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Abstract: Many aerial robotic applications require the ability to land on moving platforms, such as
delivery trucks and marine research boats. We present a method to autonomously land an Unmanned
Aerial Vehicle on a moving vehicle. A visual servoing controller approaches the ground vehicle
using velocity commands calculated directly in image space. The control laws generate velocity
commands in all three dimensions, eliminating the need for a separate height controller. The method
has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor
environments, and compared to the other available methods, it has provided the fastest landing
approach. Unlike many existing methods for landing on fast-moving platforms, this method does
not rely on additional external setups, such as RTK, motion capture system, ground station, offboard
processing, or communication with the vehicle, and it requires only the minimal set of hardware and
localization sensors. The videos and source codes are also provided.

Keywords: visual servoing; autonomous landing; monocular vision; aerial robotics

1. Introduction

The recent advances in Unmanned Aerial Vehicles (UAVs) have allowed innovative
applications ranging from package delivery to infrastructure inspection, early fire detection,
and cinematography [1–3]. While many of these applications require landing on the ground
and static platforms, the ability to land on dynamic platforms is essential for some other
applications. A typical example of a real-world scenario is an autonomous landing on a
ship deck [4] or maritime Search and Rescue operations [5].

The autonomous landing of Unmanned Aerial Vehicles (UAVs) on known patterns has
been an active area of research for several years [6–12]. Some of the key challenges of the
problem include dealing with environmental conditions, such as changes in light and wind,
and robust detection of the landing zone. The subsequent maneuver in trying to land also
needs to take care of the potential ground effects at the proximity of the landing surface.

The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) is a set of real-
world robotics challenges happening every few years [13]. Challenge 1 took place in March
2017, focusing on landing UAVs on a moving platform. In this challenge, there was a
ground vehicle (truck) moving on an 8-shaped road in a 90× 60 m arena with a predefined
speed of 15 km/h (4.17 m/s). On top of the truck, at 1.5 m height, there was a flat horizontal
ferromagnetic deck with a predefined 1.5× 1.5 m pattern (Figure 1) printed on top of it [14].
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The goal was to land the UAV on this deck autonomously. To make the challenge realistic,
no communication between the UAV and the ground vehicle was allowed, no precise state
estimation sensors such as RTK or Motion Capture were provided, and finally, the location
of the vehicle was not given to the UAV, requiring a visual detection of the pattern, which
could result in false and imperfect detections among other issues.

Figure 1. Landing zone pattern utilized at the MBZIRC competition [14].

This paper describes our approach to landing on moving platforms, which uses only a
single monocular camera, a point Lidar, and an onboard computer. The method is based
on a visual-servoing controller and has been successfully tested for landing on moving
ground vehicles at speeds of up to 15 km/h (4.17 m/s).

Our contributions include proposing a method that does not depend on a special
environment setup (e.g., IR markers and communication channels), can work with the
minimal UAV sensor setup, only requires a monocular camera, has minimum processing
requirements (e.g., a lightweight onboard computer), and approaches the landing platform
with high certainty. We also provide our source codes and simulation environment to assist
with future developments. The videos of our experiments and all the codes are available at
http://theairlab.org/landing-on-vehicle.

The paper is organized as follows: Section 2 reviews the relevant work and state of
the art; Section 3 explains our method for autonomous landing; Section 4 describes the
architecture and the experiments performed and discusses the results from simulation,
indoor and outdoor tests.

2. Background and Relevant Research

A review of the existing research reveals several approaches to solving this problem.
One of the earliest vision-based approaches introduced an image moment-based method
to land a scale helicopter on a static landing pad that has a distinct geometric shape [15].
This work further extends to the helicopter landing on a moving target [6]. However, a
limitation of the approach is that it tracks the target in a single dimension, and the image
data are processed offboard.

A more recent work tries to land a quadcopter on top of a ground vehicle traveling at
high speed using an AprilTag fiducial marker for landing pad detection [16]. They devise a
combination of Proportional Navigation (PN) guidance and Proportional-Derivative (PD)
control to execute the task. The UAV has landed on a target moving at up to 50 km/h
(13.89 m/s). However, the PN guidance strategy used to approach the target has to rely on
the wireless transmission of GPS and IMU measurements from the ground vehicle to the
UAV, which is impractical in most applications. In addition, two cameras are used for the
final approach to detect the AprilTag from far and near.

Visual servoing control is another approach that can be applied to this problem.
In [17], it is used to generate a velocity reference command to the lower level controller
of a quadrotor, guiding the vehicle to a target landing pad moving at 0.07 m/s. It is
computationally cheaper to compute the control signals in image space than in 3D space.
However, this work relies on offboard computing as well as a VICON motion capture
system for accurate position feedback during its patrol to search for the target. Another

http://theairlab.org/landing-on-vehicle
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closed-loop approach for landing was proposed in [18]. In this paper, the authors presented
a landing vector field. Unlike visual servoing, the method’s main advantage is that the
vector field can enforce the shape of the vehicle’s trajectory during landing. In addition,
different from visual servoing, the 3D localization of the UAV is necessary.

Some other works emphasize the design of a landing pad that is robust to detection,
which simplifies the task by eliminating the detection uncertainty [19–21]. In [7], a Wii
(IR) camera is used to track a T-shaped 3D pattern of infrared lights mounted on the
vehicle, and, in [22], an IR beacon is placed on the landing pad. Reliable detection enables
a ground-based system to estimate the position of the UAV relative to the landing target.
Xing et al. [21] propose a notched ring with a square landmark inside to enable robust
detection of the landing zone, then it uses a minimum-jerk trajectory to land on the detected
pattern. Finally, the method presented in [23] localizes the vehicle using two nested ArUco
markers [24] in an illuminated landing pad, allowing landing during the night using
visual servoing.

Optical flow is another technique used to provide visual feedback for guiding the
UAV. Ruffier and Franceschini [25] developed an autopilot that uses a ventral optic flow
regulator in one of its feedback loops for controlling lift (or altitude). The UAV can land
on a platform that moves along two axes. The method in [26] also uses the optical flow
information obtained from a textured landing target but does not attempt to reconstruct
velocity or distance to the goal. Instead, the approach chooses to control the UAV within
the image-based paradigm.

The method in [27] transfers all the computing power to the ground station eliminating
the need for an onboard computer. They only report results for very slow vehicle speeds
(10–15 cm/s), and the method cannot extend to higher speeds due to communication delays.

Several approaches were introduced for the MBZIRC challenge. The method used
by [10] tries to follow the platform until the pattern detection rate is high enough for
landing. Then, it continues to follow the platform on the horizontal plane while slowly
decreasing the altitude of the UAV. A Lidar (Light Detection and Ranging sensor) is used to
determine if the UAV should land on the platform or not. The landing is performed by a
fast descent followed by switching off the motors. The state estimation uses monocular
VI-Sensor data fused with GPS, IMU, and RTK data.

Researchers from the University of Catania implemented a system that detects and
tracks the target pattern using a Tracking-Learning-Detection-based method integrated
with the Circle Hough Transform to find the precise location of the landing zone. Then, a
Kalman filter is used to estimate the vehicle’s trajectory for the UAV to follow and approach
it for landing [28,29].

Baca et al. [30] took advantage of a SuperFisheye high-resolution monocular camera
with a high FPS rate for pattern detection. They used adaptive thresholding to improve the
method’s robustness to the light intensity, followed by undistorting the image. Then, the
circle and the cross are detected to find the landing pattern in the frame. After applying a
Kalman filter on the detected coordinates to estimate and predict the location of the ground
vehicle, a model-predictive controller (MPC) is devised to generate the reference trajectory
for the UAV in real-time, which is tracked by a nonlinear feedback controller to approach
and land on the ground vehicle.

Researchers at the University of Bonn have achieved the fastest approach for landing
among the other successful runs in the MBZIRC competition (measured from the time of
detection to the successful landing). They used two cameras for the landing pattern detec-
tion, a Nonlinear Model Predictive Control (MPC) for time-optimal trajectory generation
and control, and a separate proportional controller for yaw [11].

Tzoumanikas et al. [31] used an RGB-D camera for visual-inertial state estimation.
After the initial detection, the UAV flies in the vehicle’s direction until it reaches the velocity
and position close to the ground vehicle. Then, the UAV starts descending toward the target
until a certain altitude, when it will continue descending in an open-loop manner. During
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the landing, the UAV uses pattern detection feedback only to decide between aborting the
mission or not and not for correcting controller commands.

University of Zurich researchers have introduced a system in [32] that first finds
the quadrangle of the pattern and then searches for the ellipse or the cross, validating
the detection using RANSAC. Then, the platform’s position is estimated from its relative
position to the UAV, and an optimal landing trajectory is generated to land the UAV on
the vehicle.

An ultimate goal in robotics’ real-world applications is to achieve good results while
reducing the robot’s costs and the amount of the prior setup. Dependence on the additional
hardware or external hardware (e.g., motion capture systems, RTK, multiple cameras) is
costly and not always feasible in real-world applications. In contrast with other available
methods, our approach uses only a single monocular camera (with comparatively low
resolution and low frame rate), a point Lidar, and an onboard computer to land on the
moving ground vehicle at high speeds (tested at 15 km/h (4.17 m/s)) using a visual-
servoing controller. The approach does not depend on accurate localization sensors (e.g.,
RTK or motion capture systems) and can work with the state estimation provided by a
commercial UAV platform (obtained only using GPS, IMU, and barometer data). Our
real-time elliptic pattern detection and tracking method can track the landing deck in
challenging environment conditions (e.g., changes in lighting) with a high frequency [33].

3. Materials and Methods

This section explains our approach to sensing the vehicle passing below the UAV and
then landing the quadrotor on the vehicle. Our system was developed in the MBZIRC
Challenge 1 context, discussed in Section 1. Therefore, our primary goal was to land on a
known platform (see Figure 1) fixed on top of a vehicle moving at a fixed speed.

3.1. General Strategy

In our approach, we assume that the drone is hovering above the point where the
moving vehicle is expected to pass (which can be any point on the road if the vehicle is
in a loop). In addition, we assume that the direction and the speed of the moving vehicle
are known, which can be previously obtained, for example, from some consecutive deck
pattern detections. We further assume that the vehicle is almost moving in a straight line
during the few seconds when the UAV attempts to land.

A time-optimal trajectory to landing is theoretically possible, while in practice, there
is a variation in the speed of the moving vehicle (which is driven by a human driver),
and there are delays and errors in state estimation. Therefore, an approach with constant
feedback to correct the trajectory would work better than an open-loop landing using an
optimal trajectory. The method we chose is to continually measure the target’s position,
size, and orientation directly in the image space and translate it to velocity commands for
the UAV using visual servoing. This approach is described in Section 3.3.

Given the assumptions mentioned above, the defined strategy is as follows:

1. The quadrotor hovers at the point at the height of h meters until it senses the passing
ground vehicle.

2. As soon as the ground vehicle is sensed, the UAV starts flying in the direction of move-
ment with a predefined speed slightly higher than the vehicle speed to compensate
for the distance between the UAV and the vehicle. This gap results from the delays in
processing the sensors and dynamics of the UAV in getting up to the vehicle speed.

3. After the initial acceleration, the UAV flies with a feed-forwarding speed equal to
the ground vehicle speed. Then, the visual servoing controller tries to decrease the
remaining gap between the UAV and the target.

4. After successfully landing, magnets at the bottom of the UAV legs stick to the metal
platform, and the propellers are shut down.

Figure 2 depicts the steps of the described strategy. The following subsections explain
the main components of the landing strategy in greater detail.
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We used a path tracker similar to the one proposed by [34] to fly to the hover point
and to fly the straight lines.

Figure 2. Our strategy for landing on a moving vehicle. The vehicle hovers above the road until it
senses the passing vehicle. Then, it accelerates to catch up with the vehicle and tries to land using the
visual servoing method. As soon as the landing is detected, all the motors are turned off.

3.2. Sensing the Passing Vehicle

We considered two strategies for detecting the passing vehicle below the UAV when it
is hovering above the road on the vehicle’s path: the camera or using laser sensors. Due to
the reliability of our pattern detection method, using the camera gives more reliable results.
The chosen hovering altitude can range from a few to tens of meters, where the pattern
detection is reliable. The lower altitude allows for a faster approach to landing, while the
higher altitude results in more flight time required to catch up with the vehicle (box 4 in
Figure 2).

The strategy of sensing the vehicle using a camera worked well in our tests; however,
for higher vehicle speeds, we developed a laser-based solution to avoid the delays intro-
duced by the image processing and to get an even lower reaction time. We used three
point-laser sensors on the bottom of the UAV (as described in Section 4.1) to detect the
vehicle passing below it. If the distance measured by any of the three lasers has a sudden
drop of more than a certain threshold within a specified period, we assume that the vehicle
is passing below the quadrotor, and the landing system is triggered.

The choice of the number of the lasers and the ideal height of the hovering depend
on the road’s width and the vehicle’s width and height. For our tests, the road was 3 m
wide, the vehicle was 1.5 m wide, and its height was 1.5 m. In order to capture this
vehicle, the center laser points directly downwards, and the other two lasers are angled
at approximately 30 degrees on each side. With this configuration, at the altitude of 4 m,
two additional laser rays will hit the ground at a distance of 1.44 m from the center laser.
When the moving vehicle (with a width and height of 1.5 m) passes on the road below the
quadrotor, at least one of the three lasers will sense the change in the measured height.
Algorithm 1 illustrates the method.
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Algorithm 1: Approach for sensing the passing vehicle using three point lasers.

1: function DETECTPASSINGVEHICLE
2: . Keep reading the sensors until the vehicle is sensed
3: while true do
4: . Read the laser measurements
5: distl , distc, distr ← READLASERS()
6: . Check if we have a sudden decrease in the measured distance
7: . thr is set to a large number smaller than the vehicle’s height
8: if (lastl - distl) > thr or (lastc - distc) > thr or (lastr - distr) > thr then
9: return true

10: else
11: lastl ← distl , lastc ← distc, lastr ← distr
12: end if
13: end while
14: end function

Figure 3 shows examples of a laser triggering after sudden measurement changes.

Figure 3. Plot of laser distance measurements during a flight in our trials. The passing vehicle is
detected in several moments, indicated by the red ellipses. Detection by this laser fails in the third
trial due to vehicle misalignment with the laser direction.

3.3. Landing Using Visual Servoing

After the vehicle is detected (using the lasers or the visual pattern detection), the next
task is trying to land on the defined pattern on the deck of the moving ground vehicle. In
our strategy, the UAV follows and lands the moving deck using visual servoing. Visual
servoing consists of techniques that use information extracted from visual data to control
the robot’s motion. Assuming that the camera is attached to the drone through a gimbal,
the vision configuration is called an eye-in-hand configuration. We used an Image-Based
Visual Servoing scheme (IBVS), in which the error signal is estimated directly based on
the 2D features of the target, which we considered to be the center of the target ellipse and
the corners of its circumscribed rectangle. The error is then computed as the difference (in
pixels) between the features’ positions when the UAV is right above the target, at the height
of about 50 cm, and the current features’ positions given by the deck detection algorithm
(discussed in Section 3.6). Since the robot operates in task space coordinates, there must be
a mapping between the changes in image feature parameters and the robot’s position. This
mapping is applied using the image Jacobian, also known as the Interaction Matrix [35].

3.3.1. Interaction Matrix

If τ represents the task space and F represents the feature parameter space, then the
image Jacobian Lv is the transformation from the tangent space of τ at r to the tangent space
of F at f , where r and f are vectors in task space and feature parameter space, respectively.
This relationship could be represented as:
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ḟ = Lv(r)ṙ, (1)

which implies

Lv(r) =
[

∂ f
∂r

]
. (2)

In practice, ṙ needs to be calculated given the value of ḟ and the interaction matrix at
r. Depending on the size and rank of the interaction matrix, different approaches can be
used to calculate the inverse or pseudo-inverse of the interaction matrix, which gives the
required ṙ [36].

3.3.2. Calculating Quadrotor’s Velocity

The developed visual servoing controller for this project assumes the presence of five
2D image features: the center of the detected ellipse sc and the four corners of the rectangle
that circumscribes the detected elliptic target. Since the gimbal has faster dynamics than
the quadrotor, two separate controllers were developed. The first controller is a simple
proportional controller for the gimbal pitch angle to keep the deck in the center of the image:

δ = k‖s?c − sc‖, (3)

where k is a positive gain, s?c is the desired location of the deck center in the image, and
‖ · ‖ stands for the Euclidean distance. Since the gimbal is not mounted at the center of the
quadrotor, position s?c has an offset to compensate for this.

The second control problem, which relies on image features s = [x, y]T , is a traditional
visual servoing problem, which is solved using the following control law:

v = −λ
(

Ls
cVb

bJb

)+
(s? − s) + vff (4)

where v is the quadrotor velocity vector in the body control frame, λ is a positive gain, Ls is
the interaction matrix, cVb is a matrix that transforms velocities from the camera frame to
the body frame, bJb is the robot Jacobian, ()+ is the pseudo-inverse operator, (s? − s) is the
error computed in the feature space and vff is a feed-forward term obtained by transforming
the truck velocity to the body reference frame [37]. In our case, the error (s? − s) is
minimized using only linear velocities and yaw rate. Therefore, v = [vx, vy, vz, ω]T , which
forces the Jacobian matrix to be written as:

bJb =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

. (5)

This matrix is responsible for the transformation from the general six-dimensional
velocity space to a four-dimensional space that the UAV can indeed follow.

The interaction matrix Ls(s?, Z?) in our method is constant, and is computed at the
target location using image features (s? = [x?, y?]T) and the distance of the camera to the
deck (Z?) as [35]:

Ls =

[
−1/Z? 0 x?/Z? x?y? −(1 + x?2) y?

0 −1/Z? y?/Z? 1− y?2 −x?y? −x?

]
. (6)

It is essential to mention that, ideally, the interaction matrix should be computed
online using the current features and height information. However, in our approach, we
use a constant matrix to be more robust regarding the errors related to the UAV position



Sensors 2022, 22, 6549 8 of 18

estimation and information necessary to compute Z. For the same reason, the distance from
the deck is not used as part of the feature, as is done in some visual servoing approaches [37].
In addition, a constant matrix causes the system to be less sensitive to eventual spurious
detection of the target. On the other hand, since the camera is mounted on a gimbal, matrix
cVb must be computed online as:

cVb =

[ cRb [ctb]×
cRb

03×3
cRb

]
(7)

where cRb is the rotation matrix between the image and the robot body, which is a function
of the gimbal angles, ctb is the corresponding constant translation vector, and [t]× is the
skew-symmetric matrix related to t.

Since we are dealing with a moving deck, the feed-forward term vff in Equation (4)
is necessary to reduce the error (s? − s) to zero [38]. In our case, vff originates from the
ground vehicle velocity vector, which is a vector tangent to the moving vehicle’s path.
Thus, the precise estimation of this vector would require the localization of the vehicle with
respect to the track, which is a challenging task. To make such an estimation more robust
to sensor noise, we relaxed this problem to compute vff only on the straight line segments
of the track, where we assume the ground vehicle speed vector to be constant for several
seconds. This restriction causes our UAV to land only on such segments.

All the visual servoing control laws in Equations (1)–(7) are implemented using the
Visual Servoing Platform (ViSP) [37] version 3.0.1, which provides a suitable data structure
for the problem and efficiently computes the required pseudo-inverse matrix.

3.4. Initial Quadrotor Acceleration

As described in Section 3.1, the quadrotor will hover until it senses the ground vehicle
passing below it. Due to the relatively slow dynamics of the quadrotor controller, it takes
some time to accelerate to the ground vehicle’s speed. By this time, the deck is already out
of the camera’s sight, and the visual servoing procedure cannot be used for landing.

To compensate for the delay in reaching the ground vehicle’s speed and to gain sight
of the deck again, an initial period of high acceleration is set right after sensing the passing
ground vehicle. In this period, the desired speed is set to a value higher than the vehicle’s
speed until the quadrotor compensates for the created gap with the vehicle. After this time,
the quadrotor switches to the visual servoing procedure described in Section 3.3 with a
feed-forward velocity lowered to the current ground vehicle’s speed.

We tested two different criteria for switching from the higher-speed flight to the visual
servoing (box 5 in Figure 2) procedure: vision-based and timing-based. In the vision-based
approach, the switch to visual servoing happens when the pattern on the moving vehicle is
detected again. In the timing-based approach, depending on the processing and dynamics
delays of the sensing and considering the known speed of the vehicle and the set speed for
the UAV, it is possible to calculate a fixed time ta that is enough for catching up with the
vehicle. After this time, the UAV can start the visual servoing landing.

3.5. Final Steps and Landing

When the UAV gets too close to the ground vehicle, the camera can no longer see
the pattern. To prevent the UAV from stopping when the target detector (described in
Section 3.6) is unable to detect the deck during landing, the UAV is still commanded to move
with the known vehicle’s speed for a few sampling periods. If using one of its point lasers,
the UAV detects that it has the correct height to land, it increases its downward vertical
velocity and activates the drone landing procedure, which shuts down the propellers.

Note that the “blind” approach can only work due to the low delays between losing
the pattern and landing (generally 30–70 ms). This approach may fail if the ground vehicle
aggressively changes its direction or velocity. However, for many applications, the vehicle’s
motion (e.g., a ship or a delivery truck) can be reasonably assumed stable for such a
short time.
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3.6. Detection and Tracking of the Deck

Figure 1 shows the target pattern on top of the deck. There are some challenges in the
detection of this pattern from the camera frames, including:

• This algorithm is used for landing the quadrotor on a moving vehicle. Therefore,
it should work online (with a frequency greater than 10 Hz) on a resource-limited
onboard computer.

• The shape details cannot be seen in the video frames when the quadrotor is flying far
from the deck.

• The shape of the target is transformed by a projective distortion, which occurs when
the shape is seen from different points of view.

• There is a wide range of illumination conditions (e.g., cloudy, sunny, morning, evening).
• Due to the reflection of the light (e.g., from sources like the sun or bulbs), the target

may not always be seen in all the frames, even when the camera is close to the vehicle.
• In some frames, there may be shadows on the target shape (e.g., the shadow of the

quadrotor or trees).
• In some frames, only a part of the target shape may be seen.

Considering these challenges and the shape of the pattern, different participants of
the MBZIRC challenge chose different approaches for detection. For example, in [10], the
authors implemented a quadrilateral detector for detecting the pattern from far distances
and a cross detector for close-range situations. The method in [11] uses the line and circular
Hough-transform algorithms to calculate a confidence score for the pattern for the initial
detection and then uses the rectangular area around the pattern for the tracking. In [39],
a Convolutional Neural Network is developed to detect the elliptic pattern, which was
trained with over 5000 images collected from the pattern moving at a maximum of 15 km/h
(4.17 m/s) at various heights. In [40] the cross and the circle are detected for far images,
and only cross detection is used for the closer frames. The method uses the [41] method for
ellipse detection. In [31], the outer square is detected first, and then the detection is verified
by a template matching algorithm.

In our work, we developed a novel method to overcome the problem challenges men-
tioned above, which detects and tracks the pattern by exploiting the structural properties of
the shape without the need for any training [33]. More specifically, the deck detector system
detects and tracks the circular shape (seen as an ellipse due to the projective transformation)
on top of the deck, while ignoring the cross in the middle and then verifying that the
detected ellipse belongs to the deck pattern. The developed real-time ellipse detection
method can also detect the ellipses with partial occlusion or the ellipses that are exceeding
the image boundaries.

Figure 4 shows results for the detection of the deck in some sample frames. A more
detailed description of the methods, database, and results are provided in [33].

(a) (b)
Figure 4. Cont.



Sensors 2022, 22, 6549 10 of 18

(c) (d)
Figure 4. (a–d) Result of the deck detection and tracking algorithm on sample frames. The red ellipse
indicates the detected pattern on the deck of the moving vehicle.

4. Experiments and Results

This section outlines the architecture of our proposed landing method from both
hardware and software perspectives and presents the results obtained from the tests in
different conditions: simulation, indoor testing, and outdoor testing. Some videos of
experiments and sequences shown in this section are available at http://theairlab.org/
landing-on-vehicle.

4.1. Hardware

The aerial platform chosen for this project is a DJI Matrice 100 quadrotor. This UAV
is programmable, can carry additional sensors, is fast, provides velocity commands, and
is accurate enough for this problem. Using an off-the-shelf vs. home-built platform
vastly increased the speed of the development, reducing the time needed for dealing
with hardware bugs. The selected platform has a GPS module for state estimation and
is additionally equipped with an ARM-based DJI Manifold onboard computer (based on
NVIDIA Jetson TK1 computer), a DJI Zenmuse X3 Gimbal and Camera system, a set of
three SF30 altimeters, and four permanent magnets at the bottom of legs. One altimeter
is pointed straight down to measure the current height of the flight with respect to the
ground. The other two altimeters are mounted on the two sides of the quadrotor, pointing
down with approximately 30 degrees outward skew to measure the sudden changes in
the height on the sides of the quadrotor for the detection of the truck passing next to the
quadrotor. The camera is mounted on a three-axis gimbal and outputs grayscale images at
a frequency of 30 Hz with a resolution of 640× 360 pixels.

A wireless adapter allows communication between the robot computer and the ground
station for development and monitoring. For indoor tests, a set of propeller guards and a
DJI Guidance System, a vision-based system able to provide indoor localization, velocity
estimation, and obstacle avoidance, are used to provide velocity estimation and improve
the safety of the testing. The guards and the Guidance system are removed for outdoor
tests to reduce the weight and increase the robustness to the wind. Figure 5 shows the
picture of the robot.

http://theairlab.org/landing-on-vehicle
http://theairlab.org/landing-on-vehicle
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Figure 5. The robot developed for our project. The figure shows our DJI Matrice 100 quadrotor
equipped with the indoor testing parts (DJI Guidance System and the propeller guards), as well
as the DJI Zenmuse X3 Gimbal and Camera system, the SF30 altimeter, and the DJI Manifold
onboard computer.

The main characteristics of the robot are summarized in Table 1.

Table 1. The main characteristics and parameters of the UAV.

Parameter Value

Maximum time of flight 19 min

Maximum horizontal speed 17 m/s (61 km/h)

Maximum vertical speed 4 m/s (14.4 km/h)

External diameter (with propeller guards) 1.2 m

Height 0.46 m

Processor Quad-core ARM CORTEX-A15

RAM Memory 2 GB

Maximum robot speed 8.33 m/s (30 km/h)

4.2. Software

The robot’s software is developed using the Robot Operating System (ROS) to achieve
a modular structure. The modularity allowed the team members to work on different parts
of the software independent of each other and reduced the debugging time. DJI’s Onboard
SDK is used to interact with the quadrotor’s controller. The software is constructed in a
way that it can control both the simulator and the actual robot with just a few modifications.
Figure 6 shows a general view of the system architecture.

In Figure 6, the main block of our architecture (implemented as a ROS node), called
“Mission Control”, dictates the robot’s behavior, informing the other blocks of the current
task (mission status) using a ROS Parameter. The Mission Control block also generates
trajectories for the robot when the current mission mode requires the robot to fly to a
different position. To dictate the robot’s behavior, Mission Control relies on the robot’s
odometry information and the robot’s distance to the ground or target.

The other blocks in Figure 6 are:

• Deck tracking—detects the deck target and provides its position and orientation in the
image reference frame;

• Visual Servoing—controls the UAV to track and approach the deck;
• Trajectory controller—provides velocity commands to the robot so it can follow the

trajectories generated by the Mission Control node;
• Mux—selects the velocities to be sent to the quadrotor, depending on the mission status.
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Figure 6. System architecture used in the development of the system.

The implementation of the project and the datasets used for our tests are provided as
open-source for public use on our website.

4.3. Test Results

Before testing the landing outdoors, we performed several indoor experiments to
develop and validate our visual servoing approach. We performed experiments both with
a static and moving deck using this setup at speeds up to 2 m/s. Figure 7 shows snapshots
of one of our experiments. A video of the continuous sequence of experiments can be
accessed from our website.

(a) (b)

(c) (d)
Figure 7. Cont.
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(e) (f)
Figure 7. (a–f) Screenshots from a video sequence showing our quadrotor landing on a moving
platform. In this experiment, the quadrotor is additionally equipped with a DJI Guidance sensor for
safe operation in the indoor environment.

Out of 19 recorded trials to land indoors on a platform moving at a speed of 5–10 km/h
(1.39–2.78 m/s), there were 17 successful landings on the platform. One failure was due to
loss of detection of the pattern, which happened midway to landing and the other failure
was due to loss of the pattern at the last stage, which resulted in trying to land behind
the deck.

We developed a simulation environment using Gazebo [42]. It has a ground vehicle
(truck) of 1.5 m in height with the target pattern on top of it. The truck’s motion is controlled
by a ROS node that is parameterized by the truck speed and the direction of movement.

Our UAV is simulated using the Hector Quadrotor [43], which provides a velocity-
based controller similar to the one provided by DJI’s ROS SDK. The simulated quadrotor
is also equipped with a (non-gimbaled) camera and a height sensor. Since the simulator
has no gimbal, we fixed the camera on 45◦. The odometry of the drone provides position
estimates in the same message type provided by DJI. This similarity allows testing the
entire software in simulation before actually flying the UAV. Therefore, the same software
could be used both in simulation and on real hardware, provided that some parameters
related to target detection were changed. Due to the kinematic nature of our controller, it is
possible to run the trajectory controller with unchanged parameters.

Figure 8 shows a snapshot of the simulator when the quadrotor is about to land on the
moving deck. The upper-left corner of the figure shows the UAV’s view of the deck.

Figure 8. A snapshot of the Gazebo simulation. The quadrotor’s camera view is shown in the top
left corner.

To test the system in the real scenarios, a Toro MDE eWorkman electric vehicle was
modified to support the pattern at the height of 1.5 m (Figure 9). A ferromagnetic deck with
a painted landing pattern was attached to the top as the landing zone for the quadrotor.
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Figure 9. The Toro Workman ground vehicle used for our tests.

The ground vehicle was manually driven with an approximate speed of 15 km/h
(4.17 m/s) measured by a GPS device. Visual servoing gains were empirically calibrated,
and the robustness of the approach to landing was evaluated.

Although we did not collect detailed statistics on the landing procedure, there were
several successful landings on the vehicle at the speed of 15 km/h (4.17 m/s). It is hard
to compare our method’s success rate with the other methods, as none of the publications
from the MBZIRC challenge have reported their success rates and have only reported
limited results from the attempts during the challenge trials.

Figure 10 shows a successful autonomous landing of the quadrotor on the moving
vehicle used in our experiments at 15 km/h (4.17 m/s) speed.

Out of 22 recorded trials, visual servoing was successful in bringing the UAV to the
deck in 19 cases. All three failure cases were due to the extreme sun reflection where
the pattern was no longer seen in the frame; therefore, the visual servoing lost track of
the pattern, and the mission was aborted. The cases where the switching from initial
acceleration to visual servoing happened too soon or too late (which results in the loss of
the target even at the beginning) were excluded from the analysis, as they were irrelevant to
the study of the visual servoing performance. The results show the successful development
of our visual servoing approach in bringing the UAV to the vicinity of the moving vehicle.

The time from the first detection of the platform to the stable landing varied between
different runs from 5.8 to 6.5 s, which is less than the reported times of approaches claiming
to be the fastest methods (7.65 s reported by [31] and 7.8 s reported by [11]). This timing
can also be seen in the accompanying videos on our website.

(a) (b)
Figure 10. Cont.



Sensors 2022, 22, 6549 15 of 18

(c) (d)

(e) (f)
Figure 10. (a–f) Screenshots from a video sequence showing our quadrotor landing on the moving
vehicle at 15 km/h (4.17 m/s) speed. The video is available on our website.

5. Conclusions

This paper presented our approach to landing an autonomous UAV on a moving
vehicle. With a few modifications, such as close-range landing zone detection and vehicle
turn estimation, the proposed methods can work for a generalized autonomous landing
scenario in a real-world application.

The visual servoing controller showed the ability to approach and land on the moving
deck in simulation, indoor environments, and outdoor environments. The controller can
work with a different set of localization sensors like GPS and DJI Guidance and does not
rely on very precise sensors (e.g., motion capture system).

The visual servoing controller showed promising results in reliably approaching the
moving vehicle. A potential way to improve the landing efficiency further and tackle the
loss of visual target problem is to divide the landing task into two subtasks: approaching
the vehicle and landing from a short distance. After reaching the vehicle, the visual servoing
approach can switch to a short-range landing algorithm. We believe that, by extending this
approach, it can be used in a wide range of applications.

The robustness of the approach to occasional false positives in tracking the target
and nondeterministic target detection rate has allowed us to use monocular vision with
a real-time general-purpose ellipse detection method developed for this work (see [33]),
further reducing the overall cost and weight of the system. However, as discussed in
Section 4.3, this has caused the UAV to stop the landing procedure due to the sun reflection
in 13.6% of our outdoor tests. If this compromise cannot be accepted in an application, a
more reliable target tracking method (such as infrared or radio markers) can be devised, or
another attempt should be made at finding and approaching the vehicle.

While the approach has been tested for a range of vehicle velocities up to 15 km/h,
using the estimated vehicle speed as a feed-forwarding velocity means that the maximum
ground vehicle’s speed for UAV landing is mainly limited by the maximum speed of the
UAV platform. However, the other potentially limiting factor can be the target detection
rate and the gust factor, which at higher speeds can result in higher errors between two
detections with insufficient time to correct the course.
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