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Abstract: CdS nanowires (NWs) were fabricated through a facile low-temperature solvothermal
method, following which CeO2 nanoparticles were modified on the NWs. The ethanol sensing
characteristics of pure CdS and decorated ones with different CeO2 content were studied. It was
found that the sensing performance of CdS was significantly improved after CeO2 decoration.
In particular, the 5 at% CeO2/CdS composite exhibited a much higher response to 100 ppm ethanol
(about 52), which was 2.6 times larger than that of pure CdS. A fast response and recovery time
(less than 12 s and 3 s, respectively) were obtained as well as an excellent selectivity. These results
make the CeO2-decorated CdS NWs good candidates for ethanol sensing applications.
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1. Introduction

Gas sensors have been extensively applied in various fields, such as exhaled breath analysis in
medical diagnosis, vehicle exhaust monitoring in environmental protection, anti-terrorism in personal
and national security, etc. In recent years, sensors based on semiconductors with a one-dimensional (1D)
nanostructure (in the forms of fibers, wires, sheets, rods, tubes, etc.) have been rapidly developed [1–5].
Compared to their micro-sized or bulk materials, 1D nanomaterials have been demonstrated with
large surface specific areas, fast electron transport, and straight conduction pathways, which make
them highly sensitive and efficient in detecting the target gas [6]. Various techniques have been
adopted to generate 1D nanomaterials, including solvothermal routes, electrospinning, wet-chemical,
hydrothermal synthesis, and the vapor phase transport method; among them, the solvothermal routes
emerged as a simple and low-cost way for preparing uniform, pure, and high-quality materials [7,8].

CdS, with a direct energy gap of 2.42 eV, shows real application in various areas, such as in
photoconductors, photocatalysts, laser printers, and in the paint industry [9,10]. Furthermore, CdS
exhibits low resistance, strong interaction with gas molecules, high sensitivity, and fast response
time [11]. The research on the gas sensing properties of CdS is limited; in particular, the metal
oxide-decorated CdS with heterostructures has seldom been researched. This combination of different
components surprisingly results in a synergistic effect. The response and selectivity of the sensors
based on heterostructures could be improved greatly by the barrier formed at the contact interface [12].
Some research on Au-decorated CdS with Schottky junction has been reported previously, however,
its response time was long and its working temperature was high, which causes the problems of high
energy consumption and thermal instability [8]. As an important functional material, CeO2 has been
used in barrier layers, capacitor devices, and as a catalyst support [2]. Also, CeO2 is widely adopted to
enhance the sensing properties of ZnO [1], TiO2 [13], as well as In2O3 [5]. Therefore, sensors based on
CeO2-decorated CdS NWs might possess more possibility in the realization of an increased sensitivity
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and response speed. In this paper, CeO2-decorated CdS NWs were fabricated by a solvothermal
method. Their gas sensing properties were investigated and an excellent sensing performance towards
ethanol was obtained, which makes the composite a good candidate for developing high response
ethanol sensors.

2. Experimental Procedure

In the experiment, CdS NWs were synthesized by a facile solvothermal method. The preparation
details can be found in Reference [8]. CeO2-decorated CdS NWs were synthesized through a similar
method. Specifically, 5 mg as-prepared CdS NWs were dispersed in a mixture containing 50 mL
deionized water and 30 mL ethanol. Subsequently, a measured amount of cerium nitrate Ce(NO3)2

(by mole ratio of 20:1 and 10:1) was added into the suspension under magnetic stirring. Thereafter,
the solution was transferred into a Teflon-lined stainless-steel autoclave with a capacity of 100 mL.
The autoclave was kept at 180 ◦C for 24 h. Finally, the product was collected after the centrifugation
and drying processes. The sample prepared above was mixed with deionized water in a weight ratio
of 100:4 to form a paste. The paste was then coated on an alumina ceramic tube, on which a pair
of Au electrodes formed the sensing film. Pt wires wedged on the pedestal were used as electrical
contacts and a Ni–Cr wire was inserted through the tube using as a heater to control the operating
temperature. The crystal structure of the samples was examined by X-ray diffraction (XRD, Bruker,
D8 Advance, Karlsruhe, Germany). A scanning electron microscope (SEM) (LEO1430VP, Zeiss, Jena,
Germany) was used to investigate the morphology. Gas sensing properties were measured by CGS-8
intelligent gas sensing analysis system (Beijing Elite Tech Co., Ltd., Beijing, China). The response value
was defined as Ra/Rg, where Ra and Rg were the resistance of sensors in air and their presence in the
target gases, respectively.

3. Results and Discussion

The XRD patterns of as-prepared pure CdS and CeO2-decorated ones are shown in Figure 1.
The diffraction peaks (111), (200), and (311) in the spectrum can be indexed to be CeO2 (JCPDS
34-0394); while (100), (101), (110) are the main reflections of CdS (JCPDS 41-1049). The XRD analysis
of CeO2/CdS NWs reveals the presence of both cubic-structured CeO2 and hexagonal-typed CdS in
the composite. No diffraction peaks from other impurities were found, indicating the high purity of
the samples.
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Figure 2a displays the general morphology of pure CdS NWs studied with SEM, which indicates
the formation of a 1D wire-like nanostructure with diameter of about 30 nm. The structure feature of
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the CeO2-decorated CdS is shown in Figure 2b,c. It is evident that the composite still keeps the original
morphology as CdS NWs. Under the same magnification, more adhesions on the CdS surface were
discovered after CeO2 decoration.
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Figure 2. SEM images of CdS NWs (a) and the composites with high (b) and low (c) CeO2 content.

In order to determine the optimum working temperature, the response of CdS and CeO2/CdS
NWs to 100 ppm ethanol was measured at different temperatures (138–255 ◦C). As shown in Figure 3,
the response of CdS NWs to ethanol vapor increased with the working temperature and achieved the
maximum value at about 206 ◦C, followed by a decrease with the temperature. As for CeO2-decorated
ones, 5 at% CeO2/CdS NWs showed an optimum working temperature of 161 ◦C, while that of the 10
at% composite was about 183 ◦C. Ma and co-workers reported Au-decorated CdS prepared by the
same method as ours, which worked best around 220 ◦C with a peak response of 110 [8]. Deng and
Liu et al. recently investigated the enhanced ethanol sensing properties of ZnO-based composites,
and both of the optimum working temperatures were higher than 220 ◦C [14,15]. In contrast to this past
research, the presented CeO2/CdS NWs exhibit a much lower working temperature. This improves
the security and reduces the energy consumption for the sample in device application. However,
the response of CeO2/CdS NWs still has room to be strengthened. In addition, at the optimum working
temperature, the 5 at% composite shows notably higher sensitivity than the pure sample, indicating
that the decoration of CeO2 on CdS NWs is beneficial for the enhancement of ethanol detection.
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Figure 3. Response of CdS NWs and CeO2/CdS composites to 100 ppm ethanol vapor measured at
different working temperatures from 138 to 255 ◦C.

The response of the sensors versus different ethanol concentrations at the optimum working
temperature is shown in Figure 4. The response rises upon increasing the ethanol concentration from
1 to 200 ppm. The response increase slows down and gradually saturates above 200 ppm. Moreover,
the 5 at% CeO2/CdS NWs display a much higher response with the maximum value of about 52 to
100 ppm ethanol vapor (2.6 times larger than that of pure CdS).
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Figure 4. The response of the sensors versus different ethanol concentrations from 1 to 500 ppm at the
optimum working temperature.

The selectivity of a gas sensor is one of the important parameters to evaluate in the sensing
performance of semiconductors. The response of pure CdS NWs and CeO2-decorated NWs to different
gases is shown in Figure 5. The detected gases are ethanol (C2H5OH), acetone (CH3COCH3), toluene
(C6H5CH3), formaldehyde (HCHO), ethyne (C2H2), and tetrahedrane (C4H4) with a concentration of
100 ppm, respectively. As shown in this figure, the composite sensors exhibit a much larger response to
ethanol than to other interfering gases. On the one hand, CdS detects ethanol efficiently by catalyzing
the decomposition of ethanol molecules. On the other hand, the decoration of CeO2 would effectively
dehydrogenate ethanol molecules and then significantly improve the selectivity towards ethanol.
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Figure 5. Selectivity of the sensors to 100 ppm ethanol (C2H5OH), acetone (CH3COCH3), toluene
(C6H5CH3), formaldehyde (HCHO), ethyne (C2H2), and tetrahedrane (C4H4).

A similar material system as we used, composed of In2O3-decorated ZnS NWs, also acquired
higher sensitivity and lower operating temperature than the pristine sensor [16]. In the research work
by Choi, Cr2O3-functionalized WO3 with p-n junction was facilely synthesized by coating Cr2O3 on
the nanorods substrate. However, the sensors in these works not only detect ethanol well, but also
show a response to acetone as well as other gases [17]. A comparison between CeO2/CdS NWs and
these composites indicates the excellent selectivity of the 5 at% sample for detecting low concentrations
of ethanol.
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The response time is the time taken by a sensor to achieve 90% of the total resistance change in the
case of the adsorption process, or the recovery time in the case of the desorption process. The response
and recovery characteristics of the sensors to different concentrations of ethanol are shown in Figure 6.
It is noted that when the detected gas is injected into the testing chamber, the response magnitude
ascends with the increase of ethanol concentration, followed by a drop with the absence of the target
gas. All the sensors display a fast response for ethanol detection, and both the response and recovery
time of CdS NWs are less than 3 s. Those of 5 at% CeO2/CdS NWs are less than 12 s and 3 s, respectively,
which is much shorter than that of other CdS and decorated metal oxides-based ethanol sensors [18,19].
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When the ethanol concentration is as high as 40 ppm, the composite with fewer CeO2 adhesions
shows a higher response. On this occasion, too many CeO2 particles would occupy the reactivity sites
on the CdS surface, which in turn lowers the response. While at low ethanol levels, the active site is
adequate in the chemical reaction, and the impact of CeO2 content on the response is not obvious.
Compared with the one-dimensional structured CdS NWs, the longer response time of composites is
possibly ascribed to the numerous grain boundaries generated after CeO2 decoration, which slows
down the electron transport.

The most widely accepted sensing mechanism is based on the resistance change on the surface
of a sensitive film by the adsorption and desorption of gas molecules. When the semiconductors are
surrounded by air, oxygen molecules are adsorbed onto the surface by chemisorption. Then, oxygen
species (O2

−, O−) are formed by extracting electrons from the conduction band of a semiconductor,
which leads to the formation of an electron-depleted layer on the surface and a decreased conductance
in the semiconductor. When the semiconductors are exposed to the reducing gas ethanol, the gas
molecules react with the chemisorbed oxygen and release the trapped electrons back to the conduction
band of the semiconductor, which narrows the depletion layer width and results in the resistance
reduction in the sensors [6]. The overall reaction may take place as follows [20]:

O2(gas) → O2(ads) (1)

O2(ads) + e− → O2
−

(ads) (T<100 ◦C) (2)

O2
−

(ads) + e− → 2O−(ads) (100 ◦C<T<300 ◦C) (3)

O− (ads) + e− → O2−
(ads) (T>300 ◦C) (4)

C2H5OH (gas) + O− (ads)→ CH3CHO + H2O + e− (5)
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The 1D nanostructure with a large surface area-to-volume ratio and straight conduction pathways
contributes a lot to the high sensitivity and quick response of the current NWs, by promoting the
efficient ethanol absorption on NWs surface. Another reason for the sensing improvement is that CeO2

acts as catalyst for the oxidative dehydrogenation of alcohols. The decorated CeO2 nanoparticles on
the surface involve more ethanol molecules in the reaction by catalyzing them into acetaldehyde [21].
The CeO2/CdS NWs combine the advantages of both components and, consequently, a synergistic
effect between them makes the composite more sensitive than the simplex CdS [22]. Additionally,
CeO2 decoration induces the formation of heterojunction at the CeO2/CdS interface. The increased
barrier height hinders the electron transmission and raises the atmospheric resistance in the composite.
When exposed to ethanol, the barrier height of the composite is further reduced by the reaction between
the gas molecules and the adsorbed oxygen. Then, the electrons would penetrate through the barrier
easily and bring about a sharp drop in resistance. As a result, surface chemical processes are converted
into electrical signals and a high response is eventually obtained [1,23].

A thermally activated surface oxidation process may be responsible for the temperature
dependence of CeO2-decorated CdS NWs. As the temperature rises from 138 ◦C to 161 ◦C,
the formation of chemisorbed oxygen species is accelerated and the reaction between these oxygen
irons and ethanol is promoted. As a result, the response goes up with the operating temperature.
However, as the temperature ascends further, the gas molecules quickly diffuse and desorb from
the surface before involved in the reaction [24,25]. Accordingly, the response declines above the
optimal temperature. Moreover, the decoration of CeO2 reduces the activation energy in the reaction,
and then the optimum working temperature is lowered in comparison to that of pure CdS [11]. We also
discovered the saturability characteristic of the samples towards a high concentration ethanol, as shown
in Figure 3. In this case, the gas molecules are excessive, and limited oxygen species are involved in the
reaction completely. On the other hand, the oxygen species are adequate at a low ethanol concentration,
hence the response increases sharply.

4. Conclusions

In conclusion, the synthesis and characterization of CeO2/CdS NWs were confirmed by XRD and
SEM. Thereafter, a sensor based on the composite was fabricated and its ethanol sensing properties
were explored for the first time. It was found that CeO2 decoration enhances the response and
decreases the working temperature of CdS NWs. In comparison with pure CdS, the 5 at% CeO2/CdS
NWs show an improved sensitivity to 100 ppm ethanol vapor, favorable selectivity, and fast response
rate at the optimal operating temperature of 161 ◦C. These results suggest that CeO2/CdS NWs with
heterostructures are of importance to the fabrication of optimized gas sensors.
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