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Abstract: Recently, non-Hermitian Hamiltonians have gained a lot of interest, especially in optics
and electronics. In particular, the existence of real eigenvalues of non-Hermitian systems has opened
a wide set of possibilities, especially, but not only, for sensing applications, exploiting the physics of
exceptional points. In particular, the square root dependence of the eigenvalue splitting on different
design parameters, exhibited by 2 × 2 non-Hermitian Hamiltonian matrices at the exceptional point,
paved the way to the integration of high-performance sensors. The square root dependence of the
eigenfrequencies on the design parameters is the reason for a theoretically infinite sensitivity in the
proximity of the exceptional point. Recently, higher-order exceptional points have demonstrated the
possibility of achieving the nth root dependence of the eigenfrequency splitting on perturbations.
However, the exceptional sensitivity to external parameters is, at the same time, the major drawback
of non-Hermitian configurations, leading to the high influence of noise. In this review, the basic
principles of PT-symmetric and anti-PT-symmetric Hamiltonians will be shown, both in photonics
and in electronics. The influence of noise on non-Hermitian configurations will be investigated and
the newest solutions to overcome these problems will be illustrated. Finally, an overview of the
newest outstanding results in sensing applications of non-Hermitian photonics and electronics will
be provided.

Keywords: non-Hermitian Hamiltonians; PT symmetry; anti-PT symmetry; exceptional point;
exceptional surface; quasi-PT symmetry

1. Introduction

In quantum mechanics, the Hamiltonian Ĥ, describing a closed quantum system, is
a Hermitian operator (Ĥ = Ĥ†) [1]; it has real eigenvalues and orthogonal eigenstates,
providing a complete basis in Hilbert space. Hermiticity guarantees the conservation of
probability in an isolated quantum system [1].

During the 20th century, non-Hermitian Hamiltonians (Ĥ 6= Ĥ†) were introduced
to describe open systems [2]. Non-Hermitian Hamiltonians generally exhibit complex
eigenvalues, and their eigenstates can be non-orthogonal. Non-Hermitian degeneracies
happen at an exceptional point (EP) where two or more eigenvalues and the corresponding
eigenstates coalesce simultaneously.

The widespread recent interest in non-Hermitian Hamiltonians takes its origin from
the pioneering study by Bender et al. [3] in 1998. They demonstrated that a particular family
of non-Hermitian Hamiltonians commuting with the joint operations of the parity operator
(P) and time operator (T) ([Ĥ, PT] = 0) exhibit entirely real spectra under certain ranges of
the design parameters, with non-orthogonal eigenstates. The properties of EPs of parity-
time-symmetric Hamiltonians inspired lots of works, both in fundamental and in applied
research, dealing with several fields of science, including optics [4–8], acoustics [9–11],
electronics [12,13], metamaterials [14–17], spintronics [18,19] optomechanics [20], and
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others. Useful papers reviewing several applications of non-Hermitian systems in different
fields can be found in [21–23].

Optics has been the most fertile branch of physics for the investigation of non-
Hermitian Hamiltonians [4–7], starting from the work by Ruschhaupt et al. [24]: since
the Schrödinger Hamiltonian is PT symmetric, provided that its potential (V) satisfies the
condition V(r) = V*(−r) (with r the position vector), and since the refractive index plays the
role of an optical potential in the spatial diffraction equation (isomorphic to the Schrödinger
equation [25]), a refractive index with a symmetric real part and an antisymmetric imagi-
nary part guarantees PT symmetry in optics. Later, in [26], a new class of synthetic photonic
systems was investigated, with the antisymmetric refractive index (n(r) = −n*(−r)) under
the joint P and T operators, defined as “antisymmetric parity-time (APT)”. An anti-PT-
symmetric Hamiltonian (as it later has been called) satisfies the anticommutation relation
{Ĥ, PT} = 0 [27] and can be realized without the necessity of gain.

About PT and anti-PT symmetries, a lot of research, both theoretical and experimen-
tal, has been carried out, especially in optics, dealing with power oscillations [28–30],
PT-symmetric lasers [31,32], non-reciprocal optical propagation [33–37], unidirectional
lasing [38,39], unidirectional invisibility [40,41], coherent-perfect absorption [42–45], elec-
tromagnetically induced transparency [46], orbital angular momentum lasers [47], nonlinear
switching [48], nonlinear quantum spectroscopy [49], optomechanical actuation [50], op-
tomechanical amplification [51], and magneto-optic isolation [52]. Useful reviews dealing
with non-Hermitian photonics can be found in [4–7]. Among all the studied applications
of non-Hermitian Hamiltonians, sensing is one of the most investigated. The reason for
this interest relies upon the fact that at the EP, the eigenvalues of the system are extremely
sensitive to applied perturbations. In particular, given a perturbation ε applied to the
system, the eigenvalues (that coalesce at the EP) exhibit a square root dependence on
the perturbation (ε1/2). This justifies the theoretically infinite sensitivity for very small
perturbations, and the consequent interest for sensing applications.

Effective Hamiltonians with PT symmetry can be easily realized with resonators. In
optics, PT-symmetric systems are usually realized through an active cavity and a passive
cavity having the same resonant frequencies, and with perfectly balanced gain and loss.

It is intuitive that the same effective Hamiltonian can be easily reached in electronics
(and not only) with RLC resonators, with perfectly balanced gain and loss (achieved via a
resistor R and a perfectly matched negative resistor, −R, respectively).

In this review, an overview of the theory of non-Hermitian (PT-symmetric and anti-
PT-symmetric) Hamiltonians in optics and electronics will be provided, with a focus on the
most interesting recent applications related to sensing.

2. Non-Hermitian Hamiltonians

In quantum mechanics, the Hamiltonian, Ĥ, of a system governs the time evolution of
the system itself, according to the Schrödinger-like equation, with

i
d
dt
|ψ〉 = Ĥ|ψ〉, (1)

where |ψ〉 is the state vector of the system. The Hamiltonian of a system is an operator
corresponding to the total energy of that system. According to the Dirac formalism, the
spectrum of the allowed energy levels of the system in stationary conditions is given by the
set of eigenvalues {E}, solving the equation

Ĥ|ψ〉 = E|ψ〉. (2)

In quantum mechanics, the Hamiltonian Ĥ is assumed to be Hermitian, Ĥ = Ĥ† (the
superscript † represents the Hermitian adjoint, i.e., transposition plus complex conjuga-
tion) [1]. The Hermiticity ensures that all the eigenvalues, E, are real and also guarantees a
unitary time evolution [1].
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There are several systems that can be described by a Schrödinger-like equation, in-
cluding also a source term:

i
d
dt

a = Ĥa + D, (3)

where a is the amplitude vector and D a driving term. In [3], Bender et al. discovered
that Hermiticity is not a necessary condition for Ĥ to have real eigenvalues. In particular,
there exists a whole class of non-Hermitian Hamiltonians that shows real eigenvalues. This
non-exclusive class has the property of being PT-symmetric.

3. Parity-Time Symmetry

A system is PT-symmetric provided that its Hamiltonian commutes with the PT
operator ([PT, Ĥ] = 0), meaning that

PTĤ = ĤPT, (4)

and, consequently,
PTĤ(PT)−1 = Ĥ. (5)

In other words, a Hamiltonian is PT-symmetric provided that it is invariant under the
combined action of the P and T operations [3] (see Figure 1 for a graphical interpretation).
In order to obtain the required condition for a Hamiltonian to be PT-symmetric, let us
consider the parity operator, defined as

P :

 x
y
z

→
 −x
−y
−z

 (6)

and the time operator, defined as
T : t→ −t. (7)
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Figure 1. Graphical interpretation of PT symmetry in coupled resonators: γ represents the loss term,
ω0 is the resonant frequency of each resonator, and κ is the coupling strength between the resonators.
The system is invariant under simultaneous applications of the parity and time operations.

Let us now consider a simple 2 × 2 Hamiltonian, realized, for example, by coupling
two generic resonators:

Ĥ =

[
−ωc,1 κ12
κ21 −ωc,2

]
(8)
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whereωc,1 andωc,2 are the complex resonances of two resonators (ωc,1(2) =ω1(2) + iγ1(2)),
withω1(2) the real resonance frequency and γ1(2) the decay rate in the resonator), and κ12
and κ21 are the coupling strengths between the two resonators.

In this context, the driving term D in (3) can be expressed as D = (µ1sin1, µ2sin2)T,
where sin1(2) is the input signal coupled to the first (second) resonator and µ1(2) a coupling
coefficient between sin1(2) and the amplitude, a1(2), in the first (second) resonator.

In (8), it has been implicitly considered that the time dependence is exp(iωt). This
choice differs from the one adopted by the majority of papers in physics, but it is useful for
being consistent with the classical conventions adopted in optics and electronics (phasor
notation) of the next sections.

Considering the matrix expression of the Hamiltonian in (7), the parity operator is the
Pauli operator:

P =

[
0 1
1 0

]
(9)

and the T operator acts on the operators as

TĤT−1 = Ĥ∗. (10)

So, to verify the condition necessary for the PT symmetry:

PTĤ(PT)−1 =

[
0 1
1 0

][
−ω∗c,1 κ∗12
κ∗21 −ω∗c,2

][
0 1
1 0

]
=

[
−ω∗c,2 κ∗21
κ∗12 −ω∗c,1

]
(11)

It is immediately seen that the required condition for a 2 × 2 Hamiltonian to be
PT-symmetric (see Equation (5)) are:

ωc,1 = ω∗c,2 = ω0 + iγ (12)

κ12 = κ∗21. (13)

For reciprocal coupling mechanisms (κ12 = κ21 = κ), the second requirement is equiva-
lent to have κ be a real number. So, the PT-symmetric Hamiltonian is found to be

ĤPT =

[
−ω0 − iγ κ

κ −ω0 + iγ

]
(14)

where ω0, γ and κ are real values. For two coupled resonators, ω0 is the same resonant
frequency for the two resonators, κ is the coupling strength between the resonators, and γ
is the loss term (−γ can be seen as the linear gain; in our model we will neglect the effect of
gain saturation).

The set of eigenvalues {−ωPT} of the Hamiltonian is easily found by setting

det
[
−ω0 − iγ+ωPT κ

κ −ω0 + iγ+ωPT

]
= 0. (15)

So, we obtain
ωPT = ω0 ±

√
κ2 − γ2. (16)

The two eigenfrequencies found can be designed to coalesce, for |κ| = |γ|, in
ωPT =ω0. This design condition is called the “exceptional point” (EP). The exception-
ality of this design condition arises from the fact that, as soon as a perturbation, ε, is
applied to any of the parameters of the system (resonances, gain or loss of one resonator,
coupling strength), the two eigenfrequencies split according to a square root function of
the perturbation. In particular, there are three possible kinds of perturbation that can be
interesting for sensing purposes:

- perturbation of the resonances of each cavity;
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- perturbation of the loss (gain) of each cavity;
- perturbation of the coupling mechanism between the cavities.

For |κ| > |γ|, the PT symmetry is called “unbroken” (exhibiting real eigenvalues),
whereas, for |κ| < |γ|, the PT symmetry is called “broken” (exhibiting complex conjugate
eigenvalues). In the unbroken PT symmetry, bifurcating eigenmodes appear. The eigen-
modes oscillate and do not grow or decay Instead, in broken PT symmetry, the system is
not in equilibrium; one eigenmode grows in time and the other decays in time.

3.1. Perturbing Resonances in PT Symmetry

When a perturbation εω is applied to one of the resonances of a PT-symmetric Hamil-
tonian (in the following, we will consider the first of the two resonances being perturbed),
the new Hamiltonian becomes

ĤPT,εω = ĤPT + Ĥεω =

[
−ω0 − iγ− εω κ

κ −ω0 + iγ

]
. (17)

The eigenfrequencies become

ωPT,εω = ω0 + εω/2±
√
κ2 − (γ− iεω/2)2. (18)

With a design at the EP (|κ| = |γ|) and with εω << |κ|:

ωPT,εω ≈ ω0 + εω/2± 1 + i√
2

√
κεω. (19)

The result is that the splitting between the eigenfrequencies is proportional to the
square root of the perturbation. The sensitivity of the eigenfrequencies splitting to the
perturbation εω at the EP is proportional to the inverse of the square root of the perturbation
(εω−1/2), thus leading to an infinite sensitivity for εω tending to zero.

3.2. Perturbing Loss (Gain) in PT Symmetry

When a perturbation εγ is applied to the loss (gain) of one of the resonators (in
the following, we will consider the first of the two resonators being perturbed), the new
Hamiltonian becomes

ĤPT,εγ = ĤPT + Ĥεγ =

[
−ω0 − iγ− iεγ κ

κ −ω0 + iγ

]
. (20)

The eigenfrequencies become

ωPT,εγ = ω0 + iεγ/2±
√
κ2 − (γ+ εγ/2)2. (21)

With a design at the EP (|κ| = |γ|) and with εγ << |κ|:

ωPT,εγ ≈ ω0 + iεγ/2± i
√
κεγ. (22)

The result is that the splitting between the eigenfrequencies is proportional to the
square root of the perturbation and the sensitivity of the eigenfrequency splitting to the
perturbation is infinite for εγ tending to zero.

Figure 2 shows the real part (Figure 2a) and the imaginary part (Figure 2b) of the
eigenfrequencies of a PT-symmetric Hamiltonian for different values of the perturbations
εω and εγ in the proximity of an EP. Black lines identify the region where εω = 0: it is
possible to appreciate the square root dependence on εγ in the proximity of the EP.
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3.3. Perturbing Coupling Strength in PT Symmetry

When a perturbation εκ is applied to the coupling mechanism between the resonators
(the coupling is supposed to be reciprocal), the new Hamiltonian becomes

ĤPT,εκ = ĤPT + Ĥεκ =

[
−ω0 − iγ κ + εκ
κ+ εκ −ω0 + iγ

]
. (23)

The eigenfrequencies become

ωPT,εκ = ω0 ±
√
(κ+ εκ)

2 − γ2. (24)

With a design at the EP (|κ| = |γ|) and with εκ << |κ|:

ωPT,εκ ≈ ω0 ±
√

2κεκ. (25)

The result is that the splitting between the eigenfrequencies is proportional to the
square root of the perturbation and the sensitivity is proportional to the inverse of the
square root of the perturbation.

4. Anti-Parity-Time Symmetry

A system is anti-PT-symmetric, provided that its Hamiltonian satisfies the anticommu-
tation relation with the PT operator ({PT, Ĥ} = 0), meaning that:

PTĤ(PT)−1 = −Ĥ. (26)

In other words, under the combined action of the P and T operations [27], the obtained
Hamiltonian is the opposite of the starting one (see Figure 3 for a graphical interpretation).
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To find the conditions required for a Hamiltonian to be anti-PT-symmetric, let us apply
the definition:

PTĤ(PT)−1 =

[
0 1
1 0

][
−ω∗c,1 κ∗12
κ∗21 −ω∗c,2

][
0 1
1 0

]
=

[
−ω∗c,2 κ∗21
κ∗12 −ω∗c,1

]
. (27)

It is immediately seen that, in order to be anti-PT-symmetric (see Equation (26)), a
Hamiltonian requires:

ωc,1 = −ω∗c,2 = ∆ + iγ (28)

κ12 = −κ∗21 (29)

For reciprocal coupling mechanisms (κ12 = κ21), the second requirement is equivalent
to having an imaginary coupling strength. So, the anti-PT-symmetric Hamiltonian is found
to be

ĤAPT =

[
−∆− iγ iκ

iκ ∆− iγ

]
(30)

where ∆, γ, and κ are real values.
However, this condition is not realistically satisfiable by two coupled resonators, be-

cause it would require having at least one negative resonance frequency (without a physical
meaning). Nonetheless, a Hamiltonian, ĤQAPT, describing two coupled resonators with
different resonances (ω1 andω2), the same loss (or gain), and imaginary coupling strength,
can be rewritten in the form of an anti-PT-symmetric Hamiltonian after transforming the
equation of motion to the frame rotating with the carrier frequency ω0 (with ω0 = (ω1 +
ω2)/2). Starting from the Schrödinger-like equation:

i
d
dt

[
A1
A2

]
=

[
−ω1 − iγ iκ

iκ −ω2 − iγ

][
A1
A2

]
= ĤQAPT

[
A1
A2

]
, (31)

where (A1, A2)T is the amplitude vector, and applying the transformation to the rotating
frame, [

A′1
A′2

]
= e−iω0t

[
A1
A2

]
, (32)

we obtain

i
d
dt

[
A′1
A′2

]
=

[
−∆ + iγ iκ

iκ ∆ + iγ

][
A′1
A′2

]
(33)
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with (A′1, A′2)T the state vector in the rotating frame and ∆ = (ω1 − ω2)/2. Since rotating
the frequency frame of reference does not affect the properties of the eigenfrequencies, we
can continue to refer to ĤQAPT as an anti-PT-symmetric Hamiltonian. This is the reason
why the configuration in Figure 3 is referred as anti-PT symmetric.

The set of eigenvalues of ĤQAPT and ĤAPT will only differ byω0. Referring to ĤQAPT,
the set of the eigenvalues {−ωAPT} is easily found by setting

det
[
−ω1 − iγ+ωAPT iκ

iκ −ω2 − iγ+ωAPT

]
= 0 (34)

So, we obtain

ωAPT = ω0 + iγ±
√

∆2 − κ2. (35)

The two eigenfrequencies found can be designed to coalesce, for |κ| = |∆|, in
ωAPT =ω0. This design condition corresponds to the EP. The exceptionality of this design
condition arises from the fact that, as soon a perturbation, ε, is applied to any of the param-
eters of the involved system (isolated resonances, gain or loss of one resonator, coupling
strength), the two eigenfrequencies split according to a square root function of the perturba-
tion. For |∆| < |κ|, the anti-PT symmetry is called “unbroken”, whereas, for |∆| > |κ|,
the anti-PT symmetry is called “broken”. In the unbroken anti-PT symmetry, the eigen-
modes have the same resonance frequency but different linewidths. Instead, in broken
anti-PT symmetry, bifurcating eigenmodes appear (with distinguishable resonant peaks).

4.1. Perturbing Resonances in Anti-PT Symmetry

When a perturbation εω is applied to one of the resonances of an anti-PT-symmetric
Hamiltonian (in the following, we will consider the first of the two resonances being
perturbed), the new Hamiltonian becomes

ĤQAPT,εω = ĤQAPT + Ĥεω =

[
−ω1 − iγ− εω iκ

iκ −ω2 − iγ

]
. (36)

The eigenfrequencies become

ωAPT,εω = ω0 + εω/2 + iγ±
√
(∆ + εω/2)2 − κ2. (37)

Without loss of generality, in the simplifying hypothesis ofω1 >ω2 and with a design
at the EP (|κ| = |∆|), and with εω << |κ|:

ωAPT,εω ≈ ω0 + εω/2 + iγ±
√
κεω. (38)

The result is that the splitting between the eigenfrequencies is proportional to the
square root of the perturbation.

4.2. Perturbing Loss (Gain) in Anti-PT Symmetry

When a perturbation εγ is applied to the loss (gain) of one of the resonators (in
the following, we will consider the first of the two resonators being perturbed), the new
Hamiltonian becomes

ĤQAPT,εγ = ĤQAPT + Ĥεγ =

[
−ω1 − iγ− iεγ iκ

iκ −ω2 − iγ

]
. (39)

The eigenfrequencies become

ωAPT,εγ
= ω0 + iεγ/2 + iγ±

√
(∆ + iεγ/2)2 − κ2. (40)
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Without loss of generality, in the simplifying hypothesis ofω1 >ω2, with a design at
the EP (|κ| = |∆|), and with εγ << |κ|:

ωAPT,εγ
≈ ω0 + iεγ/2 + iγ± 1 + i√

2
√
κεγ. (41)

The result is that the splitting between the eigenfrequencies is proportional to the
square root of the perturbation.

Figure 4 shows the real part (Figure 4a) and the imaginary part (Figure 4b) of the
eigenfrequencies of an anti-PT-symmetric Hamiltonian for different values of the perturba-
tions εω and εγ in the proximity of an EP. Black lines identify the region where εγ = 0: it is
possible to appreciate the square root dependence on εω in the proximity of the EP.
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4.3. Perturbing Coupling Mechanism in Anti-PT Symmetry

When a perturbation, εκ, is applied to the coupling mechanism between the resonators
(the coupling mechanism is supposed to be reciprocal), the new Hamiltonian becomes

ĤQAPT,εκ = ĤQAPT + Ĥεκ =

[
−ω1 − iγ iκ+ εκ

iκ+ εκ −ω2 − iγ

]
. (42)

The eigenfrequencies become

ωAPT,εκ = ω0 + iγ±
√

∆2 − (κ+ εκ)
2. (43)

So, we obtain, with a design at the EP (|κ| = |∆|), and with εκ << |κ|:

ωAPT,εκ ≈ ω0 + iγ± i
√

2κεκ. (44)

The result is that the splitting between the eigenfrequencies is proportional to the
square root of the perturbation.

5. Stability and Noise in Non-Hermitian Hamiltonians

By definition, the PT-symmetric Hamiltonian is designed to work with the eigen-
frequencies at the limit of stability. In fact, the time behaviour of the eigenmodes in the
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cavities can be easily obtained by using the found eigenfrequencies. An eigenfrequency ωA
corresponds to an eigenmode EA, such that [53]

EA ∝ ejωAt. (45)

The immediate consequence is that a negative imaginary part of an eigenfrequency
leads to a divergent eigenmode. So, a PT-symmetric system at the EP, by its definition,
is at the limit of stability (normally stable), because the coalesced eigenfrequencies in the
unperturbed condition lie on the real axis. Any source of noise would make the system exit
the stability condition, leading to the presence of divergent eigenmodes, and lasing would
arise. Instead, by its definition, anti-PT symmetry at the EP can be stable, provided that
γ > 0 (system not lasing).

Figure 5, on the left column, shows the trajectories of the eigenfrequencies on the
Gauss plane (Re{ω}, Im{ω}) for PT-symmetric and anti-PT-symmetric configurations in the
presence of the perturbation of the resonance or of the gain (or loss) of one of the resonators.
The grey half-plane represents the unstable region, i.e., the region where eigenfrequencies
should not lie in order to prevent instability. As soon as one eigenfrequency lies in the
unstable plane, the system becomes unstable, due to the presence of at least one divergent
mode. The right column of Figure 5 shows the normalized energy in one of the resonators
(proportional to a measurable output of the system) as a function of the normalized angular
frequency and for the same values of the perturbations used in the corresponding graph
on the left column. To obtain the normalized graph in the right column of Figure 5, input
amplitudes sin1 = 1 and sin2 = 0 have been considered.

Since the imaginary part of an eigenfrequency is proportional to the linewidth of the
corresponding eigenmode, the fact that the eigenfrequencies of the PT-symmetric case lie
on the real axis of the Gauss plane is an advantage for the resolution of the sensor. However,
as seen, the proximity of the eigenfrequency with the half plane, with Im{ω} < 0, leads
to instability.

To overcome the problem of stability of PT symmetry, the concept of quasi-PT symme-
try can be introduced. Quasi-PT symmetry can be useful also for implementing EP when
introducing gain is not possible.
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Figure 5. Eigenfrequency trajectories in the Gauss plane for PT-symmetric and anti-PT-symmetric
systems (left column) due to perturbations of the resonance frequency or of the loss (gain) of one
resonator: eigenfrequencies falling in the grey region (unstable region) causes instability. Normalized
energy in one of the resonators (right column) of PT-symmetric and anti-PT-symmetric systems
(considering inputs sin1 = 1 and sin2 = 0) as a function of the value of the perturbation of the resonance
(εω), or of the loss (gain) (εγ): solid lines represent stable transfer functions and dashed lines represent
unstable transfer functions.

6. Quasi-PT Symmetry

Sometimes PT symmetry can be difficult to achieve because of the necessity of im-
plementing gain. Moreover, it shows some problems of instability due to the presence
of eigenfrequencies on the real axis of the complex plane. Several works [54,55] solved
this issue by applying differential losses to the optical modes (A1 and A2) involved in the
Hamiltonian. Let us consider the Schrödinger-like equation:

i
d
dt

[
A1
A2

]
=

[
−ω0 − iγ1 κ

κ −ω0 − iγ2

][
A1
A2

]
. (46)

We can use a variable transformation to introduce two auxiliary modes that experience
a common gain with respect to A1 and A2:[

Ã1
Ã2

]
= e χt

[
A1
A2

]
(47)

where χ = (γ1 + γ2)/2. In this way, a new Hamiltonian can be introduced, such that

i
d
dt

[
Ã1
Ã2

]
=

[
−ω0 − iξ κ

κ −ω0 + iξ

][
Ã1
Ã2

]
(48)

where ξ = (γ1 − γ2)/2.
In this way, the PT symmetry is verified. An EP still exists. This common practice,

however, is different from the similar variable change applied in the anti-PT-symmetric
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case and has some drawbacks in the measurable outputs. In fact, a common loss can spoil
the resolvability of the resonances, due to the broadening of the linewidths (see [56]).

7. Noise and Limit of Detection in Non-Hermitian Hamiltonians
7.1. Classical Noise in Non-Hermitian Hamiltonians

The incredibly enhanced sensitivity to target parameters of non-Hermitian Hamiltoni-
ans has its immediate drawback in the enhanced sensitivity also to unwanted perturbation
and noise.

The influence of classical noise has been investigated in [21]. Including noise in the
total non-Hermitian Hamiltonian of a system; i.e., considering a noisy EP, it is possible
to obtain

Ĥtot(t) = Ĥ(ε) +
K

∑
j=1

ξ j(t)Ĥnoise,j (49)

where K is the number of statistically independent noise sources and the ξj are real-valued
fluctuations with a zero mean, whereas Ĥnoise,j describe the fluctuations of the matrix
elements of the total Hamiltonian.

Several papers have studied the influence of noise on the EP. In [57], the authors
investigated the influence of mesoscopic fluctuations and noise on the spectral and tem-
poral properties of systems of PT-symmetric-coupled gain-loss resonators at the EP. By
considering an inevitable detuning of the resonance frequencies of the isolated resonators,
the authors obtain that statistical averaging significantly smears the spectral features, thus
limiting the sensitivity of EP-based sensors. Moreover, they showed that temporal fluctua-
tions in the resonance detuning and gain lead to a quadratic growth of the optical power in
time, meaning dynamical instability.

The numerical simulations in [58] showed an exponential divergence of the eigenstates
due to the presence of noise. The authors say that maintaining operation at the EP for
enough time to detect resonance splitting requires very careful design of a feedback system.
Nonlinearities that could prevent divergence are not included in the modelling.

In practice, for EP-based sensors operating close to the real frequency axis (as it
happens in the PT-symmetric case), even a small noise can lead to instability, thus spoiling
the resolvability. This does not mean that EP-based sensors are fundamentally limited by
classical noise [21].

The instability can be removed, for example, by uniform damping of the sensor, thus
realizing a quasi-PT-symmetric version of the sensor. However, as said, this would broaden
the linewidths [56], thus reducing the resolution.

7.2. Quantum Noise

Different from classical noise, quantum noise may fundamentally limit EP-based
sensing [59–62]. The theoretical approaches to analyse the quantum noise have been
developed from the hypothesis of a weak dispersive limit, where the frequency splitting is
much lower than the linewidths [21]. However, most of the experimental works have been
performed away from this condition. The problem raised in the quantum noise studies
about non-Hermitian systems arises from the fact that the frequency splitting is not a direct
measurement but derives from measurement of the fields. In [59], it has been demonstrated
that the changes in the fields in lowest order are proportional to the perturbation, both
at the diabolical points [63] (where the splitting of the resonances is proportional to the
perturbation) and at the EP. This would imply an equal scaling in the quantum-limited
signal-to-noise ratio for EPs and diabolic points.

The same conclusion has been reached in [60], where it is demonstrated that an upper
bound of the signal-to-noise ratio is the same independent of whether the sensor is at
an EP or not. The bound obtained in [60], however, is only limited to reciprocal sensors.
Non-reciprocity is seen as a good source to be exploited for higher performance sensing
(see Section 8).
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In [61], the signal-to-noise ratio bound in the quantum regime has been demonstrated
to be better for an EP-based sensor near its lasing threshold, using a linearization approach
(that could represent a limit in their analysis).

In [62], the authors observed that the diverging frequency splitting enhancement
of a Brillouin-based optical gyroscope at the EP is exactly compensated by a diverging
broadening of the laser linewidths, due to the non-orthogonality of the counterpropagating
modes. The factor of the linewidth broadening is called the Petermann factor and is due to
the coalescence of the eigenmodes at the EP.

The topic of the noise at the EP is still an open issue; so, a lot of research has
been performed to realize sensors able to prevent the destructive effect of noise (see
Sections 8, 11 and 12.

7.3. Limit of Detection

The strong spectral response of PT- and anti-PT-symmetric Hamiltonians is expressed
in the proximity of EPs. Far from these operating conditions, the systems behave like
diabolic points.

So, since it is crucial to have a design in the proximity of the EP, we need the radicands
in Equations (16) and (35) to be exactly at the EP.

In order to be able to detect a perturbation ε (applied for example to the loss or gain or
to the resonance), in the proximity of an EP, we need that

|κε| � |δEP|, (50)

where {
δEP = κ2 − γ2 for a PT− symmetric configuration
δEP = ∆2 − κ2 for an anti− PT− symmetric configuration

(51)

So, the limit of detection of the sensor is defined by the possibility of keeping the
system at the EP, with the aid of a feedback loop.

8. Exceptional Surface

As demonstrated, in PT-symmetric implementation, the resonant frequencies of the
two resonators need to be identical and the gain and loss need to be perfectly balanced.
Finally, the coupling strength between the resonators needs to perfectly match the difference
between gain and loss. Instead, in an anti-PT-symmetric device, the gains or losses of the
two resonators need to be the same and the indirect coupling strength needs to match the
difference between the isolated resonances.

Several researchers make use of feedback techniques to tune the system actively and
continuously, setting it in the proximity of the EP (using micro-heaters, tuneable coupling
methods, etc.). However, in this way the resolution of the sensor needs to be aligned to the
resolution of the transducer of the active control. Moreover, it would be extremely useful
for practical sensing application to propose a new design to decouple unwanted fabrication
errors and experimental uncertainties from the target perturbations caused by the sensing
mechanism.

Therefore, in [64], Zhong et al. proposed the idea of a hypersurface of EPs, called excep-
tional surface (ES). The idea is to make the condition of the EP insensitive to perturbations
that are not related to the sensing principle.

This idea is achieved by coupling two counterpropagating optical modes inside the
same cavity (as in Figure 6), rather than using two separated coupled cavities. The architec-
ture in Figure 6 can be described with the effective Hamiltonian HES:

i
d
dt

[
acw
accw

]
= ĤES

[
acw
accw

]
, HES =

[
−ω0 − iγ κ1

κ2 −ω0 − iγ

]
, (52)
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where acw and accw are the field amplitudes of the clockwise (CW) and counterclockwise
(CCW) modes, ω0 is the optical resonance frequency of the optical cavity (same for CW
and CCW modes), γ is the common loss per time unit, and κ1 (κ2) is the coupling strength
between the CCW and the CW modes (CW and CCW).
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The eigenfrequencies of the system are easily found in the harmonic regime:

ωES1/2 = ω0 + iγ±√κ1κ2, (53)

The main result, in this case, is that the EP is achieved when one of the two coupling
strengths, κ1 or κ2, is equal to zero. In this case, any perturbation to the resonanceω0 or to
the gain γ does not perturb the EP. Thus, there is a hypersurface of EPs, which can be called
an exceptional surface (ES). For κ1 equal to zero, the eigenfrequencies difference depend
on the square root of κ2, thus representing an important advantage for sensing. Figure 6
illustrates schematically the sensing principle.

However, the proposed architecture is not as versatile as the parity-time and anti-
parity-time-symmetric systems presented before. This kind of configuration is useful for
sensing principles only when the perturbations on the coupling strength represent the
target of the sensing.

The concept of an exceptional surface has been recently investigated in optics in several
research works [65–69].

9. Non-Hermitian Photonics
9.1. PT-Symmetric Optical Potential

Non-Hermitian Hamiltonians have been studied and developed especially in optics.
The first demonstration of the possibility of realizing PT symmetry in optics was done
in [24]. Then, a parallelism between the potential in the Schrödinger equation and the
refractive index made it possible to conceptualize a new variety of optical PT-symmetric
Hamiltonians.

The paraxial equation of diffraction in optics is [7]

i
dE(x, z)

dz
+

1
2k

d2E(x, z)
dx2 + k0[nr(x) + ini(x)]E(x, z) = 0, (54)

where E(x,z) is the electric field envelope, nr(x) and ni(x) are the real and the imaginary part
of the refractive index distribution, respectively, and k0 = 2π n0 /λ, with λ the wavelength
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of the field in vacuum and n0 the substrate index. This equation is widely known to be
mathematically isomorphic to the Schrödinger equation:

iè
dψ(x, t)

dt
+

è2

2m
d2ψ(x, t)

dx2 −V(x)ψ(x, t) = 0, (55)

which can be written in the Hamiltonian form as

iè
d
dt

a = Ĥa, Ĥ =
p̂2

2m
+ V(x, t), (56)

with p̂ the momentum:

p̂ = −iè
d

dx
(57)

In order to be PT-symmetric, the Hamiltonian needs to be invariant under the parity
(P performs x→−x, p̂→− p̂) and time reversal operators (T performs i→−i, p̂→− p̂),
consequently requiring

V(x) = Vr(x) + iVi(x) (58)

where Vr(x) = Vr (−x) (even function) and Vi(x) = −Vi(−x) (odd function).
The isomorphism between the paraxial equation of diffraction in optics (Equation (54))

and the Schrödinger equation (Equation (55)) (with z playing the role of time and n(x)
playing the role of the optical potential) suggests that the optical potential should have the
real part (nr(x)) as an even function (nr(x) = nr(−x)) and the imaginary part (ni(x)) as an
odd function (ni(x) = −ni(−x)).

9.2. Non-Hermitian Hamiltonians with Optical Waveguides

The isomorphism between the paraxial equation of diffraction in optics and the
Schrödinger equation suggests that, in order to have a parity-time-symmetric Hamil-
tonian, it is sufficient to have the real part of the refractive index as an even function and its
imaginary part as an odd function. According to this result, two parallel optical waveguides
with the same real part of the refractive index and with opposite imaginary parts realize a
PT-symmetric Hamiltonian.

An easy way to verify this is to use the coupled mode theory. In the weak coupling
approximation (and neglecting self-coupling), and denoting with b1 and b2 the mode
amplitudes in two adjacent waveguides, we have [70] (with the implicit time dependence
exp(iωt))

i
db1

dz
= β1b1 + κ12b2, (59)

i
db2

dz
= β2b2 + κ21b1, (60)

where β1, β2 are the propagation constants of the modes b1 and b2, respectively, κ12, κ21 are
the coupling coefficients between the two waveguides, and z is the propagation direction.
Equations (59) and (60) can be rewritten as

i
db
dz

= Ĥb, (61)

with

Ĥ =

[
β1 κ12
κ21 β2

]
. (62)

So, it is possible to make it PT symmetric using complex propagation constants
(considering the effect of gain and loss). In particular, Figure 7a shows that is possible to
set up PT-symmetric waveguides by using two directly coupled optical waveguides, one
with gain and the other one lossy.
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In [27], it has been demonstrated that coupling two optical waveguides to realize an
effective anti-PT-symmetric Hamiltonian is also possible using a central auxiliary dissi-
pative waveguide. In particular, considering the coupled mode theory for three coupled
waveguides (as in Figure 7b), it is possible to obtain

i
db1

dz
= β1b1 + κ1c (63)

i
db2

dz
= β2b2 + κ2c (64)

i
dc
dz

= βcc− iγc + κ∗1b1 + κ
∗
2b2 (65)

where c is the mode amplitude in the central waveguide, γ represents the loss rate in a
central auxiliary waveguide, and κ1 and κ2 are the coupling strengths between the external
waveguides and the central one.

In [27], the authors demonstrated that in the hypothesis of κ1 ≈ κ2 and γ << |κ|,
mode c can be adiabatically eliminated, and an effective anti-PT-symmetric Hamiltonian
can be obtained:

i
d

dz

(
b1
b2

)
=

(
β+ ∆− iΓ −iΓ
−iΓ β− ∆− iΓ

)(
b1
b2

)
(66)

where β = (β1+ β2)/2, ∆ = (β1 − β2)/2, and Γ = |κ|2/γ.
Figure 7b shows the implementation of anti-PT symmetry by means of an auxiliary

intermediate dissipative waveguide, making it possible to obtain an imaginary coupling
strength.

Recently, an experimental demonstration of anti-PT-symmetric optical waveguides
has been reported in [71].

9.3. Effective Non-Hermitian Hamiltonians with Optical Resonators

We have demonstrated that the refractive index acts as an optical potential. So, having
the real part of the distribution of the refractive index as an even function and the imaginary
part as an odd function, gives rise to a PT-symmetric Hamiltonian.

There is a simple way to study PT-symmetric optical resonators using the coupled
mode theory proposed in [72]. In particular, a useful formalism to study energy exchanges
between the optical resonators was proposed, with a time-domain coupled-mode theory,
typical of electronic circuits. Two evanescently coupled optical resonators can be described
in the time domain as [72]

i
da1

dt
= −ω1a1 − iγ1a1 + ka2 (67)
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i
da2

dt
= −ω2a2 − iγ2a2 + ka1 (68)

where a1(2) represents the energy amplitude in the first (second) cavity, normalized so that
|a1(2)|2 is the total energy stored in the first (second) resonator, andω1(2) and γ1(2) are the
resonance angular frequency and the photon decay rate, respectively, of the first (second)
resonator and k is coupling strength between the resonators.

These two equations can be particularized in two special cases:

• ω1 =ω2 =ω0, γ1 = −γ2 = γwith k a real value (k = κ);
• ω1 6= ω2, γ1 = γ2, with k an imaginary value (k = iκ).

The first case corresponds to an effective PT-symmetric Hamiltonian, whereas the
second case becomes anti-PT-symmetric.

The PT-symmetric configuration can be easily realized by directly coupling two optical
resonators (Figure 8a), whereas the anti-PT-configurations can be realized by indirectly
dissipative coupling (with the same adiabatic approximation for anti-PT-symmetric waveg-
uides), as shown in Figure 8b,c.
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9.4. Non-Hermitian Sensing on Photonic Integrated Chips

The high sensitivity exhibited by EPs makes it possible to realize high-performance
miniaturized sensors; that is the reason for the high interest in non-Hermitian photonics,
especially with photonic integrated chips (PICs). There are some works in free-space
optics [73], or those with fibre optics [74,75], related to non-Hermitian Hamiltonians, but
the high interest in sensitivity enhancement is mainly oriented to the on-chip integration
of the sensors. Both the non-resonant parallel-waveguided configuration and the ring-
resonant one can be easily integrated in a PIC, to realize a miniaturized sensor for different
applications.

In the literature regarding sensing applications, the non-Hermitian configurations
realized with waveguided optical resonators (Figure 8) are preferred to the non-resonant
waveguide-based ones (Figure 7). The eigenfrequencies of a non-Hermitian photonic
system based on resonant cavities can be evaluated by simply measuring the frequencies
of the peaks in the transfer function (see Figure 5). Experimentally, the transfer function
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versus the wavelength can be obtained in three different ways. The first solution requires
a broadband source (either integrated or external) and a highly selective spectrometer
(either integrated or external) to reconstruct the output spectrum. In the second case a
tuneable narrow laser source (integrated or external) is used to scan the spectrum and a
photodetector is used to collect the optical power and reconstruct the transfer function
versus the wavelength.

With the third method, a broadband source can be used to excite both resonant peaks
corresponding to the eigenfrequencies of the non-Hermitian system (in case of real splitting
between the eigenfrequencies). In this way, a single photodetector at the output would read
the beating between the resonance peaks. So, the Fourier transform of the photogenerated
current would show a resonant peak at a frequency equal to the difference between the
eigenfrequencies of the non-Hermitian sensor, making the readout really simple.

All three of the mentioned methods require an electronic readout that can be either
integrated on the chip or external (Figure 9).
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As seen, PT symmetry strictly requires gain, so a platform providing active materials
is needed, as provided with indium phosphide (InP) or gallium arsenide (GaAs). On the
contrary, anti-PT symmetry and quasi-PT symmetry can be realized with a fully passive
platform such as silicon on insulator (SOI).

10. Non-Hermitian Electronics
10.1. PT Symmetric Electronics Oscillators

Parity-time symmetry can be achieved also with electronics oscillators. Intuitively,
by coupling two electronic oscillators, it is possible to realize Hamiltonians equivalent to
the ones realized in optics. Figure 10 shows a possible implementation of a PT-symmetric
Hamiltonian, implementing two resonators coupled with a capacitance CC. One of the
resonators includes gain thanks to the presence of the negative resistance. A ground
referenced negative resistance can be easily realized with a resistor and an amplifier [13]
(Figure 11).
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Considering Figure 10, using the Kirchhoff laws for voltages and currents, we obtain

V1 = iω(LI1 + MI2) (69)

I1 −
V1

R
+ iωCV1 + iωCc(V1 −V2) = 0 (70)

and
V2 = iω(LI2 + MI1) (71)

I2 +
V2

R
+ iωCV2 + iωCc(V2 −V1) = 0 (72)

Combining Equations (69)–(72) it is possible to arrive at( L
iω(L2−M2)

− 1
R + iω(C + Cc) −iωCc − M

iω(L2−M2)

−iωCc − M
iω(L2−M2)

L
iω(L2−M2)

+ 1
R + iω(C + Cc)

)(
V1
V2

)
= 0 (73)

Defining k = M/L, in the hypothesis of k << 1 and approximatingω (ωn/ω2 − 1)/2 ≈
ωn − ω, it is possible to arrive at(

i(ω0 −ω) + γ −iκ
−iκ i(ω0 −ω)− γ

)(
V1
V2

)
= 0 (74)

with

κ =

(
kω0

2

2ω
− ωCc

2(C + Cc)

)
(75)

γ =
1

2R(C + Cc)
(76)

ω0 =
1

L(C + Cc)
(77)

For time-harmonic voltages, Equation (74) is equivalent to the Schrödinger equation
with a PT-symmetric Hamiltonian. So, it is possible to create a PT-symmetric electronic
system by coupling two resonators with opposite gains by means of a coupling capacitance
or a mutual inductance (or both).

10.2. Anti-PT-Symmetric Electronic Oscillators

Figure 12 schematizes the idea of two coupled resonators for anti-PT symmetry pro-
posed in [76].

Combining Kirchhoff’s laws, it is possible to obtain

V1

iωL1
+

V1

R
+ iωC1V1 +

1
RC

(V1 −V2) = 0 (78)

V2

iωL2
+

V2

R
+ iωC2V2 +

1
RC

(V2 −V1) = 0 (79)
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Combining them in a matrix form: 1
iωL1

+
(

1
R + 1

RC

)
+ iωC − 1

RC

− 1
RC

1
iωL2

+
(

1
R + 1

RC

)
+ iωC

( V1
V2

)
= 0. (80)

For R = RC, we obtain(
i(ω1 −ω)− γ κ

κ i(ω2 −ω)− γ

)(
V1
V2

)
= 0, (81)

where
κ =

1
2RCC

(82)

ωn = 1/
√

LnC (83)

γ =

(
1
R
+

1
RC

)
1
C

. (84)

For time-harmonic voltages, Equation (81) is equivalent to the Schrödinger equation
with an anti-PT-symmetric Hamiltonian. So, it is possible to realize anti-PT-symmetry with
two electronic resonators coupled with a resistor.
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(architecture proposed in [76]).

10.3. Non-Hermitian Sensing with Electronic Boards

The majority of non-Hermitian sensors in electronics has been developed on printed
circuit boards (PCBs) using discrete components soldered onto it. A lot of interest has been
shown for non-Hermitian telemetry: two electronic systems (one active reader realized
with a PCB or chip, including a source and a resonator, and the other a passive electronic
resonator) communicate wirelessly between each other, thanks to the mutual coupling
between inductors (see Figure 13) (the passive sensor can be even implanted under the skin
for biological sensing [77]). In this way a non-Hermitian Hamiltonian is realized and the
perturbation to the sensor or to the mutual coupling between the resonators is enhanced,
thus realizing high sensitivity.
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11. Sensing Applications of Non-Hermitian Photonics

In this section, some of recent sensing schemes applied in photonics will be shown.
The two most studied applications of non-Hermitian sensing in photonics are optical
gyroscopes and particle sensors.

11.1. Non-Hermitian Optical Gyroscopes

In [78], Ren et al. proposed for the first time a PT-symmetric optical gyroscope. A
gyroscope is a sensor able to measure the angular velocity of its frame with respect to an
inertial system. According to the Sagnac effect, the resonance frequency shift of a single
isolated rotating optical ring resonator with respect to a rest condition is [79]

∆ωΩ,i = ±
2πRiΩ
λneff

, (85)

where λ is the wavelength in vacuum, Ri the radius of the i-th ring resonator, neff is the
effective index of the optical waveguides and Ω is the angular velocity of the frame. The
minus or plus sign is chosen if the mechanical rotation is in the same or opposite sense,
respectively, of the rotation of the optical beam in the resonator.

The PT-symmetric gyroscope presented in [78] is based on the standard PT-symmetric
structure realized with two coupled resonators with perfectly balanced gain and loss
(Figure 14a) and with the same radius.

A splitting between the real part of the eigenfrequencies has been demonstrated to be

∆ωPT ≈ 2
√
|∆ωΩ,iκ| (86)

where κ is the coupling strength between the cavities. Since the coupling strength is in-
versely proportional to the radius of the ring resonators, the spectral splitting is independent
of the size of the device. This explains the wide interest in research for non-Hermitian gyro-
scopes. The authors demonstrated that the gyroscope exhibits a sensitivity enhancement
with respect to the resonance frequency shift in a single ring, equal to

∆ωPT
∆ωΩ,i

=
√
|2κ/∆ωΩ,i|. (87)

In [80] the PT-symmetric gyroscope has been theoretically studied, introducing doubts
about the existence of a measurable splitting on the output transfer function of the sensor,
due to the complex splitting between eigenfrequencies during rotation. Later, anti-PT-
symmetric versions of the optical gyroscope were proposed to overcome the problems of
instability illustrated in Section 5 (Figure 14b): in [81], a U-shaped waveguide was used to
indirectly couple two resonators, whereas in [82] a single bus between the resonators was
proposed as a more stable solution for realizing the anti-PT-symmetric gyroscope, with a
proposal of integrating this solution in the InP platform.

In [73], a ring laser gyroscope was set up in the proximity of an EP (Figure 14c). The
device was realized in free space by inserting a Faraday rotator and a half-wave plate inside
the optical resonator, realizing a non-reciprocal loss for the counterpropagating optical
modes, clockwise (CW) and counterclockwise (CCW). According to experimental results,
an enhancement factor 20 was obtained for the resonance splitting in the vicinity of an EP.

In [83], a very high quality microdisk is used to realize a new kind of non-Hermitian
gyroscope (Figure 14d). The stimulated Brillouin effect leads to the lasing of counterprop-
agating modes in the microdisk, with ultranarrow linewidths. Moreover, the Brillouin
effect perturbs the resonating frequencies even in the absence of rotation, thus leading to
an effective anti-PT-symmetric Hamiltonian.

By adjusting the pump frequency, it is possible to reach an EP. The angular velocity, Ω,
leads to a perturbation of the Hamiltonian of the system. Experimental results demonstrated
the expected enhancement in the spectral response of the gyroscope by a factor of 4.
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11.2. Particle Sensing: Exceptional Points and Exceptional Surfaces

Another highly investigated application of non-Hermitian photonics is particle sensing.
In [84], Wiersig demonstrated the possibility of applying EPs to single nanoparticle sensing
(Figure 15a). The effective Hamiltonian for the microdisk with N nanoparticles in the
travelling-wave basis (CCW, CW) is given by (adapted to the time-harmonic convention
here adopted)

Ĥ(N) =

(
−Ω(N) A(N)

B(N) −Ω(N)

)
. (88)

with

Ω(N) = Ω(0) +
N

∑
j=1

(
Vj + Uj

)
(89)

A(N) =
N

∑
j=1

(
Vj −Uj

)
e−i2mβ j (90)

B(N) =
N

∑
j=1

(
Vj −Uj

)
ei2mβ j . (91)

The quantities 2Vk and 2Uj represent the complex frequency shifts for the positive and
negative parity modes due to particle j alone.

Wiersig proposed a system with three particles, two of them generating the EP, and
the third one being the perturbing one. A diabolic point is realized when B(2) = A(2) = 0 (no
scattering between CW and CCW travelling waves), whereas an EP results in B(2) = 0 or
A(2) = 0; this principle is behind what has later been introduced as an exceptional surface,
because the use of a single optical cavity ensures a hypersurface of EP.

Wiersig demonstrated that in the presence of the third particle, at a diabolic point, the
induced complex frequency splitting is given by

∆ΩDP = 2(V3 −U3). (92)
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Instead, in the presence of an EP, the splitting is given by (for B(2)=0)

∆ΩEP = ∆ΩDP

√
1 +

A(2)ei2mβ

V3 −U3
. (93)

If the square root is larger than one, the splitting at the EP is enhanced.
In [85], the enhancement of the splitting predicted by Wiersig was experimentally

demonstrated in an optical microcavity. In a log–log graph, the slope of the splitting with
respect to the perturbation equal to 1/2 was demonstrated, being different from the slope
of 1 at the diabolic point.

Later, in [86], an anti-PT-symmetric device was proposed for particle sensing. In [87], a
spinning resonator (rotating around its centre) was proposed for reaching the EP in an anti-
parity-time-symmetric system, realized with a single cavity, for ultrasensitive nanoparticle
sensing (see Figure 15b). In particular, the rotation induces a difference between the two
resonances of the counterpropagating modes (see Equation (85)), thus making it possible to
obtain an anti-PT-symmetric Hamiltonian. The indirect coupling mechanism necessary for
the anti-PT-symmetric configuration is realized with an external fibre, implementing an
optical isolator.
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Figure 15. (a) Schematic of the microdisk resonator for particle sensing at an EP (two particles
realize the EP and the third one is sensed) (proposed in [84]). (b) Schematic of an anti-PT-symmetric
particle sensor exploiting rotation to reach the EP (architecture proposed in [87]). (c) Schematic of
the exceptional surface configuration for particle sensing proposed in [64]. (d) Schematic of the
implementation of a microsphere resonator for particle sensing at the exceptional surface: the non-
reciprocal coupling between counterpropagating modes is realized via an optical isolator in the
external coupling fibre (architecture proposed in [68]).

In [88], a whispering gallery mode parity-time-symmetric nanoparticle sensor has been
proposed. The presence of gain in the PT-symmetric configuration allows the narrowing of
the linewidths, helping to increase the resolution, thus improving the limit of detection of
nanoparticles.

In [64], the concept of ES was introduced for the first time by Zhong et al. The idea
proposed by the authors was to exploit the EPs to enhance the sensitivity of a particle
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sensor, without being subject to undesired perturbations. The solution was implemented
with the architecture in Figure 15c.

A scattering matrix method was used to derive the transfer function and the difference
between the eigenvalues φ was obtained:

∆φ = 2
√

r2
p + r′mη2rp, (94)

where rp is the amplitude reflection of the particle to be sensed, r′m the effective unidi-
rectional coupling from CW mode to CCW mode, and η2 is the nondimensional power
coupling coefficient between the waveguide and ring resonator.

For very small values of rp, the splitting between the eigenvalues becomes

∆φEP ≈
{

2η√rp, rp � η2

2rp, rp � η2 . (95)

For rp << η2, the splitting is proportional to the square root of the perturbation, rp, in
perfect agreement with the condition of the EPs. The advantage of the proposed solution
is that any undesired perturbation to the cavity does not affect the condition of the EP,
making the entire system much more robust than classical EP-based sensors.

In [68], an integrated ES-based particle sensor has been experimentally realized,
demonstrating the enhancement in the frequency splitting caused by small perturbations.
The non-reciprocal coupling between counterpropagating modes CW and CCW in a silica
microsphere was realized with an optical tapered fibre coupled twice from two sides of
the microsphere (see in Figure 15d): the presence of a fibre-based optical isolator in the
coupling fibre realized the nonreciprocal coupling between the counterpropagating modes.

In [89], a nonreciprocal coupling between the counterpropagating optical modes in a
single optical resonator is proposed to minimize the detection limit, thanks to the fact that
the two optical modes do not degenerate at the EP.

11.3. Other Sensing Applications of Non-Hermitian Optics

There are several other applications of non-Hermitian optics. In [90], a higher-order EP
has been experimentally demonstrated. A cube root dependence on induced perturbations
in the refractive index was shown thanks to the coupling between three resonators. A
3 × 3 Hamiltonian was used to model the device, in which one resonator is lossy, another
has gain, and the central one is neutral (see Figure 16a):

Ĥ =

 ig + ε κ 0
κ 0 κ

0 κ −ig

. (96)

in which +g or −g accounts for the gain or loss, respectively. This kind of Hamiltonian
shows a dependence on the perturbation as ε1/3.

In 2018, Zhao et al. proposed a coating of an optical EP structure for thermal sensing
with a fine spatial resolution [91]. In particular, a three-layer structure of Au–PMMA–Au
was deposited on a silica glass slide for engineering the thermo-sensitive glass slide at an
EP (Figure 16b).

In 2019, the EP of an optomechanical cavity was exploited to enhance the sensitivity
of a mass sensor [92]. The gain or loss was engineered by driving the cavity with a
blue-detuned or red-detuned laser, respectively.

A magnetometer with exceptional sensitivity, using cavity magnon polaritons with PT
symmetry, was proposed in [93]. A third-order EP leads to an estimated magnetic sensitivity
of 10−15 T Hz−1/2 in the strong coupling region, which is two orders of magnitude higher
than that of the state-of-the-art magnetoelectric sensor.
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Figure 16. (a) A parity-time-symmetric ternary micro-ring system with equidistantly spaced cavities
(proposed in [90]). (b) Schematic drawing of the thermo-sensitive glass slide engineered at an EP.
A three-layer structure of Au–PMMA–Au is deposited on a silica glass slide (proposed in [91]).
(c) One of the configurations of the plasmonic structure (repeated periodically) made of two optically
dissimilar plasmonic resonators array with detuned resonances. The detuning can be implemented
either using structures of distinct size or using identical resonators in distinct optical environments
(architecture proposed in [94]).

In [94], plasmonic EPs are demonstrated, which are based on the hybridization of de-
tuned resonances in multilayered plasmonic structures. The reaching of a critical complex
coupling rate between nanoantenna arrays (Figure 16c shows one of the proposed con-
figurations) results in the simultaneous coalescence of the resonances and loss rates, thus
allowing the reaching of the EP. This setup is proposed for sensing of anti-immunoglobulin
G, the most abundant immunoglobulin isotype in human serum.

In 2020, an ultrasensitive stress sensor was proposed [95], with parity-time-symmetric
cavities. In particular, one cavity is embedded on a cantilever beam, serving as the sensing
element. The authors claim a sensitivity enhancement of about 8 orders of magnitude at a
stress range between 0 and 1 nPa.

In [96], it has been demonstrated with a Brillouin microresonator that two nondegener-
ate EPs behave anisotropically; i.e., when approached from both directions, the sensitivities
to the deviations of the two supermodes function differently. This has been proposed to
be used for realizing a bi-scale supersensitive optical sensor that can detect particles of
different sizes at the same time.

In [97], a label-free biosensor for detecting low-concentration analytes has been pro-
posed, via coupled resonant optical-tunnelling resonators (one lossy cavity and one sensing
cavity). The behaviour around the EP is controlled by adjusting the separation between
the resonators (thus the coupling strength). The surface of the sensing cavity is biofunc-
tionalized in advance to bind specific target analytes, which perturb the EP causing an
additional absorption in the sensing cavity. The authors evaluated the effect of the presence
of the analyte as a change in the imaginary part unit of refractive index (IP): a sensitivity of
17.12 nm/IP was demonstrated, with a detection limit of 4.2 × 10−8 IP, corresponding to
1.78 ng for sensing of carcino-embryonic antigen (CEA).

A gas sensor with ultrahigh sensitivity has been shown in [98]: the transverse dis-
placement induced by the photonic spin Hall effect (PSHE) is sensitive to the variation in
refractive index in gas media, especially in the proximity of an EP. The sensitivity of the
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gas sensing can reach 10−6 RIU µm−1, if the in-plane wavevector component of the probe
Gaussian light is reduced.

In [56], coupled cavities at the EP have been studied for refractive index and absorp-
tion sensing.

In [74], two counterpropagating modes in a fibre-ring cavity with different losses were
used to enhance the sensitivity of a fibre sensor. The differential roundtrip loss is induced
by using an extra fibre ring with an optical isolator. An erbium-doped fibre is used to
narrow the linewidth (pushing the eigenfrequencies near to the real axis).

12. Sensing Applications of Non-Hermitian Electronics

Non-Hermitian sensing has been exploited also in electronics for different kinds of
sensing. Here, some recent outstanding advances in non-Hermitian sensing in electronics
will be illustrated.

12.1. Generalized PT Symmetry for Enhanced Sensor Telemetry

A generalized condition for PT symmetry has been shown in [99]. In particular,
the theory of the so-called isospectral parity-time reciprocal scaling (PTX) symmetry has
been developed.

As shown, PT symmetry is achieved with perfectly balanced gain and loss, correspond-
ing to the negative and positive resistors in the coupled-oscillators electric system. This
results in sharp and deep resonances, with improved spectral resolution and modulation
depth for sensing. Sometimes, however, practical implementations for the sensor telemetry
may encounter difficulties in achieving an exact conjugate impedance profile [99], due, for
example, to space limitations: when using miniaturized MEMS implanted sensors, the
inductance of the sensor’s microcoil, LS, is usually smaller than the one of the reader’s coil,
LR. In principle, downscaling the reader coil can match LR to LS; however, this would lead
to a reduced mutual inductive coupling and degrade the performance of the sensor.

This is why the authors introduced an extra degree of freedom to enable the arbitrary
scaling of the coil inductance and other parameters, to improve the wireless interrogation.

The added degree of freedom is the parameter x, in the PTX configuration shown
in Figure 17, where x is the scaling factor of the PTX symmetry: for x = 1, the system
degenerates in the classical electronic PT-symmetric circuit.

Sensors 2022, 22, x FOR PEER REVIEW 27 of 34 
 

 

A gas sensor with ultrahigh sensitivity has been shown in [98]: the transverse 
displacement induced by the photonic spin Hall effect (PSHE) is sensitive to the variation 
in refractive index in gas media, especially in the proximity of an EP. The sensitivity of 
the gas sensing can reach 10−6 RIU µm−1, if the in-plane wavevector component of the 
probe Gaussian light is reduced. 

In [56], coupled cavities at the EP have been studied for refractive index and 
absorption sensing. 

In [74], two counterpropagating modes in a fibre-ring cavity with different losses 
were used to enhance the sensitivity of a fibre sensor. The differential roundtrip loss is 
induced by using an extra fibre ring with an optical isolator. An erbium-doped fibre is 
used to narrow the linewidth (pushing the eigenfrequencies near to the real axis). 

12. Sensing Applications of Non-Hermitian Electronics 
Non-Hermitian sensing has been exploited also in electronics for different kinds of 

sensing. Here, some recent outstanding advances in non-Hermitian sensing in electronics 
will be illustrated. 

12.1. Generalized PT Symmetry for Enhanced Sensor Telemetry 
A generalized condition for PT symmetry has been shown in [99]. In particular, the 

theory of the so-called isospectral parity-time reciprocal scaling (PTX) symmetry has been 
developed. 

As shown, PT symmetry is achieved with perfectly balanced gain and loss, 
corresponding to the negative and positive resistors in the coupled-oscillators electric 
system. This results in sharp and deep resonances, with improved spectral resolution and 
modulation depth for sensing. Sometimes, however, practical implementations for the 
sensor telemetry may encounter difficulties in achieving an exact conjugate impedance 
profile [99], due, for example, to space limitations: when using miniaturized MEMS 
implanted sensors, the inductance of the sensor’s microcoil, LS, is usually smaller than the 
one of the reader’s coil, LR. In principle, downscaling the reader coil can match LR to LS; 
however, this would lead to a reduced mutual inductive coupling and degrade the 
performance of the sensor. 

This is why the authors introduced an extra degree of freedom to enable the arbitrary 
scaling of the coil inductance and other parameters, to improve the wireless interrogation. 

The added degree of freedom is the parameter x, in the PTX configuration shown in 
Figure 17, where x is the scaling factor of the PTX symmetry: for x = 1, the system 
degenerates in the classical electronic PT-symmetric circuit. 

 
Figure 17. Equivalent circuit model for the PTX-symmetric telemetric sensor. The active reader 
interrogates the sensor via magnetic coupling. The parameter x is the scaling parameter. For x = 1, 
the PTX degenerates into PT symmetry (architecture proposed in [99]). The source is modelled via 
an equivalent impedance −Z0. The voltage impedance-controlled converter. 

Figure 17. Equivalent circuit model for the PTX-symmetric telemetric sensor. The active reader
interrogates the sensor via magnetic coupling. The parameter x is the scaling parameter. For x = 1,
the PTX degenerates into PT symmetry (architecture proposed in [99]). The source is modelled via an
equivalent impedance −Z0. The voltage impedance-controlled converter.

12.2. Implantable Microsensors

In biomedicine, some implanted electronic sensors are based on resonant inductor-
capacitor (LC) circuits that monitors internal physiological states. However, the sensitivity
of the wireless interrogation technique is often low, thus limiting the possibility of realizing
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minimally invasive devices for continuous physiological monitoring. In [77], the authors
proposed the readout of an implantable microsensors using a wireless system locked to an
EP. The coupling strength κ between the implanted sensor (see Figure 18a) and the reader
represents the parameter to be sensed. The idea of using the passive LC circuit as the lossy
part of a PT-symmetric sensor is not the best choice for this kind of setup, because the
sensitivity of a PT-symmetric device is null for κ = 0 (see Figure 18b).
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Figure 18. (a) Schematic of the EP realized with the implantable LC sensor and the combination
of external cavities with gain and loss (proposed in [77]). (b) Architecture of an EP-locked reader
proposed in [77].

The authors demonstrated that the spectral response, ∆ω, of the reader biased at an
EP follows a dependency of ∆ω ∝ κ2/3, which greatly amplifies its response to a weakly
coupled sensor.

The coupled mode equations describing the combination of the sensor and the PT-
symmetric reader are given by

d
dt

 a1
a2
as

 =

 iω1 + g1 −iµ −iκ
−iµ iω2 − γ2 −iκ
−iκ −iκ iωs − γs

 a1
a2
as

, (97)

where subscript 1 and 2 refer to the gain resonator and the loss resonator of the PT sym-
metric sensor, and subscript s refers to the implanted sensor resonator. The term aj (with
j = 1, 2, s) represents the mode amplitudes and ωj (with j = 1, 2, s) the resonant frequen-
cies of the three resonators. Moreover, g1 indicates the gain rate of the first resonator, γ2
indicates the loss rate of the second resonator of the reader, γs indicates the loss rate of the
sensor resonator, and µ is the coupling strength between the two resonators of the reader.
To be PT symmetric, the reader requiresω1 =ω2 =ω0, and g1 = γ2.

With the Newton–Puiseux series, the authors found the eigenfrequencies of the system
depart from the central frequencyω0, with a dependence proportional to κ2/3.

This configuration has been experimentally proven to have a sensitivity 3.2 times the
limit encountered by existing schemes.

12.3. Non-Hermitian Accelerometer

In [100], a preprint, an electromechanical accelerometer is demonstrated; it is a variable
capacitor, CC, with one plate connected to a test mass that senses the acceleration. The
electrical scheme is represented in Figure 19. The authors demonstrated that, thanks
to the coupling CE, the noise, due to collapse of the eigenvectors (demonstrated for the
Brillouin gyroscope in [62]), is mitigated, exploiting the detuning from a transmission peak
degeneracy (TPD) when the sensor is weakly coupled to transmission lines. The device
shows a three-fold signal-to-noise enhancement with respect to configurations working
away from TPD.
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Figure 19. Schematic of the PT-symmetric electromechanical accelerometer proposed in [100]. The
PT-symmetric circuit coupled to the transmission line with capacitors CE. The capacitance CC realizes
the coupling between the two RLC resonators.

In particular, the authors introduce a normalized Hamiltonian for the PT-symmetric
isolated system (in the absence of CE) (here adapted to the chosen convention for the
time-harmonic evolution):

H̃0 ≡
Ĥ0

ω0
=

(
−1 + iγ0 κ0
κ0 −1− iγ0

)
, (98)

where γ0 is the normalized gain (loss) in each resonator and κ0 is the normalized coupling
strength between the resonators. As required by the condition of the EP of the PT-symmetric
Hamiltonian, κ0 = γ0. Under this hypothesis, including the effect of perturbation ε (varia-
tion of the capacitance, due to acceleration) and the effect of the linewidth broadening (γe)
due to the coupling with the transmission line, the effective Hamiltonian is modified into

H̃eff =

(
−1 + ε− iγe + iγ0 γ0 + ε

γ0 + ε −1 + ε− iγe − iγ0

)
. (99)

Looking for the transmittance of the system and considering the frequencies associated
(ω̃±) with the transmission peaks (physical observables, that differ from eigenfrequencies),
they obtained

ω̃± =

{
1− ε; ε ≤ εTPD

1− ε±
√

2γ0ε + ε2 − γ2
e ; ε ≥ εTPD

. (100)

The frequencies associated to the transmission peaks have a coalescence point at

εTPD = −γ0 +
√
γ2

0 + γ
2
e . (101)

So, the maximum sensitivity is around ε = εTPD. Around the transmission peak degen-
eracy (TPD) point, the bi-orthogonal basis of the effective Hamiltonian does not collapse
and the Petermann factor does not diverge. Since the Petermann factor was the source of
the sensitivity limitations in the Brillouin ring laser gyroscope in [62], the separation be-
tween the coalescence of the eigenmodes and the coalescence of the measurable frequencies
associated with the transmission peaks overcomes the limitations of the Petermann factor.

12.4. Other Sensing Applications of Non-Hermitian Electronics

In [101], capacitive sensing for different applications (microfluidic flow sensor, pres-
sure sensor, accelerometer) is performed by implementing a sixth-order EP with non-
degraded thermal noise performance. A capacitive coupling channel is used as a sensing
platform to achieve an enhanced resonance shift proportional to the fourth-order root of the
perturbation strength, maintaining a high resolution for weak perturbation. The thermal
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noise is mitigated to a level comparable to the Hermitian counterpart, despite the highly
noisy gain and loss elements.

In [102], an ultra-sensitive passive wireless sensor is demonstrated, exploiting high-
order EP for weak coupling detection. In particular, a spectral splitting proportional to
the cube root of the coupling between two wirelessly coupled electronic RLC resonators is
demonstrated.

In [103], a glucose sensor with enhanced sensitivity has been proposed, using a PT-
symmetric system that sandwiches the tissue sample under analysis. The glucose level
changes within the skin are sensed by measuring the frequency shift in the electromagnetic
resonance induced in the PT-symmetric system. The skin is modelled as a transmission line.

13. Conclusions

In this work, recent progress in EP-based sensors has been reviewed, with a particular
focus on implementations of non-Hermitian Hamiltonians in optics and electronics. A
theoretical overview of the non-Hermitian Hamiltonian is presented, in order to be a helpful
starting point for the conceptualization and design of non-Hermitian sensors.

Several experimental works were then shown, demonstrating the real advantage of
non-Hermitian sensing with respect to classical sensing principles, in several fields of
sensing (especially, but not only, angular velocity and particle sensing in optics and wireless
telemetry in electronics).

The debate on the influence of noise on EPs is still open; however, new techniques to
avoid the negative effect of noise are now under research. The concept of an exceptional
surface has been introduced in optics to make the sensor immune to unwanted external
perturbations, and new configurations have been proposed and a design at the transmission
peak degeneracy point has been recently introduced in electronics to prevent the coalescence
of eigenmodes at the EP, thus improving its robustness.
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