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Abstract: Hyperspectral unmixing (HU) is a technique for estimating a set of pure source signals
(end members) and their proportions (abundances) from each pixel of the hyperspectral image.
Non-negative matrix factorization (NMF) can decompose the observation matrix into the product
of two non-negative matrices simultaneously and can be used in HU. Unfortunately, a limitation of
many traditional NMF-based methods, i.e., the non-convexity of the objective function, may lead to a
sub-optimal solution. Thus, we put forward a new unmixing method based on NMF under smoothing
and sparse constraints to obtain a better solution. First, considering the sparseness of the abundance
matrix, a weight sparse regularization is introduced into the NMF model to ensure the sparseness of
the abundance matrix. Second, according to the similarity prior of the same feature in the adjacent
pixels, a Total Variation regularization is further added to the NMF model to improve the smoothness
of the abundance map. Finally, the signatures of each end member are modified smoothly in spectral
space. Moreover, it is noticed that discontinuities may emerge due to the removal of noisy bands.
Therefore, the spectral data are piecewise smooth in spectral space. Then, in this paper, a piecewise
smoothness constraint is further applied to each column of the end-member matrix. Experiments
are conducted to evaluate the effectiveness of the proposed method based on two different datasets,
including a synthetic dataset and the real-life Cuprite dataset, respectively. Experimental results
show that the proposed method outperforms several state-of-the-art HU methods. In the Cuprite
hyperspectral dataset, the proposed method’s Spectral Angle Distance is 0.1694, compared to the
TV-RSNMF method’s 0.1703, L1/2NMF method’s 0.1925, and VCA-FCLS method’s 0.1872.

Keywords: hyperspectral unmixing; non-negative matrix factorization; reweighted sparseness; total
variation; piecewise smoothness constraint

1. Introduction

The hyperspectral sensor simultaneously acquires hundreds of continuous spectral
bands in the wavelength, ranging from 0.4 to 2.5 µm. Therefore, the hyperspectral images
(HSI) have a high spectral resolution, which promotes the development of quantitative
remote sensing applications [1]. However, due to the widespread presence of mixed pixels
resulting from the low spatial resolution of the sensor, i.e., a pixel is mixed with several
end-member signatures, the accuracy of identification of the images can be affected [2].
Thus, the mixed pixels should be decomposed into a series of end members and their
proportional fractions to improve the performance of HSI analysis [3]. HU is a technique to
find out the pure spectra (i.e., end members) and their specific percentage (i.e., abundance)
for every pixel, which has been extensively studied in recent years to solve the mixed pixel
problem.

According to the previous studies, HU algorithms can be divided into two categories.
The first group of methods consists of several independent steps, namely end-member
estimation and abundance estimation. The end-member estimation algorithms mainly
include PPI [4], N-FINDR [5], and VCA [6], which are usually based on the pure pixel
assumption, i.e., it is assumed that there exists one pure pixel at least for each sort of
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material in HSI. However, in some cases, the assumption is not reliable. To solve this
problem, some improved methods have been proposed by related researchers. For example,
Miao et al. [7] proposed to find the simplex that can contain all pixels with minimum
volume, and the vertices corresponding to the simplex are the desired end members. After
the extraction of the end member, it is followed by the abundance estimate. The fully
constrained least squares (FCLS) method [8] is the most common method of estimating
abundance. Satisfactory results can be obtained using this kind of end-member estimation
combined with abundance estimation, but the performance of HU is heavily influenced by
the accuracy of end-member estimation.

To avoid the above problems, related researchers have proposed a secondary category
of the HU method from a perspective of statistical analysis, i.e., taking HU as a blind
source separation problem. Such methods mainly include independent component analysis
(ICA) [9] and non-negative matrix factorization (NMF) [10], where the ICA method assumes
that the end-member matrix and the abundance matrix are independent of each other.
However, the sum of the fractions proportional to each material is 1, so the independence
assumption of ICA cannot be guaranteed in HSI. It can only be used as an approximate
solution for HU in some cases. Hyperspectral data is decomposed into the end-member
matrix and abundance matrix by HU, and the observation matrix is decomposed into a
product of two non-negative matrices by the NMF-based method, which better fits the
needs of HU and has no need to satisfy the assumption of pure pixels. Therefore, this
method is widely used for HU.

Unfortunately, the objective function of the classic NMF method is non-convex, which
means the result may fall into local minima. In order to solve this problem, different
constraints based on the characteristics of the HSI were introduced. For example, the distri-
bution of end member in HSI is clustered so that most pixels are mixed by some particular
end members instead of all of them. Thus, the columns of the abundance matrix are sparse.
Accordingly, researchers proposed to use L1 norm [11] to promote the sparsity of the results.
However, L1 norm cannot enforce further sparsity when the full additivity constraint of
the material abundances is used. Then, Qian et al. proposed an HU method based on
the L1/2 norm [12], which can obtain more accurate results than that of L1. However, this
article only considers the sparse feature of HSI. For hyperspectral data, due to its low
spatial resolution, the abundances of each end member vary smoothly in spatial space.
However, discontinuities may occur due to abrupt changes in abundance. Therefore, the
spectral data are piecewise smooth in the spatial domain. Hua et al. proposed an adaptive
abundance smoothing (AAS) autoencoder network to promote abundance smoothing [13].
Specifically, a multilayer encoder is used to obtain the abundance, and then the input layer
is constructed using a single-layer decoder. Finally, L1/2 is applied to promote sparsity.
In addition, He et al. proposed the use of Total Variation (TV) regularization to increase
the piecewise smoothing of abundance [14], where TV regularization can be treated as a
denoising process of the abundance map, which can improve the robustness to noise. In
addition, the spectrum is smoothly varied in the wavelength space by the high spectral
resolution of HSI [15]. However, discontinuities may occur owing to the removal of noisy
bands in wavelength space. Therefore, the spectra data are actually piecewise smooth
in the spectral domain. Thus, Sen et al. proposed a piecewise smoothness constraint for
HU [16]. It is also noticed that a new variant of NMF-based algorithms was proposed
in [17], which showed great potential for many image processing applications due to its
sparseness constraint and natural incorporation of local information. Apart from the above
studies, some new NMF-related hyperspectral unmixing methods have been put forward
in recent years, such as the novel low-rank factorization-based methods [18–20], and the
VCA-FCLS that is used as an initialization step in [18]. Future work will be carried out to
explore the relationship between the novel low-rank tensor and the non-negative matrix
factorization and compare their performances. Although the above methods have achieved
better results, there is still extra room for improvement.
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To further improve the accuracy of HU, piecewise smoothing constraints and sparsity
constraints are integrated into the NMF objective function, and an improved HU model is
put forward. Specifically, in this paper, the reweighted sparsity and TV norm constraint [14]
are proposed to promote the sparsity and smoothness of the abundance map, followed
by the end-member smoothing constraint. First, an unconstrained NMF decomposition
is performed, and the spectral difference of the adjacent bands is calculated as a measure
of smoothness according to the obtained result. In addition, different smoothing weights
are assigned according to different smoothness to further reduce the solution space of the
NMF-based method, and the optimal solution can be found more accurately. In summary,
our main contribution is to extend the reweighed sparsity and the piecewise smoothing
constraints in the abundance map, which were introduced in [14], to a more specific
scenario, where smoothing on the end-element spectra is also required.

The rest of this paper is organized as follows: In Section 2, we first introduce the
linear spectral mixing model, followed by a brief description of the NMF. The sparsity
and piecewise smoothing of hyperspectral abundance maps and the piecewise smoothing
of end-member spectral are discussed in Section 3. The model proposed in this paper
is described at the end of this section. The numerical results for a synthetic dataset and
a real dataset are reported in Section 4. Section 5 is the conclusion with suggestions for
future work.

2. Linear Spectral Mixture Model

In the linear mixing model, the spectral signal of a pixel is mixed by a set of end-
member spectral signatures linearly according to the abundance fractions. It is defined as

y = As + e (1)

where y ∈ RB×1 denotes a B-dimensional spectral vector. B is the number of spectral bands.
A ∈ RB×K is an end-member matrix, and each column corresponds to an end-member
signature. K is the number of the end member, s ∈ RK×1 is the abundance vector of a pixel,
and e ∈ RB×1 represents the Gaussian noise.

The linear mixing model for mixed pixels in HSI is expressed in the following
matrix form

Y = AS + E
s.t. 1T

KS = 1T
N , A ≥ 0, S ≥ 0

(2)

where Y = [y1, . . . , yN ] ∈ RB×N is the hyperspectral data with N pixels and B-bands,
S = [s1, . . . , sN ] ∈ RK×N is the abundance matrix, E ∈ RB×N represents the Gaussian noise,
and 1T

K = [1, . . . , 1] ∈ R1×K is an all-one vector with size K.
The observation matrix is decomposed into the product of two non-negative matrices

by the NMF-based method, and the classical NMF problem is expressed as

Y ≈ AS (3)

The end-member spectral matrix A ∈ RB×K and the abundance matrix S ∈ RK×N can
be solved by minimizing the difference between Y and AS. The objective function of NMF
based on the Euclidean distance is defined as follows:

min
A,S

1
2
‖Y−AS‖2

F, s.t. A ≥ 0, S ≥ 0 (4)

where ‖ · ‖F is the Frobenius norm of the matrix.
Algorithms such as projective gradient and multiplicative iteration [21] are used to

solve the NMF problems, these algorithms minimize the objective function starting from
two non-negative matrices and iterate continuously, and the process decreases. Although
the minimization problem of Equation (1) is separately convex in A and S, it is not simul-
taneously convex in both matrices. The widely used multiplicative algorithm presented
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in [10] is simple to implement and performs well, and can be generated from the traditional
gradient descent algorithm. However, Equation (4) has a non-unique solution due to its
non-convex for A and S. For example, if the solutions to Equation (4) are A and S, then
there exist invertible matrices B such that A1 = AB and S1 = B−1S are also solutions of the
equation. Therefore, the solutions are not unique, which is the biggest disadvantage of the
NMF-based algorithm. The two most commonly used methods to solve this problem are to
assign appropriate initial values and add constraints [21].

In this research, the traditional NMF method or the unconstrained NMF is applied,
where no abundance and end-element constraints are imposed. The purpose of using
the unconstrained NMF method is to consider a scenario when the smoothness of the
end-element spectra is unknown. Therefore, an approximation of the smoothness for
the end-element spectra can provide guidance or flag to drive the following piecewise
smoothness on the end-element spectra. It is noticed that in the proposed method, the
solution’s uniqueness cannot be guaranteed. However, if the initial spectra are assumed
appropriately, the following solution can be improved significantly and is acceptable for
many applications.

3. Sparse and Smooth Constrained NMF Method
3.1. The Sparseness of the Abundance

In most cases, any end member does not contribute to all pixels in the scene. Thus,
the abundance matrix is sparse. The L0 norm is applied to the objective function to
promote the sparsity of the abundance matrix, but it suffers from the NP-hard problem.
L1 or LP(0.5 ≤ p < 1) constraints are proposed by related researchers. Although L1
regularization is widely used, the constraint of sum 1 is often not satisfied. In the proposed
method, the L1 norm is applied since no significant difference has been found between
the choices of L1 and L1/2 norm in our simulations. It may indicate that the selection of a
proper norm in spectral unmixing is a dataset-dependent problem.

Reweighted sparse regularization [14] is applied to the NMF model in this paper
to promote the sparsity of the abundance matrix. Specifically, the performance of the L1
minimization framework is improved by weighting the L1 parameterization and iteratively
updating the weights. The weighted L1 minimization problem can be expressed as follows:

min
s
‖ω. ∗ s‖1 s.t. y = As (5)

where ∗ represents the element-wise multiplication. ω ∈ RK×1 is the weight vector. By
proving that the weighted L1 regularizer can obtain a sparser solution than the L1 regular-
izer with a suitable vector of weights. However, how to set the weights is a crucial problem.
Candes et al. [22] proposed an iterative reweighting algorithm to solve a series of weighted
L1 minimization problems, in which the weights for the next iteration are calculated based
on the current abundance matrix, i.e.,

W(k+1)
i,j = 1./(

∣∣∣S(k)
i,j

∣∣∣+ eps) (6)

where S(k)
i,j denotes the abundance matrix of the kth iteration, and eps is a positive constant,

./ represents the element-wise division.

3.2. The Smoothness of the Abundance

The rows of the abundance matrix are smooth. This is due to the similar fractional
abundances in adjacent pixels of the same end member. However, discontinuities may
occur owing to the abrupt changing of end-member abundance in spatial space. Therefore,
the spectral data are piecewise smooth in spatial domains. In this paper, Total Variation (TV)
regularization is used to facilitate the piecewise smoothing property, and the process can
be regarded as an abundance map denoising process. TV regularization was first proposed
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by Rudin et al. [23] for solving the grayscale map denoising problem, and for a grayscale
image y of size m× n, the TV parametrization is defined as

‖y‖TV =
m−1

∑
i=1

n−1

∑
j=1

{∣∣yi,j − yi+1,j
∣∣+ ∣∣yi,j − yi,j+1

∣∣}+
m−1

∑
i=1
|yi,n − yi+1,n|+

n−1

∑
j=1

∣∣ym,j − ym,j+1
∣∣ (7)

For an HSI, every band of the HSI can be treated as a grayscale image, so the hyper-
spectral total variance regularization is defined as [14]

‖S‖HTV =
K

∑
j=1
‖FSj‖TV (8)

where K is the number of end members in the image and Sj represents the row vector form
of the jth band of the HSI. If the number of pixels in the HSI is N, F represents the operator
that reshapes the row vector (with a total of N pixels) as a matrix of m× n, i.e., N = m× n.

3.3. The Smoothness of the End member

HSI has high spectral resolution, and the adjacent bands have similar spectral reflection
values, so the end-member spectra of HSI have a certain degree of smoothness. However,
the removal of the noise band may cause abrupt changes in the reflection values of adjacent
bands, so the end-member spectral curve has piecewise smoothness. First of all, this paper
obtains the estimated value of the end-member signatures Aest through an unconstrained
NMF, which is used as a priori information to determine the degree of smoothing of the
end-member matrix A. That is, different smoothing levels are assigned according to the
differences in the reflectance values of adjacent bands of Aest, where the smoothing levels
are described by the weight matrix Q, which is defined as

Qi,j = e−
(Aesti,j−Aesti+1,j)

2

σ (9)

where Aesti,j is the ith row and jth column element of the end-member matrix estimated
using the unconstrained NMF algorithm, i.e., the spectral reflection value corresponding to
the ith band in the jth end-member signature. σ is the parameter that controls the degree of
smoothing, and obviously, the closer Aesti,j is to Aesti+1,j, the larger the weight Qi,j is.

Figure 1 shows the comparison of the end-element signatures extracted by the uncon-
strained NMF method with the reference spectra. From the figure, it can be seen that the
estimated end-member signatures are very similar to the reference signatures and their
trends are basically the same. Therefore, the estimated signatures can be used as a priori
information to measure the smoothness of the end-member spectra.
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The end-member spectral piecewise smoothness regularization is defined as

minimize J1(A) =
K

∑
j=1

L−1

∑
i=1

Qi,j(Ai,j −Ai+1,j)
2 (10)

where K is the number of end member, L is the number of spectral bands, and Ai,j is the
spectral reflection value of the ith band corresponding to the jth end-member signature to
be estimated.

3.4. Smoothing and Sparse Constraints-NMF(SSC-NMF) HU Model

According to the above discussion about the characteristics of HSI, the SSC-NMF
model proposed in this paper is obtained by integrating the piecewise smoothness con-
straint and sparsity constraint into the NMF model. The SSC-NMF model is expressed as

minimize J(A, S) = 1
2‖Y−AS‖2

F + λ‖W. ∗ S‖1 + τ‖S‖HTV + βJ1(A)
subject to A ≥ 0, S ≥ 0, 1T

KS = 1T
N

(11)

where the first term is the standard fidelity term, parameter λ controls the sparsity of the
abundance matrix, and parameter τ controls the piecewise smoothness of the abundance
matrix. The last term promotes the piecewise smoothness of the end-member spectra, and
parameter β controls the piecewise smoothness of the end-member matrix.

3.5. Model Optimization

This paper introduces an auxiliary variable L to make better use of the multiplicative
iteration rule. The objective function is then transformed into

minimize J(A, S, L) = 1
2‖Y−AS‖2

F + λ‖W. ∗ S‖1 + τ‖L‖HTV + βJ1(A)
subject to A ≥ 0, S ≥ 0, 1T

KS = 1T
N , L = S

(12)

If we take S as a noisy version of the auxiliary variable L, then the constraint L = S
can be integrated into the objective function thus we obtain the following problem

minimize J(A, S, L) = 1
2‖Y−AS‖2

F + λ‖W. ∗ S‖1 +
µ
2 ‖L− S‖2

F + τ‖L‖HTV + βJ1(A)
subject to A ≥ 0, S ≥ 0, 1T

KS = 1T
N

(13)

where parameter µ is used as the penalty parameter to control the similarity of L and S. For
the optimization problem of Equation (13), it can be decomposed into three sub-problems
to optimize A, S, L respectively.

A = argmin
A

J(A, S, L)

S = argmin
S

J(A, S, L)

L = argmin
L

J(A, S, L)

(14)

The proposed method consists of three steps: (1) an end-member estimation step,
(2) an abundance estimation step, and (3) an abundance denoising step. In each step, the
value of one variable is updated according to the current values of the other variables
so that the value of the objective function iteratively decreases. The following is a more
detailed description.

3.6. Update Rules
3.6.1. End-Members Estimation

The optimization problem of A can be formulated as

minimize J(A) =
1
2
‖Y−AS‖2

F + βJ1(A) s.t. A ≥ 0 (15)
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In Equation (15), the constrained problem is transformed into an unconstrained prob-
lem using the Lagrange multiplier method

minimize J(A) =
1
2
‖Y−AS‖2

F + βJ1(A) + Tr(ψAT) (16)

where ψ ∈ RB×K is the Lagrange multiplier in matrix format. Based on the Karush–Kuhn–
Tucker (KKT) conditions, we obtain the following linear equations:

∂J(A)

∂A
= ASST − YST + β

∂J1(A)

∂A
+ ψ = 0 (17)

A. ∗ψ = 0 (18)

If both sides of Equation (17) are simultaneously multiplied by matrix A, we can obtain
the following equation:

A. ∗ (ASST)−A. ∗ (YST) + A. ∗ (β
∂J1(A)

∂A
) + A. ∗ψ = 0 (19)

We obtain the following update rule for A by combining Equation (18) with Equation (18)

A← A. ∗ (YST − β
∂J1(A)

∂A
)./ASST (20)

where the derivative of J1(A) with respect to each element in A is

∂J1(A)

∂Ai,j
= 2(Ai,j −Ai+1,j) ∗Qi,j (21)

The third condition is satisfied in the manuscript by ensuring the non-negativity of A
during initialization. According to Equations (4) and (5), the update rules for SSC-NMF
can be formulated as follows:

A← A− µA(ASST − YST + β
∂J1(A)

∂A
)

S← S− µS ∗ (ATAS−ATY + λW + µ(S− L))

where µA and µS are the step sizes. They are set as µA = A./ASS and µS = S./AAS to meet
the non-negative constraints. Thus, the update rules can be obtained as follows:

A← A. ∗ (YST − β
∂J1(A)

∂A
)./ASST

S← S. ∗ (ATY + µL)./(ATAS + λW + µS)

The initialization of A and S should be non-negative to ensure their non-negativity
during the iteration under the rules presented by Equations (20) and (24). The cost function
Equation (15) is non-increasing under the update rules, and it will be convergent to a
stationary point [24].

3.6.2. Abundance Estimation

Similarly, the optimization problem of S can be formulated as

minimize J(S) =
1
2
‖Y−AS‖2

F + λ‖W. ∗ S‖1 +
µ

2
‖L− S‖2

F s.t. S ≥ 0 (22)
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The augmentation matrix Y and A in each iteration is given by the following equation
to satisfy the abundance sum-to-one constraint (ASC).

–
Y =

[
Y
δ1

]
,

–
A =

[
A
δ1

]
(23)

where δ controls the effect of ASC constraint, 1 denotes the all-1 row vector, Equation (22)
is an inequality constrained optimization problem, and the iterative formula for the abun-
dance matrix S is obtained by basing the KKT condition on

S← S. ∗ (
–
A

T –
Y + µL)./(

–
A

T –
AS + λW + µS) (24)

For the validity of the update rule shown in Equation (23), please refer to [14].

3.6.3. Abundance Denoising

The optimization problem for L can be formulated as

minimize L =
µ

2
‖L− S‖2

F + τ‖L‖HTV (25)

Equation (25) is equated to solve the following problem

minimize J(L) =
K

∑
j=1

(
µ

2
‖FLj − FSj‖2

F + τ‖FLj‖TV) (26)

Further translating Equation (26) into K standard TV smoothing problems

L̂j
= min

Lj

µ

2
‖FLj − FSj‖2

F + τ‖FLj‖TV , j = 1, · · · , K (27)

In this paper, the fast gradient projection algorithm (FGP) [25] is used to solve
Equation (27), such as the following Algorithm 1.

Algorithm 1 Smoothing and Sparse Constraints NMF for HU

1. Input: The observed mixture data Y ∈ RK×N , the number of end-members K, the maximum
number of iterations c, the parameters λ, β, µ, τ, σ.
2. Output: End-member signature matrix A and abundance matrix S.
3. Initialize A, S, L, and weighted matrix W.
4. Repeat until convergence:
5. Update the weight matrix W with Equation (6);
6. Using Equation (19) to update A;
7. Obtain the augmentation matrix of A and S respectively using Equation (23)
8. Update S by Equation (24);
9. Update L with Equation (27).

4. Experimental Results and Discussion
4.1. Simulated Data Experiments

In the simulated data experiment, four end-member spectra from the United States
Geological Survey (USGS) digital spectral library are selected to apply to the simulation
data experiment. They are linearly mixed in a certain proportion to obtain simulation data.
In this research, the mixture proportions are listed in Table 1:



Sensors 2022, 22, 5417 9 of 17

Table 1. Mixture proportions of the simulated data.

Mixture
Proportion (%)

End Member 1
(Carnallite)

End Member 2
(Ammonioalunite)

End Member 3
(Biotite)

End Member 4
(Actinolite)

Case 1 20 20 20 40
Case 2 33 33 33 0
Case 3 0 33 33 33
Case 4 25 25 25 25

As shown in Figure 2a, each spectral curve includes the spectral reflectance corre-
sponding to 224 spectral bands in the wavelength range of 0.4–2.5 µm. By removing the
noise and water absorption bands, only the remaining 188 low-noise bands are selected
to synthesize the simulated data. After linear mixing, 48 ∗ 48 pixels are generated, and
each pixel has 188 bands. The simulated image is shown in Figure 2b; the pure pixel
area is displayed in the first row and areas with different levels of mixing are displayed in
2–4 lines. In addition, the background pixels are also mixed with four types of end members
in different proportions, where different colors indicate different degrees of mixing. In
Figure 2c–f, it is found that the more yellow color means the higher proportion of a certain
end member in the region.

4.1.1. Parameter Selection

The selection of parameter λ is related to the sparsity of the dataset. This paper refers
to a method proposed by Qian [12] for estimating the sparse regularization parameter,
which is defined as

λe =
1√
L

L

∑
l=1

√
N − ‖Yl‖1/‖Yl‖2√

N − 1
(28)

where L denotes the number of bands, N denotes the number of pixels, and Yl denotes the
vector corresponding to the lth band.

Parameter τ is chosen to be related to the abundance smoothing of the dataset. There-
fore, the similarity of the neighboring pixels is evaluated based on the similarity of their
spectral values, and then the smoothness of the abundance map is estimated, which is
defined as

τe =
1
N

N−1

∑
i=1
‖xi − xi+1‖2 (29)

where N denotes the number of pixels, and xi denotes the spectral vector corresponding to
the ith pixel.

When the other parameters are fixed, we discuss the influence of the sparsity parameter
λ and the TV regularization parameter τ on the experimental results of the simulation data
based on Equations (28) and (29). The results are shown in Figure 3. From this figure, it can
be seen that better results can be obtained when λ and τ take smaller values, so choosing
the right parameters will have a positive impact.

From Figure 3, it can be obtained that the optimal parameter of λ in the proposed
method is less than λe, and the optimal parameter is within [λe/10, λe]. The optimal
parameter of τ is optimized within the next order of magnitude of τe/10 to find the
optimal value. Considering both RMSE (Root Mean Square Error) and SAD (Spectral Angle
Distance), the λ parameter of the proposed method in this paper is set to 0.005 and τ is set
to 0.01 in the simulated data experiments.
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Secondly, parameter µ is the penalty parameter for violating the linear constraint
L = S. The larger it is, the closer Equations (12) and (13) are. In this paper, the value
of µ varies between 1, 10, 100, and 1000, and the results are shown in Figure 4. RMSE
and SAD are two metrics that show the average distance between the predicted values
from the model and the actual values in the dataset. The lower the RMSE and SAD, the
better an algorithm is able to unmix the data. It can be seen from Figure 4 that RMSE
first decreases and then increases when the value of µ becomes larger, and the SAD value
basically remains the same in the simulated dataset. However, for each dataset, the choice
of µ is different, and the best value is detected by searching for parameters within an order
of magnitude above 100.
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Figure 4. Performance of SSC-NMF with respect to parameter µ in terms of SAD and RMSE.

Finally, the effect of parameter β, σ on the experimental results is discussed, and the
results are shown in Figure 5. It can be seen from the figure that SAD and RMSE decrease
continuously as β decreases, and finally it reaches a stable state. The value of β is generally
taken as around 10 for different datasets due to the different spectral resolutions. For
parameter σ, the searching parameter is usually performed by an order of magnitude above
and below 0.005. The parameters of other reference methods in this paper are determined
according to the analysis in the corresponding references.
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4.1.2. Robustness Analysis

To study the robustness of the proposed method to noise, this paper verifies the
performance of the proposed method under different noise levels by adding noise to the
simulated data. By setting three different signal-to-noise ratios, three different levels of



Sensors 2022, 22, 5417 12 of 17

noise data are obtained, which are 15, 25, and 35 dB, respectively, where the signal-to-noise
ratio is defined as

SNR = 10 log10
E[xTx]
E[nTn]

(30)

where x, n is the observed value of the image and the noise, respectively, and E[·] denotes
the expectation operator.

The SAD and RMSE obtained by the four methods with Gaussian noise at different
signal-to-noise ratios are listed in Tables 2 and 3, respectively. The benchmarked methods
include TV-RSNMF [14], L1/2NMF, and VCA-FCLS, where VCA-FCLS is a supervised-
based unmixing method that first uses VCA for end element extraction and then uses
the FCLS method for abundance estimation. L1/2NMF and TV-RSNMF methods are
unsupervised-based unmixing methods, where the L1/2NMF method enhances the sparsity
of the unmixing by imposing sparsity constraints in the NMF objective function, and the
TV-RSNMF method considers both the sparsity of abundance and segmental smoothing.
When the signal-to-noise ratio is increased to a higher level, such as 35 dB, the majority of
the methods, including SSC-NMF, TV-RSNMF, and L1/2NMF, achieved similar results. In
this case, the proposed method is not the best one, but the difference is insignificant. This
reveals that the proposed method is more suitable for those harder applications where the
signal-to-noise ratio is lower than 35 dB.

Table 2. SAD values of different methods with the simulated data.

SNR/dB SSC-NMF TV-RSNMF L1/2NMF VCA-FCLS

15 0.0389 0.0397 0.0440 0.0564
25 0.0116 0.0125 0.0149 0.0167
35 0.0046 0.0047 0.0046 0.0049

Table 3. RMSE values of different methods with the simulated data.

SNR/dB SSC-NMF TV-RSNMF L1/2NMF VCA-FCLS

15 0.0378 0.0418 0.0492 0.0473
25 0.0092 0.0104 0.0158 0.0171
35 0.0057 0.0058 0.0059 0.0074

For the convenience of comparison, the optimal results in this paper are labeled in bold.
It can be seen from Table 2 that the SAD and RMSE values obtained by the proposed method
are lower compared to TV-RSNMF [14], L1/2NMF [12], and VCA-FCLS [6], indicating that
the algorithm is better at extracting the end-member signatures and inversion abundance.
When SNR = 15 dB, the L1/2NMF method obtains the highest RMSE value, mainly due to
the fact that the L1/2NMF method cannot handle the low SNR case. The VCA-FCLS method
tends to treat noise as an end member when the noise level is high because this method
treats monomorphic vertices as an end member, which largely limits the performance of
HU. However, the disadvantage of VCA-FCLS is not obvious when the signal-to-noise ratio
is low. In addition, the TV-RSNMF method achieves better performance than the L1/2NMF
method due to the L1/2NMF method only considering the sparsity constraint of abundance
and ignoring the smoothness constraint of abundance, thus indicating the superiority of
TV-RSNMF. Further, the end-member piecewise smoothness constraint with TV-RSNMF
further improves the accuracy of HU, illustrating the effectiveness of the method proposed
in this paper. Figure 6 shows a comparison of the end-member signatures extracted by
the different methods with the reference signature. It is seen in Figure 6 that there is
a significant deviation between the results obtained by the VCA-FCLS method and the
reference value. On the other hand, the end-member signatures extracted by TV-RSNMF
and SSC-NMF are in good agreement with the reference signature. Overall, the proposed
method achieved a smaller difference with the reference spectrum compared with other
benchmarked methods. Compared with different methods for estimating abundance maps
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of the fourth end member, the most accurate abundance estimation is obtained from the
method of SSC-NMF in Figure 7.
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4.2. Real Data Experiments

Cuprite dataset: The Cuprite real dataset is used for experiments, which is the
benchmark dataset in the HU study. The original cuprite dataset contains 224 bands
that cover the wavelength range of 0.37–2.48 µm. In the experiment, noisy bands and
water-absorption bands were removed before the unmixing, leaving 188 bands in total.
We choose 250 × 190 regions for the experiment, and there is no accurate answer for the
most terminal end-member number due to the strong spectral variability of the AVIRIS
Cuprite scene and the presence of a large amount of mineral alteration in the scene. In this
paper, the number of end members is set to 12 by referring to other articles [14], where the
end-member signatures are shown in Figure 8. It is worth noting that only the end-member
signatures are known as a priori for this dataset; the abundance map is unknown.
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Considering that the spectra in the USGS spectral library are obtained under ideal
conditions, and the spectra in real scenes are affected by atmospheric interference and
other environmental factors, there are inevitably some differences between the end-member
signatures extracted by SSC-NMF and the reference spectra. Table 4 presents the SAD
values achieved by the different HU methods, including TV-RSNMF [14], L1/2NMF [12],
VCA-FCLS [6], and the recently developed ULTRA-V [19]. From the table, it can be seen
that most of the end members obtained by SSC-NMF have optimal or sub-optimal SAD. The
average SAD of the proposed method is significantly lower than those of the TV-RSNMF,
L1/2NMF [12], VCA-FCLS [6], and is slightly lower than the ULTRA-V. This can indicate
the superiority of this algorithm.

Table 4. SAD values of different methods with the real Cuprite dataset.

Method SSC-NMF TV-RSNMF L1/2NMF VCA-FCLS ULTRA-V

Alunite 0.1049 0.1064 0.0921 0.0859 0.0842
Andradite 0.0872 0.0878 0.0652 0.0582 0.0511

Buddingtonite 0.0972 0.0964 0.0648 0.0724 0.0571
Dumortierite 0.1086 0.1112 0.0972 0.0978 0.0991

Kaolinite1 0.1316 0.1316 0.1268 0.1222 0.1778
Kaolinite2 0.0450 0.0449 0.0440 0.0458 0.0481
Muscovite 0.1278 0.1279 1.1667 1.1522 0.8819

Montmorillonite 0.0696 0.0698 0.0720 0.0717 0.0919
Nontronite 0.0902 0.0904 0.1173 0.1070 0.1379

Pyrope 0.0879 0.0881 0.1897 0.1783 0.1421
Sphene 1.0130 1.0130 0.0826 0.0876 0.0897

Chalcedony 0.0695 0.0761 0.1919 0.1675 0.1771
Mean 0.1694 0.1703 0.1925 0.1872 0.1698

Figure 9 shows the convergence curve of the algorithm, where the x-axis stands for the
iteration number and the y-axis denotes the objective value discussed in Equation (12). As
seen in Figure 9, the objective value decreases monotonically with the algorithm iteration.
Therefore, it can be expected that the unmixing results will approach true values step
by step.
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5. Discussion and Conclusions

SSC-NMF, a new HU model, is proposed in this paper to improve the problems of tra-
ditional NMF-based models in unmixing applications. This method has the advantages of
fully considering the characteristics of HSI, integrating the end-member piecewise smooth-
ness, abundance smoothness and sparsity constraints into the NMF model to further limit
the solution space. Especially in the case of a low signal-to-noise ratio, the method proposed
in this paper has better robustness, as proven by the simulation experiments. The SSC-NMF
model is solved by multiplication and iteration rules. The results from experiments of the
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simulated data and Cuprite real data show that this method has improved performance
compared with other methods, which demonstrates that the integration of abundance and
end-member features in SSC-NMF is effective. However, the method proposed in this
paper still has some shortcomings. For example, the computing complexity of the proposed
methods is similar to the TV-RSNMF method and L1/2NMF method, but it is relatively
higher than the VCA-FCLS method. Moreover, selecting parameters is an important step in
this method, which requires a sufficient training dataset and becomes a disadvantage for
real-time applications. In this research, the parameters are optimized within a certain range.
Therefore, the next focus will be on how to realize the adaptive problem of smoothing
parameters. Moreover, only the class labels for each pixel are given in the ground truth
associated with the Cuprite dataset, leaving us without the true end-member spectral data
and abundance data. In future research, we will test the proposed method on other datasets
where the abundance and end-member information are included.
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