = 0.023), which were used in all
calculations. The final R1 was 0.0321 (I > 2σ(I)) and wR2 was 0.0860 (all data). Further
crystallographic details can be found in Table S1. CCDC 2334274 contains the supplemen-
tary crystallographic data for this paper. These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Supplementary Materials: Figure S1: Elemental analysis of the title compound; Figure S2: MS(EI)
spectrum of the title compound; Figure S3: IR-spectrum (ATR) of the title compound; Table S1:
Crystal data and data collection and structure refinement details for 1.
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