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Abstract: In the modern era, with the emergence of the Internet of Things (IoT), big data applications,
cloud computing, and the ever-increasing demand for high-speed internet with the aid of upgraded
telecom network resources, users now require virtualization of the network for smart handling of
modern-day challenges to obtain better services (in terms of security, reliability, scalability, etc.). These
requirements can be fulfilled by using software-defined networking (SDN). This research article
emphasizes one of the major aspects of the practical implementation of SDN to enhance the QoS of a
virtual network through the load management of network servers. In an SDN-based network, several
servers are available to fulfill users’ hypertext transfer protocol (HTTP) requests to ensure dynamic
routing under the influence of the SDN controller. However, if the number of requests is directed to a
specific server, the controller is bound to follow the user-programmed instructions, and the load on
that server is increased, which results in (a) an increase in end-to-end user delay, (b) a decrease in
the data transfer rate, and (c) a decrease in the available bandwidth of the targeted server. All of the
above-mentioned factors will result in the degradation of network QoS. With the implementation
of the proposed algorithm, dynamic active sensing server load management (DASLM), on the SDN
controller, the load on the server is shared based on QoS control parameters (throughput, response
time, round trip time, etc.). The overall delay is reduced, and the bandwidth utilization along with
throughput is also increased.

Keywords: DASLM; data transfer rate; end-to-end user delay; HTTP; maximum available bandwidth;
QoS; server load management; SDN

1. Introduction

Owing to recent advancements in cloud computing, big data applications, and complex
network architecture with machine learning applications, legacy networks cannot fulfill
the demands of system administrators and network users. Currently, the primary goal of
every network designer is to provide fast and reliable data transformers (wired or wire-
less). The other important aspect is maintaining QoS, that is, achieving better throughput,
greater bandwidth, and less latency delay. Virtualization reduces the number of physical
components in the network, which can result in energy-efficient and maintenance-free
systems. A network system that provides all of the applications mentioned above is a
Software-Defined Networking (SDN). At the same time, SDN is a centralized-based [1]
virtual control system that provides an entire view of the network underlying its control
layer. SDN reduces the extra burden by separating the data and control layers from the
network components [2] and performs a virtual control process using an SDN controller
based on the logical instructions provided by the application layer. A research article [3]
showed the performance-based results of a heavily loaded network environment consisting
of 256 servers for data modulation by testing different network systems. They concluded
that SDN performance in data modulation was 47% greater than the legacy network. In
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Hadoop applications [4], SDN outperforms legacy networks regarding controllability, scal-
ability, and flexibility in normal forwarding modes. SDN with a centralized controlled
technique can provide better controllability, scalability, and reliability than traditional phys-
ical networks. Currently, all networking architectures employ software (IP—version: 6,
BGP—version: 4, MPLS—version: 3, VMware—version: 17.5.0, etc.) for data manage-
ment and transformation [5]. All protocols mentioned above can be easily manipulated
in an SDN virtual environment; with this flexibility, SDN is becoming a vital networking
force [6,7]. The QoS parameters are the primary deterministic performance tools in tele-
traffic engineering. The QoS results of SDN with separate data and control layers [8,9]
are far superior to legacy networks. Figure 1 shows the layered structure of an SDN. As
previously mentioned, the SDN consists of three layers, namely, the application, control,
and infrastructural layers.
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Five important parameters exist to accomplish a complete view of SDN operation:
the SDN application plane, control plane, data plane, northbound interface/northbound
interface (NBI) agent, and southbound interface/control data plane interface (CDPI) [10,11].
The user interacts with the SDN network through the application layer by providing
instructions to the controller of the SDN in simple logic, depending on which type of
controller is selected to manage the flow of network components. The northbound interface
is used to connect the application and control layers. With the help of the NBI agent,
the controller in the second layer coordinates with the application layer and controls the
network components (switches, routers, etc.) according to the instructions provided by the
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designer in the application layer. The southbound-CDPI correlates with the control and
data planes. The network component flow table is managed by an SDN controller using a
CDPI agent. It informs the user of the flow result and QoS parameters with the help of NBI
agents for further system data modulation.

Motivations and Significance of Research Technique

In this research, the proposed technique (DASLM) provides the following features:

(a) By applying the DASLM approach, there is less end-to-end latency delay, maximum
throughput, and less queuing delays by avoiding elephant flows, equal load manage-
ment, and efficient use of bandwidth can be achieved.

(b) Bandwidth enhancement is obtained using the proposed (DASLM) technique.
(c) In the case of large networks (more switches, hosts, data center servers), the single

controller could become loaded, exhausted, and lead to a single-point failure. The
solution mentioned in different research techniques, as discussed in Section 2.1, was
to use multiple controllers (in the master-salve version). The major issues in the
implementation of these methods involve the following:

(1) The compatibility of two controllers.
(2) Providing the data center server access to both controllers.
(3) Switches flow managed by both controllers.

To overcome this problem, the large SDN network (i.e., servers in the network having
to serve HTTP requests greater than thirty thousand per second and with more than two
hundred HTTP requests in queue to be processed by the respective servers) is divided
into the smaller SDN networks with the controller in a logically distributed controlled
environment (to overcome the compatibility issue). Each controller is responsible for their
(subdivided) SDN network.

(d) The other major problem addressed in the proposed technique is the load balancing
in the HTTP service provider servers by calculating the number of HTTP requests on
each server and computing the server load. The HTTP request per second value (RPS)
of each server is compared with the reference server load threshold (SLT) value (as
explained in Section 3.1), which is set to a level of 1000 (HTTP requests per second) in
our case. If the number of HTTP requests on the particular server has reached the (SLT)
value, then that server is considered loaded and is removed from the available pool of
servers in the SDN network, and no new HTTP request is assigned to that server until
the RPS value decreases below the SLT value range. The load is balanced by directing
the flow of HTTP requests from the loaded server to other available servers on the
following bases:

The new HTTP request flow is assigned to the server with a lower RPS load value
than the list of available servers in the network.

(OR)
The new HTTP request flow is assigned to the server with less than 60 HTTP requests

in the queue (considered a reference value in our case) in addition to the HTTP requests
being processed by that server.

(OR)
The new HTTP request flow is assigned to the server with a quicker response time

than all other available servers in the network. This task is accomplished by sending an
ARP packet to the servers. The server that responds to the controller with less latency is
then forwarded the new HTTP request flow.

However, the detail about the functioning of the proposed (DASLM) algorithm is
mentioned in Section 3.1.

However, the paper structure summary is as follows:
Section 2 discusses the literature review and compares traditional load-balancing

methods with the proposed (DASLM) algorithm. Section 3 explains the methodology of
the proposed technique, lab setup details, and procedural steps. Section 4 discusses the
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simulation results obtained in two portions: (1) without implementing the proposed algo-
rithm (DASLM) on the SDN controller and (2) with implementing the proposed algorithm
(DASLM) on the SDN controller. Each portion is simulated for two cases: (a) normal flow
and (b) loaded flow, and QoS parameter comparison is performed with some traditional
server load-balancing techniques to check the performance of the proposed (DASLM)
algorithm. Section 5 summarizes the simulation result in conclusion with future directions.

2. Literature Review
2.1. Traditional Methods for Load Balancing in SDN Network

This section summarizes the theoretical results of the different research techniques
for obtaining better QoS parameters. This portion is divided into three main categories to
identify the research gap, as shown in Figure 2. The results are summarized as follows:
(a) data flow (from the control plane to the data plane or vice-versa); (b) control flow (from
the application layer to the control layer (and vice-versa) and the control plane to the data
plane) [12]. The user interacts with the SDN network through the application layer by
providing instructions to the controller of the SDN in simple logic, depending on which
controllers are selected to manage the flow of network components.
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2.1.1. Load-Balancing Techniques of Network Servers

The network servers are connected in group form to fulfill the users’ hypertext transfer
protocol (HTTP) requests. However, servers are becoming exhausted due to the ever-
increasing user request load. If server load management is neglected, the specific links will
be overloaded, the HTTP request will be queued, an end-to-end delay will increase, and
QoS will be deterred. This scenario will also lead to the complete network’s exhaustion,
eventually collapsing. Several QoS-oriented algorithms have been developed in modern-
day research [1]. The authors of a research article [13] focused on the controller. Instead of
using a single controller, they used master and slave versions. One controller looked after
the flow, and the other managed the control signal; therefore, due to this technique, the
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load was shared between two controllers. This resulted in reduced end-to-end delay and
improved bandwidth utilization and throughput. However, this method added complexity
regarding the compatibility of both controllers while transferring load and necessary
control information. Another problem associated with this technique is the high energy
consumption. In a previous study [14], load balancing was performed on network switches
with an additional entry of data flow, so the data packets should have led to a specific server
with less migration. The major problem was that if a particular server was requested more
than other servers, that particular server would be loaded, so the technique mentioned
above must be revised. In a previous study [15], the authors discussed a geo-based routing
protocol in which the controller forwards the data packets to the servers closest to the switch
so that there is a lower cost of migration. This leads to a problem: if the specific server
is close to more switches in the network compared to the other servers, then that server
will be loaded, and the QoS will be compromised. In a previous study [16], the static load-
balancing algorithm was used, with data traffic categorized into two groups: (a) critical time
traffic and (b) non-critical time traffic. First, the critical time traffic is routed if the server is
loaded with critical time traffic flow, then the non-critical time traffic is discarded, which
leads to a reduction in bandwidth utilization, and the overall throughput of the network
is reduced. It is based on weighted Round-Robin method. In a research article [17], the
authors added a programmable middle-box to assist with the SDN controller. It calculates
the load on each server and guides the controller regarding server HTTP request handling
and the packet drop ratio. This helps to share the load equally among the servers, but
this leads to the additional complexity of programming the middle-box and controller.
The middle-box and the controller should be compatible. In a previous study [18], the
authors suggested using flux function calculations to find the switching weights routing
cost from the server to the switch and then routing the data packets to the corresponding
servers. The major problem is that if the routing cost of a specific server is low and is
already loaded, then the above-mentioned network technique is inefficient. The researchers
in [19–23] proposed that multiple controllers are the solution to QoS routing in SDN, but
they introduce more complexity. The authors of [24,25] suggested that only the load can
be balanced by adding weight to the data. Data-based load balancing was performed in a
previous study [26]. A research article [27] discussed web server-based load balancing. In a
research article [28], the authors compared different load-balancing techniques to determine
the research gap for increasing QoS in telecom networks. In a research article [29], the
authors combined a content delivery network (CDN) and SDN to enhance the quality of
the network. In a research article [30], the authors suggested a traditional round ribbon
technique for maximizing the availability of servers. In a research article [31], the authors
implemented the dynamic and static load-balancing methods and drew their fruitful effects.
In a research article [32,33], the authors implemented load balancing with SDN on Campus
Networks (CN).

2.1.2. Measurement of Network Basic Component

SDN is a centralized, controlled software-based approach that provides an abstract
view of the entire network arrangement and manages its flow using a controller. The
controller obtains the topological information of the underlying network devices by running
protocols, such as the Link Layer Discovery Protocol (LLDP) and Spanning Tree Protocol
(STP) [34]. In these protocols, the controller broadcasts the message (pack-out) to all
switches in the network. The switches that receive the message (pack-out) forward the
message (forward-out) to all other switches directly connected to them. In this way, all
switches receive broadcast messages. All switches respond to the controller with a message
(pack-in) that includes information about the switch and the other switches to which this
switch is directly connected. This is how the controller of SDN creates an abstract view of
network topology and gives the whole network a picture for scalability purposes to the
application layer using a northbound interface [35]. In a research article [6], the researchers
mentioned that changing all of the network switches (legacy) to virtual switches is not
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practically suitable, so it is better to make them operate in hybrid mode. The operation
mode of the hybrid method is illustrated in Figure 3. In a research article [36], the method
discussed (Prog-ME) provides a statistical flow graph of each node of the network, and the
average load on a particular node can be seen using this method. In a research article [37],
the technique discussed (Open-TM) was used to determine the average load on each
node and provide better results than the above-mentioned method. A research article [38]
addressed the technique (I-Stamp) used to calculate the flow of each node by creating a
matrix. The results obtained using this method were far more accurate than those obtained
using the aforementioned method. However, the problem with this method is that the
number of flows (two or more) between two identical switches is given a single entry in the
matrix; therefore, the overall load calculations with this method do not provide accurate
results. In a research article [39], the traffic flow in data centers was performed using
Top-of-Rack (ToR) switches which are challenging to implement in a network system. A
research articles [40–42] discussed several flow methods to judge how many controllers
must be required to fulfill the network administrator’s demand and avoid the controller
side’s delay.
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2.1.3. Passive Load Flow Analysis Modeling

A network load is divided into two main categories: (1) passive flow and (2) active flow.
In this section, several techniques that are regarded as passive flow analyses are discussed.
In a research article [43], the net flow developed by Cisco was discussed, providing an
average graph of the network load instead of each flow. A research article [44,45] discusses
S-flow and J-flow, indicating the con-troller about each network flow, which is excellent
for a network with fewer network components and loads. Under loaded conditions, the S
and J flow method can be irritating. In a research article [46], the polling method showed
only the traffic graph if the user requests the northbound interface by instructing the
application layer. A research article [47] discussed hash algorithm methods involving
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extensive matrix calculations for traffic detection. In a research article [48], the dream
physical project was introduced to determine the flows that must be mentioned by the
controller to the application layer using NBI. Not every flow must be considered to avoid
loading the controller.

2.1.4. Active Load Flow Analysis Modeling

Dynamic load flow analysis refers to traffic flow estimation by considering each flow
rather than the average. The traffic estimation algorithm was developed in a previous
study [49]; however, the researchers used fewer network components and a limited flow.
This method can be applied to a specific scenario but not in real-time loaded conditions. A
research article [50] selected the traffic detection model by considering only the active switch
(switches with more data transfer are considered operational, and the rest are considered
in sleep mode). This applies to small network systems. A research article [51] discussed
several methods for determining flow calculation errors. In ref. [52], the veri-flow method
is discussed, which can be placed between the control layer and data layer, providing the
liberty that not all of the load flow must be managed by the controller but instead driven
by the veri-flow. However, if there is no information in the veri-flow database regarding
new data flow, the controller manages this new data traffic.

2.1.5. Data Traffic Management

The multipath routing scheme must be optimized to achieve better controllability
of the data traffic. In a research article [53], one significant and straightforward problem
related to Equivalent Multipath Routing (EMR) was the formation of elephant flows. An
example formulation of the elephant flow is shown in Figure 4. In normal circumstances,
for fast data transformation, the shortest path between two routers is selected for data
transformation. However, if that path is loaded and no alternate route is chosen, the
queue and delays will increase, and the overall throughput with bandwidth will decrease,
resulting in reduced quality constraints. In refs. [54–57], several logics were developed
to judge elephant flow scenarios. However, they involved extensive iteration of complex
logic, which can produce several syntax errors and are challenging to manage. In ref. [58],
the data were routed through different routers by considering the shortest path but with
the addition of the timer. If the flow of data(packets) from one router to another occurs
before the timer exists, the flow is considered normal. However, if the above-mentioned
condition is not satisfied, the flow is regarded as an elephant flow, and the packet is rejected
and requested to be sent again. In ref. [59], the priority was selected for each flow. The
heavy priority flow is treated by timer management, and the rest is treated by a common
EMR technique [60]. In refs. [61,62], link state optimization was adopted to overcome the
aforementioned issues. If the shortest path is loaded, the data are shifted to the router with
fewer packet forwarding requests under the supervision of the SDN controller.
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2.1.6. Energy Scavenging Techniques

Today, the necessity of the hour is to save energy because we are facing a severe
energy crisis. In a research article [63,64], the overall energy consumption by the network
components (routers, switches, etc.) is 5% of the total energy consumed in everyday life
in developed countries and is assumed to be 10% by the end of the year 2020, owing
to the revolutionized advancement in the field of networking. In a research article [65],
several hit-and trial-based methods are adopted to use fewer switches to save energy. In
refs. [66,67], the energy scavenging technique makes the switches in standby mode; this
factor saves 35% [68] of the energy.

2.2. Comparisons of the Proposed Algorithm (DASLM) with Traditional Load-Balancing Methods

Table 1 compares traditional load-balancing techniques with the proposed algorithm
(DASLM).

Table 1. Comparison between proposed algorithm (DASLM) and traditional load-balancing techniques.

References Improvement in Network
with the Author’s Technique Limitation Comparison with the Proposed Algorithm (DASLM)

S. Sathyanarayana
et al. [69]

The authors combine the ant
colony algorithm with the
dynamic flow algorithm. The
less-loaded server is found
with the dynamic flow
algorithm, and the shortest
path to the less-loaded server
is found using the ant
algorithm technique.

In this paper, the latency
is reduced. However,
combining two
algorithms and running
them simultaneously
extensively uses
computer resources,
memory, and bandwidth.

The proposed algorithm (DASLM) is a single active sensing
dynamic algorithm that balances the load on HTTP servers
in the SDN network by calculating their HTTP request load.
If the HTTP request load of any server exceeds the range of
the server load threshold (SLT) value, the load is shifted to
the server with less HTTP request load. However, if the
above condition is not met, HTTP requests are forwarded
to the server with a quicker response time. As a result, the
transfer rate, available bandwidth, and throughput are
increased, and there are no overhead issues.

H. Zhong et al. [70]

In this research paper, the
HTTP request flow is
managed based on server
response time calculations.

Processing delays are
reduced only.

The proposed algorithm (DASLM) not only balances the
load on HTTP servers in the SDN network by calculating
the response time by sending ARP packets but also selects
the optimum server by (a) calculating RPS and comparing
the RPS value with the reference threshold SLT value and
(b) finding the number of HTTP requests in the queue to be
processed by the respective servers of the SDN network.

Hamed et al. [71]

The (HTTP request) load
among different servers is
balanced using the traditional
Round-Robin method.

This method is simple
and easy to implement
and distributes the HTTP
request load among
different servers in
sequential order. This
method has greater
limitations in large SDN
networks with heavy
data flow.

The proposed algorithm (DASLM) is more advanced than
the method adopted for load balance [52]. In the proposed
method, the optimum server for better managing HTTP
request flow is selected based on response time calculation,
calculation of RPS and comparison with threshold SLT
value, and finding the number of HTTP requests in the
queue of respective servers to be processed.

Arahunashi et al. [72]

The (HTTP request) load
among different servers is
balanced by calculating each
server’s maximum available
bandwidth.

The throughput and
response time calculation
is not considered.

The DASLM algorithm performs load balancing among
different available servers based on (a) maximum available
bandwidth (by calculating the server load), (b)response
time, and (c) processing delays.

Kaur et al. [73]

The authors use a direct
routing algorithm that directs
the server’s response to the
host without passing through
the load balancer. With this
method, the author has
claimed a decrease in latency.

The flow control is very
much compromised.

In the DASLM algorithm, the RPS value of each server for
every flow is calculated, and then, based on comparisons
with SLT value, the load is shared among different servers.

Kavana et al. [74]

The authors use a flood light
controller, and the link path
cost calculation is performed
with the shortest path first.

HTTP request load is
balanced among different
available servers based
on link cost optimization
and no real-time traffic
flow sensing.

DASLM performs real-time HTTP request flow sensing
and distributes the HTTP request load among different
available servers based on calculations performed for
every flow.
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Table 1. Cont.

References Improvement in Network
with the Author’s Technique Limitation Comparison with the Proposed Algorithm (DASLM)

Hamed et al. [75]
Comparison of Raspberry-
Pi-based network and the
network formed on Mininet.

The result claimed by the
authors is that the
SDN-based network has
better performance in
server load balancing.

The DASLM is implemented in a Mininet environment
with a POX controller.

S. Ejaz et al. [76]

The authors propose using
two controllers (master and
slave). All copies of files
regarding flow management
in the network are saved on
the master controller so that if
the controller fails, other
controllers manage the flow.

A logically centralized
environment requires
tight synchronization.

DASLM proposes the use of a logically
distributed environment.

H.Gasmelseed
et al. [77]

In this study, the authors
propose the use of two
controllers. One controller
controls the TCP flow, while
the other manages the UDP
flow and shares files at the
end of every flow so that if
the controller fails, other
controllers manage the flow.

A logically centralized
environment requires
tight synchronization.

DASLM proposes the use of a logically distributed
environment. In this arrangement, every controller
manages the flow of their subdivided network.

N.T. Hai et al. [78]

The data traffic is distributed
into two categories: (1) critical
time traffic and (2)
non-critical time traffic, and
in the case of congestion, the
critical time traffic is given
priority.

Minimized data
transmission with a
greater packet drop ratio.

In the DASLM algorithm, every traffic flow is given equal
importance, and real-time HTTP request load calculations
manage the flow.

M.L.Chiang et al. [79]

In this research article, the
authors use a flood light
controller with dynamic load
balancing to reach the
under-utilized server among
different servers available in
the network. The HTTP
request load is shifted to the
server with less RPS (HTTP
request per second) load.

No work is conducted
regarding response time.

The DASLM algorithm has the advanced feature of
computing the server response time and finding the
number of HTTP requests in the queue to be processed by
the respective server.

H.Zhong et al. [80]

This paper draws a
comparison between static
and dynamic scheduling
algorithms.

The dynamic scheduling
algorithm has better
flow characteristics.

DASLM is the active sensing load-balancing algorithm that
performs real-time calculations to distribute the HTTP
request load uniformly among network servers.

3. Research Methodology

This section is further subdivided into two parts (the theoretical background and the
methodology of the proposed technique).

3.1. Foundational Theoretical Background

Before proceeding to the implementation of the proposed research technique, the
foundation theory of the proposed method in the flow steps is as follows:

The step-by-step procedure of the dynamic active sensing server load managing
(DASLM) algorithm to obtain the above-mentioned goals is as follows, with a flow chart
representation of each step:

Step 1
After establishing the SDN environment, the first step in the algorithm determines

which controller is required depending on the selected network topology. In this research
article, the single POX controller with the DASLM algorithm manages the load on user-
defined network topology. However, using a single, centralized mode-based SDN controller
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on large data center networks (DCNs) comparing several hundred thousand components
or network types mentioned above will lead to more significant latency delays. Eventually,
it could result in network failure due to data traffic overloading and bottlenecks [81]
issues. The quality parameters in larger DCNs controlled by a single SDN controller will
decrease significantly [82]. An experimental study is presented in a research article [83]
in which significant DCN data traffic is controlled by a single NOX controller with low-
quality parameters (i.e., latency of 10 ms). To combat the higher latency issue in larger
SDN-based DCNs, the SDN controller should be used in either a logically centralized or
logically distributed arrangement [84,85]. However, no universal technique or method
provides the exact formulation to define when the Software-Defined Networking (SDN)
is considered “large.” The following fundamental factors can be helpful to explain if the
selected SDN-based network is small or large:

(1) Network devices (routers, switches, etc.).
(2) Network infrastructure.
(3) QoS results extraction.
(4) When the controller of an SDN-based network provides greater latency delays in

HTTP request handling and indicates that the controller is not performing load
management tasks properly. Example of a large SDN-based network:

(a) A network has a hundred thousand network devices (routers, switches, servers,
etc.), a large number of concurrent HTTP requests generating end users, and
multiple data centers.

(b) A network has hundreds of thousands of virtual machines, and their commu-
nication is managed through SDN-based applications.

(c) An SDN network provides services to many end-users covering a sizeable
geographical area.

To overcome this problem illustrated in research articles [81–83], this research article
proposes that the large SDN network be divided into the smaller SDN networks, with the
controller in a logically distributed controlled environment (to overcome the compatibility
issue). Each controller is responsible for their (subdivided) SDN network, and information
regarding the tele-traffic details is shared through a communication link (wired or wireless).
An explanation of step #1 in the DASLM algorithm is shown in Figure 5.
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Step 2
The primary purpose of the proposed technique is to prevent HTTP servers from

overloading. After forming the SDN network, the next step in the algorithm is to calculate
the number of HTTP requests on each server. Equations (1) and (2) are formulated in the
DASLM algorithm to determine each server’s HTTP requests/second (RPS).

Number of requests = Jstep × NPJ × Nuser/sec (1)

HTTP requests/second (RPS) =
Number of requests

Total duration of time
(2)

RPS represents HTTP requests per second, Jstep represents the number of steps in the
journey, NPJ represents the number of HTTP requests per journey, and Nusers/sec represents
the number of users per second. A journey is defined as an action performed by the user
to originate an HTTP request to obtain the required information from a requested server.
Sometimes, a simple HTTP request journey involves different steps corresponding to other
web pages in addition to the requested web page. During this scenario, additional HTTP
requests are generated. Under the influence of the DASLM algorithm, the SDN controller
extracts each server’s value of Jstep, NPJ, Nuser/sec, and RPS. Every server has a practical
limit for handling HTTP request load; beyond that limit, the server performance decreases
and can become unresponsive. In our proposed algorithm (DASLM), we have calculated
the HTTP request per second load on each server. To tune the number of HTTP servers
(four in our case) to handle the HTTP request load better, we have defined the maximum
server load range as (“1000” HTTP requests per second) by using Equation (3).

Server load range =
total number of HTTP requests generated

time in seconds
(3)

The HTTP traffic in an SDN-based network is calculated using the Wireshark tool in
the Mininet. In our simulation model, “15,000” HTTP requests were generated during 15 s.
Using Equation (3), we have set the server load range as (“1000” HTTP requests per second).
Beyond this defined range, the server is considered loaded, and the HTTP request flow is
assigned to the next available server in the network for load balancing. We have defined
this server load range (“1000” HTTP requests per second) as the server load threshold
(SLT) value. If the number of HTTP requests on the particular server has reached this limit
(“1000” HTTP requests per second), then that server is considered loaded. It is removed
from the available pool of servers in the SDN network. No new HTTP request is assigned
to that server until the RPS value decreases below the defined (SLT) value.

No fixed theoretical limit applies universally to all SDN-based networks; one has
to conduct load testing to find the most suitable server load range for efficient server
load balancing in SDN-based networks. However, we have conducted load testing and
monitored server performance (regarding network QoS parameters) to find the best server
load theoretical value (“1000” HTTP requests per second in our case).

QoS parameter testing:
The “15,000” HTTP requests were generated from the randomly available twenty-three

hosts and forwarded to the POX controller, whose task is to perform the HTTP request load
balancing among four servers under the influence of the proposed algorithm (DASLM).
As explained earlier, the maximum server load range defined as the server load threshold
(SLT) value is compared to the RPS value. In this case, to check the authenticity of the SLT
value, the network testing is performed in four parts. We have set the server load range
to the value of (a) “2000” HTTP request per second, (b) “3000” HTTP requests per second,
(c) “3750” HTTP requests per second, calculated from Equation (4), and (d) “1000” HTTP
requests per second, calculated from Equation (3).

Server load range =
total number o f HTTP requests generated

total o f HTTP server avaiable in the network
(4)
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Using the I-Perf utility, the network performance in QoS parameters is measured in
all four cases for 15 s. The statistical data (QoS parameters) of all the above four cases are
shown in Figure 6.
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Figure 6. (a–d) QoS parameters of the interface between the controller and virtual for four load tests.
(a) QoS parameters of the interface between the controller and virtual terminal using “2000” HTTP
per second. (b) QoS parameters of the interface between the controller and virtual terminal using
“3000” HTTP per second. (c) QoS parameters of the interface between the controller and virtual
terminal using “3750” HTTP per second. (d) QoS parameters of the interface between the controller
and virtual terminal using “1000” HTTP per second.

With reference to Figure 6, the QoS parameters are greater when the maximum server
load value is selected using Equation (3). That is why the server load value defined as the
SLT value is chosen as “1000” HTTP requests per second. The QoS parameters (in terms
of the transfer rate, throughput, and maximum available bandwidth) are summarized in
Table 2. Bam represents the maximum available bandwidth, Tf is the transfer rate, and Th is
the throughput.

Table 2. Comparison of QoS parameters in all four tests obtained from I-Perf utility.

Load Testing Time Bam Th Tf (in 15 s)

Test #4 (with 1000 HTTP requests per second) 0–15 s 3.48 Gbps 3.23 Gbps 6.07 Gbytes
Test #3 (with 3750 HTTP requests per second) 0–15 s 2.10 Gbps 2.29 Gbps 4.298 Gbytes
Test #2 (with 3000 HTTP requests per second) 0–15 s 2.50 Gbps 2.44 Gbps 4.587 Gbytes
Test #1 (with 2000 HTTP requests per second) 0–15 s 3.17 Gbps 3.14 Gbps 5.897 Gbytes

Conclusion (from four test cases):
Regarding QoS parameters obtained in Table 2, the proposed algorithm’s (DASLM)

performance was better at defining the reference HTTP server load (SLT) value (“1000”
HTTP requests per second) and comparing it with the measured RPS value. If the number
of HTTP requests on the particular server reaches this limit (“1000” HTTP requests per
second), then that server is considered loaded. It is removed from the available pool of
servers in the SDN network, and no new HTTP request is assigned to that server until the
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RPS value decreases below the defined (SLT) value. Further load balancing is performed as
mentioned in step 3 of the proposed (DASLM) algorithm.

Step 3
Suppose the load traffic on a certain server exceeds the defined range of the SLT value

(as explained in step 2), in that case, the HTTP request is shifted to other servers for equal
load sharing depending upon the fulfillment of the following sequential conditions:

IF (condition ==true)
{
The new HTTP request flow is assigned to the server with a smaller RPS load value

than the list of available servers in the network.
ELSE
The new HTTP request flow is assigned to the server with less than 60 HTTP requests

in the queue (considered a reference value in our case) in addition to the HTTP requests
being processed by that server.

ELSE
The new HTTP request flow is assigned to the server with a quicker response time

than all other available servers in the network. This task is accomplished by sending an
ARP packet to the servers. The server responds to the controller with less latency, and the
new HTTP request flow is forwarded to that server.

}
An explanation of step #2 and step #3 in the DASLM algorithm is shown in Figure 7.
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3.2. Procedural Steps

The simulation in this manuscript is performed in two portions: (1) without imple-
menting the dynamic active sensing server load management (DASLM) algorithm on the
SDN controller and (2) implementing the dynamic active sensing server load management
(DASLM) algorithm on the SDN controller.

Portion 1:

(a) SDN controller (POX) is first switched (up) to the running condition.
(b) The network topology (shown in Figure 8) is drawn on the Mininet graphical interface

or can be established by writing a command in the command line interface of Mininet.
(c) Server load (in terms of HTTP requests) is calculated, and based on these calculations,

the graph of the QoS parameters is obtained using the I-Perf and Gnu-plot utility.

Portion 2:

(a) The controller (POX) is switched to active mode by running the DASLM algorithm
(with details as mentioned in Section 3.1).

(b) The network topology (shown in Figure 8) is drawn on the Mininet graphical interface
or can be established by writing a command in the command line interface of Mininet.

(c) Server load (in terms of HTTP requests) is calculated, and based on these calculations,
the graph of the QoS parameters is obtained using the I-Perf and Gnu-plot utility.

(d) The comparison is drawn between the QoS parameters results obtained in both
portions (1 and 2). However, the QoS parameter results in portion 2 will be far superior
to those obtained in portion 1 (the QoS result details are explained in Section 4).
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3.3. SDN-Based Environment (Lab Setup)

For SDN-based environment creation, we require the following:

(a) Two cores i-7 (HP 15 Dw4029NE, Core i7, 12th Generation, 256 GB SSD, 1 TB HDD,
2 GB NVIDIA MX550 DOS), ten generations with 32 GB RAM each.

(b) With three VMs (virtual machines) on each PC, one is used to run an SDN controller,
one for the Mininet topology, and the other for the network performance graph.

(c) Mininet is required to simulate the network along the I-Perf and J-Perf (required for
QOS parameter measurement).
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(d) P-J-T graph and Gnu-plot utility convert text files in the simulated graph for QOS
parameter analysis.

(e) Wireshark tool (for network graphs).
(f) POX Controller (scripted in Python—version: 3.11.4).

Table 3 represents the network parameters to be used in the simulation of a user-
defined network in a Mininet environment.

Table 3. Network parameters to be used in the simulation of a user-defined network in a Mininet
environment.

Parameters Descriptions Values

T in sec Total simulation time in sec 0–15

Bam
Maximum available bandwidth
in Gbps

Value to be calculated by I-Perf utility during both
cases: (1) normal flow and (2) loaded flow

Th Throughput in Gbps Value to be calculated by I-Perf utility during both
cases: (1) normal flow and (2) loaded flow

Tf Transfer rate in G-bytes Value to be calculated by I-Perf utility during both
cases: (1) normal flow and (2) loaded flow

SLT value Server load threshold value 1000 (RPS) is chosen as the reference value to
compute the server load

L Latency in ms Value to be calculated by I-Perf utility during both
cases: (1) normal flow and (2) loaded flow

RPS Requests per second 150 RPS during case (1) normal flow and 15,000
during case (2) loaded flow

%TF
Percentage decrease in
transfer rate

Value to be calculated by I-Perf utility during both
cases: (1) normal flow and (2) loaded flow

%L Percentage increase in server load Value to be calculated by I-Perf utility during both
cases: (1) normal flow and (2) loaded flow

% Bmax
Maximum available
bandwidth percentage

Value to be calculated by I-Perf utility during both
cases: (1) normal flow and (2) loaded flow

%Taf
Achievable transfer
rate percentage

Value to be calculated by I-Perf utility during both
cases: (1) normal flow and (2) loaded flow

4. Simulation Results and Discussion

The network selected for the simulation consisted of one POX controller with twenty-
seven hosts and three switches. We converted the first four hosts (h1, h2, h3, and h4) to
HTTP servers (s1, s2, s3, and s4) using the Python command. The network topology is
illustrated in Figure 8.

We performed the simulation in two portions: (1) without implementing the dynamic
active sensing server load management (DASLM) algorithm on the SDN controller and
(2) implementing the dynamic active sensing server load management (DASLM) algorithm
on the SDN controller with two cases, (A) normal flow and (B) loaded scenario. The
results of the QoS parameters are obtained using the I-Perf utility. In the first portion of
the simulation, in which no load management algorithm was loaded on the controller,
the remaining twenty-three hosts were randomly used to generate 150 HTTP requests in
normal flow, and 15,000 HTTP requests in the loaded scenario case, and they all were sent
to four servers (s1, s2, s3, and s4). In the second portion, the proposed algorithm technique
(DASLM) was implemented on the POX controller using twenty-three hosts randomly;
150 HTTP requests in normal flow and 15,000 HTTP requests in the loaded scenario were
generated and sent to the controller, which performs the load management task under the
directions of the proposed technique.
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4.1. (CaseI: Finding QoS Parameters of User-Defined Network Topology without the
DASLM Algorithm)
4.1.1. Normal Flow

The maximum available bandwidth, throughput, and transfer rate were calculated for
normal flow with 150 HTTP requests on each server. These calculations were performed
using the I-Perf utility. The default IP addresses for servers (s1, s2, s3, and s4) are (10.0.0.1),
(10.0.0.2), (10.0.0.3), and (10.0.0.4), respectively. The statistical data (QoS parameters) fetched
from these HTTP servers linked by the I-Perf utility for 15 s are shown in Figure 9.
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Figure 9. (a–d) QoS parameters of HTTP servers (s1, s2, s3, and s4) under normal flow without the
DASLM algorithm through the I-Perf utility.

For a better understanding of the statistical data (in terms of transfer rate, throughput,
and maximum available bandwidth) fetched across the four server links shown in Figure 9,
they are summarized in Table 4, where Bam represents the maximum available bandwidth,
Th represents the throughput, and Tf represents the transfer rate.

Table 4. QoS parameters obtained from I-Perf utility (without DASLM).

List of HTTP Servers Time in s Bam Th Tf (in 15 s)

Server#1 0–15 s 19.3 Gbps 17.92 Gbps 33.6 Gbytes
Server#2 0–15 s 19.7 Gbps 18.34 Gbps 34.4 Gbytes
Server#3 0–15 s 19.4 Gbps 18.0266 Gbps 33.8 Gbytes
Server#4 0–15 s 19.7 Gbps 18.4 Gbps 34.5 Gbytes

The Gnu-plot utility represents the maximum available bandwidth and transfer rate
across the four HTTP servers in the line graphs. Figure 10 shows the QoS parameters (TCP
data transfer rate Tf) across the servers (s1, s2, s3, and s4).
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Figure 10. The QoS parameter (transfer rate = Tf) of HTTP servers under normal flow without
implementation of DASLM algorithm. (a) (Transfer rate = Tf) of HTTP server (s1). (b) (Transfer
rate = Tf) of HTTP server (s2). (c) (Transfer rate = Tf) of HTTP server (s3). (d) (Transfer rate = Tf) of
HTTP server (s4).

Figure 11 shows the QoS parameters (maximum available bandwidth) across the
servers (s1, s2, s3, and s4).

Summarizing the simulation results obtained from Case I (normal flow):
The maximum available bandwidth, throughput, and transfer rate were calculated for

normal flow with 150 HTTP requests on each server. These calculations were performed
by fetching data across four server (s1, s2, s3, and s4) links for 15 s using the I-Perf utility
and Gnu-plot. Referring to Figures 9 and 11, the Gnu-plot displays the maximum avail-
able bandwidth of the four servers in the form of a line graph. The maximum available
bandwidths of servers s1, s2, s3, and s4 with 150 HTTP requests are 19.3 Gbps, 19.7 Gbps,
19.4 Gbps, and 19.7 Gbps, respectively. Referring to Figures 9 and 10, the average transfer
rate across the link of servers s1, s2, s3, and s4 with 150 HTTP requests are 33.6 Gbytes,
34.4 Gbytes, 33.8 Gbytes, and 34.5 Gbytes, respectively. Equation (5) is used to determine
the throughput across the four server links. The throughput of servers s1, s2, s3, and s4 with
150 HTTP requests are 17.92 Gbps, 18.34 Gbps, 18.0266 Gbps, and 18.4 Gbps, respectively.

Throughput (Gbps) =
Data Trans f er Rate in Gbytes

Time in sec
(5)

The I-Perf utility makes one host a client and the other a server to which the HTTP
request is forwarded. The I-Perf utility represents the statistical value of the network traffic
at the server–client interface each time. The values that I-Perf represents are variable results
(data) owing to the ratio of change in the network traffic across the server–client interface.
In our case, as shown in Figures 10 and 11, a total of 150 HTTP requests were generated
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and forwarded to each server (s1, s2, s3, and s4) from the randomly available host in a total
simulation time of 15 s. Therefore, the data represented by I-Perf in the real-time instance
are variable because it takes 15 s for 150 HTTP requests to reach the servers. Hence, the
data traffic ratio is different every instant (15 s), so the network traffic constantly changes.
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Summarizing the simulation results obtained from Case I (normal flow): 

Figure 11. (a) QoS parameters (max available bandwidth) of HTTP server (s1) under normal flow
without implementation of DASLM algorithm. (b) QoS parameters (max available bandwidth) of
HTTP server (s2) under normal flow without implementation of DASLM algorithm. (c) QoS param-
eters (max available bandwidth) of HTTP server (s3) under normal flow without implementation
of DASLM algorithm. (d) QoS parameters (max available bandwidth) of HTTP Server (s4) under
normal flow without implementation of DASLM algorithm.
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4.1.2. Loaded Scenario

In this experiment, “15,000” HTTP requests were generated by randomly available
twenty-three hosts (shown in Figure 8) and only directed to a specific server, s2; no requests
were generated for the other servers. In this case, the maximum available bandwidth,
throughput, and transfer rate are calculated under loaded conditions for server s2 (only).
These calculations were performed using the I-Perf utility for 15 s. The QoS parameters
(transfer rate, throughput, and maximum available bandwidth) fetched across the HTTP
server s2 under loaded conditions are summarized in Table 5, where Bam represents the
maximum available bandwidth, Th is the throughput, Tavr represents the time of arrival,
L represents the latency, %Tf represents the percentage drop-in transfer rate compared to
normal flow, %L represents the percentage increase in server load compared to normal
flow, and Tf represents the transfer rate.

Table 5. Comparison of QoS parameters (with normal and loaded flow) obtained from I-Perf utility
(without DASLM).

List of HTTP
Servers Time Bam Th Tf (in 15 s) 156 Packets

Tavr (ms) L (ms) %Tf %L

S2 (Normal Flow) 0–15 s 19.7 Gbps 18.34 Gbps 34.4 Gbytes 155,790.81 0.299 X X
S2 (Loaded Scenario) 0–15 s 943 Mbps 0.88 Gbps 1.65 Gbytes 156,765 12 95.43% 95%

The statistical data (QoS parameters) fetched from these HTTP servers linked by the
I-Perf utility for 15 s are shown in Figure 12.
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Figure 12. QoS parameters of HTTP server (s2) under a loaded scenario without DASLM through
I-Perf utility.

As is evident from the data in Table 5, when all HTTP requests are sent to a specific
server without an efficient load-balancing mechanism, the QoS parameters decrease, which
results in the degradation of the network efficiency. The %L and %Tf explain that when all
requests are directed to the specific server, the available bandwidth decreases (19.7 Gbps
to 943 Mbps) owing to extra load (with only 4.78% available bandwidth and a load of
approximately 95%) on the targeted server which is not shared by the other servers in
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the network. This causes the targeted server to have a bottleneck condition, and the
transfer rate decreases drastically to 1.65 Gbytes, with a decrease in transfer rate of 95.43%
compared to normal flow. Implementing the proposed DASLM algorithm based on the
aforementioned parameters can achieve high performance. The results are represented in
Case II. Figure 12 shows the QoS parameters (maximum available bandwidth and transfer
rate) across the targeted server s2. The Bam and Tf values obtained during the normal flow
are considered references and compared to the loaded scenario, which is why the %L and
%Tf values in the first row of Table 5 are marked (X). Equations (6) and (7) were used to
find %L (percentage increase in server load compared to normal flow) and %Tf (percentage
drop-in transfer rate compared to normal flow).

%L = 100 −
(

100 × (avaible bandwidth under loaded case)
avaible bandwidth under normal f low

)
(6)

%Tf = 100 −
(

100 × (trans f er rate under loaded case)
trans f er rate under normal f low

)
(7)

Summarizing simulation results obtained from Case I (loaded flow):
The maximum available bandwidth, throughput, and transfer rate were calculated

for a loaded flow, with all “15,000” HTTP requests directed only to the targeted server (s2)
from randomly available hosts (as shown in Figure 8). These calculations were performed
by fetching the data across the server (s2) link for 15 s using the I-Perf utility and Gnu-plot.
Referring to Figures 12 and 13, the Gnu-plot displays the maximum available bandwidth
and transfer rate across the server (s2) in a line graph. The maximum available bandwidth
of the server (s2) with “15,000” HTTP requests is decreased from 19.7 Gbps to 943 Mbps.
The transfer rate across the link of server S2 is reduced from 34.4 Gbytes to 1.65 Gbytes.
Equation (5) was used to find the throughput across the s2 links. The throughput of the
server (s2) is also decreased from 18.34 Gbps to 0.88 Gbps. As no load-balancing algorithm
technique is applied to the controller of the SDN, the server load on s2 is increased up to
95% (calculated from Equation (6)). The drop-in transfer rate of the server (s2) is about
95.43% (calculated from Equation (7)). The ping command was used to find processing
delays and latency. The arrival times of 156 packets were calculated. The processing delay
is 974.19 ms in the loaded scenario. The latency increases to 12 ms, as mentioned in Table 5.

4.2. Case II: Finding QoS Parameters of User-Defined Network Topology with the Implementation
of the DASLM Algorithm on an SDN Controller

This portion was divided into two parts to better interpret the results: (1) normal
flow and (2) loaded scenario. When the DASLM algorithm script is loaded onto the SDN
controller, it acts as a loadmaster and distributes the HTTP request from the host to a pool of
available network servers. There is a slight difference in case II compared to the previously
discussed case I. Here, HTTP requests are directed to the SDN controller, which performs a
load-managing task under the instruction of the DASLM.

4.2.1. Normal Flow

In the case of a normal flow, “150” HTTP requests are directed to the controller,
which, under DASLM, fulfills the user HTTP requests. The maximum available bandwidth,
throughput, and transfer rate were calculated using the I-Perf utility for 15 s. Here, virtual
traffic is generated from one virtual machine, and the controller is designed on the other.
As per previous practice, “150” HTTP requests were sent from the virtual machine to the
controller loaded with the DASLM algorithm script. The controller IP address is 10.0.1.1,
whereas the virtual machine on which the virtual traffic is generated is 10.0.1.2. For a
better understanding of the data (in terms of transfer rate, throughput, and maximum
available bandwidth) fetched across the link connecting the controller under DASLM
and the virtual machine, where virtual traffic is generated as HTTP requests, they are
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summarized in Table 6, where Bam represents the maximum available bandwidth, Th
represents the throughput, and Tf represents the transfer rate.
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Figure 13. (a) QoS parameters (maximum available bandwidth) of targeted server s2 under a loaded
scenario without DASLM. (b) QoS parameter (transfer rate Tf) of HTTP server (s2) under a loaded
scenario without implementation of DASLM.
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Table 6. QoS parameters obtained from I-Perf utility with DASLM.

Interface Time in s Bam Th Tf (in 15 s)

The link between the controller
and the HTTP request

generator virtual machine
0–15 s 4.02 Gbps 3.744 Gbps 7.02 Gbytes

The Gnu-plot represents the maximum available bandwidth and transfer rate in the
line graphs. Figure 14 illustrates the QoS parameters (data transfer rate and maximum
available bandwidth).
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In the case of a normal flow, 150 HTTP requests are directed to the controller, which,
under DASLM, fulfills the user HTTP requests. The maximum available bandwidth and
transfer rate calculations were performed using the I-Perf utility for 15 s. Referring to
Figure 14, the Gnu-plot displays the maximum available bandwidth and transfer rate
across the link between the controller and virtual machine in a line graph. The maximum
available bandwidth is 4.02 Gbps. The transfer rate is 7.02 Gbytes. Equation (5) was used
to find the throughput across the link between the DASLM-based controller and the virtual
machine. The throughput is 3.744 Gbps.

4.2.2. Loaded Scenario

In this case, “15,000” HTTP requests are generated on the interface between the
controller and the virtual machine. The maximum available bandwidth, throughput, and
transfer rate were calculated under loaded conditions. These calculations were performed
using the I-Perf utility for 15 s. Summary of statistical data obtain from Iperf utility is
shown in Figure 15.
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Figure 15. QoS parameters of the interface between the controller and virtual machine under DASLM
with the loaded scenario.

The QoS parameters (in terms of the transfer rate, throughput, and maximum available
bandwidth) under loaded conditions are summarized in Table 7, where Bam represents
the maximum available bandwidth, Th is the throughput, Tavr is the time of arrival, L is
the latency, %Tf represents the percentage drop-in transfer rate as compared to normal
flow, %L represents the percentage increase in server load compared to normal flow, and Tf
represents the transfer rate. Equations (8) and (9) are used to find the maximum available
bandwidth percentage (%Bmax) and achievable transfer percentage (%Taf), respectively.

%Bmax =

(
100 ∗ (avaible bandwidth under loaded case)

avaible bandwidth under normal f low

)
(8)

%Ta f =

(
100 ∗ (trans f er rate under loaded case)

trans f er rate under normal f low

)
(9)

As is evident from the data in Table 7, by implementing the proposed DASLM algo-
rithm based on the parameters mentioned above, very high-performance QoS parameters
are achieved when all HTTP requests (“15,000” in our case) are directed to the controller un-
der DASLM, the available bandwidth increases from 943 Mbps to 3.48 Gbps, along with an
increase in the transfer rate from 1.65 Gbytes to 6.07 Gbytes. %Tf represents the percentage
drop-in transfer rate compared with the normal flow, and % L represents the percentage
increase in server load. The factors %L and %Tf are also reduced from 95% to 13.43%
and 95.43% to 13.53%, respectively, compared to case I without DASLM implementation.
The latency and packet arrival time are also reduced, resulting in a decreased processing
delay. With the implementation of the DASLM algorithm, efficiency in terms of maximum
available bandwidth is increased from 4.786% (in case I) to 86.57%. The transfer efficiency
with throughput also rose from 4.65% to 86.47%.
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Table 7. Comparison of QoS parameters obtained from case I and case II using I-Perf utility.

Interface/Servers Time Bam Th Tf (in 15 s)
Available

Bandwidth
Percentage

Achievable
Transfer
Rate (%)

156
Packets

Tavr (ms)
L (ms) %Tf %L

(Normal Flow)
with DASLM 0–15 s 4.02 Gbps 3.744 Gbps 7.02 Gbytes X X 790.81 0.2 X X

(Loaded Scenario)
with DASLM 0–15 s 3.48 Gbps 3.23 Gbps 6.07 Gbytes 86.57% 86.47% 865.67 0.87 13.53% 13.43%

(Loaded Scenario)
without DASLM 0–15 s 943 Mbps 0.88 Gbps 1.65 Gbytes 4.78% 4.65% 156,765 12 95.43% 95%

The Bam and Tf obtained during the normal flow are considered references, and their
values were compared to the loaded scenario, which is why %L and %Tf values in the first
row of Table 7 are marked (X). The Gnu-plot utility determines the maximum available
bandwidth, throughput, and transfer rate graphs. Figure 16 represents the QoS parameter
(maximum available bandwidth). Figure 17 illustrates the QoS parameter (transfer rate).
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Figure 16. Represents the QoS parameter (maximum available bandwidth) with the loaded scenario
with DASLM.

Summarizing simulation results obtained from Case II (loaded flow):
In the case of a loaded flow, “15,000” HTTP requests are directed to the controller,

which, under DASLM, fulfills the user HTTP requests. The maximum available bandwidth,
throughput, and transfer rate calculations were performed using the I-Perf utility for 15 s.
Referring to Figures 16 and 17, the Gnu-plot displays the maximum available bandwidth
and transfer rate across a link between the controller and the virtual machine in the form
of a line graph. The maximum available bandwidth is increased to 3.48 Gbps, compared
to the results obtained in Section 4.1.2. The transfer rate is also increased up to the level
of 6.07 Gbytes in comparison with the simulation results of Section 4.1.2. Equation (5)
was used to find the throughput across the link between the DASLM-based controller
and the virtual machine. The throughput is also increased up to the level of 3.23 Gbps.
Table 7 shows that with the implementation of the proposed technique, %L (calculated from
Equation (6)) has decreased from 95% (without DASLM implementation) to 13.43% (with
DASLM implementation), and %Tf (calculated from Equation (7)) has also decreased from
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95.43% to 13.53%. Ping command was used to determine the latency. The latency decreased
from 12 ms (without DASLM implementation) to 0.87 ms (with DASLM implementation).
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4.3. Comparative Analysis of DASLM with Traditional Server Load-Balancing Methods

To prove the effectiveness of the proposed (DASLM) algorithm, the comparative
analysis is conducted with the method discussed in research articles [70,71]. Table 1
explains the fruitful effects of the proposed algorithm (DASLM) compared to the other
research methods. The two test cases (Case A and Case B) were conducted to judge the
performance of the proposed algorithm. In Case A, the research method of article [70]
(using the least server response method) is applied to the SDN controller for server load
balancing, and QoS parameters are extracted. In Case B, the research method of article [71]
(using the traditional Round-Robin method) is used for the SDN controller for server load
balancing, and QoS parameters are extracted.

Case A (using the least server response method):
The “15,000” HTTP requests were generated from the randomly available twenty-

seven hosts (user-defined network topology is shown in Figure 8) and forwarded to the
POX controller. In this case, we have not defined the server load range of 1000 HTTP
requests per second but instead measured the response time of HTTP servers in a user-
defined network (as shown in Figure 8), as suggested in the research article [70]. This
task is accomplished by sending an ARP packet to the servers. The server responds to the
controller with less latency, and the new HTTP request flow is forwarded to that server. The
maximum available bandwidth and transfer rate was calculated using the I-Perf utility for
15 s. The statistical data (QoS parameters) are shown in Figure 18a. Figure 18b,c represent
the bandwidth and transfer rate of the test Case A (with the implementation of the research
technique mentioned in the article [70] using the least server response method).



Sensors 2023, 23, 9324 27 of 34Sensors 2023, 23, x FOR PEER REVIEW 30 of 38 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 18. (a) Summary of statistical data obtain from Iperf utility for test Case A. (b) QoS parameter
(maximum available bandwidth) for test Case A (using the least server response method). (c) QoS
parameter (transfer rate) for test Case A (using the least server response method).
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Case B (using the traditional Round-Robin method):
The “15,000” HTTP requests were generated from the randomly available twenty-

seven hosts (user-defined network topology is shown in Figure 8) and forwarded to the
POX controller. In this case, we have not defined the server load range of 1000 HTTP
requests per second but instead applied the traditional Round-Robin approach in a user-
defined network (as shown in Figure 8), as suggested in the research article [71]. The I-Perf
utility is used to find the Bam and Tf. The statistical data (QoS parameters) are shown in
Figure 19a.
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Figure 19. (a) Summary of statistical data obtain from Iperf utility for test Case B. (b) QoS parameter
(maximum available bandwidth) for test Case B (using the traditional Round-Robin method). (c) QoS
parameter (transfer rate) for test Case B (using the traditional Round-Robin method).
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Figure 19b,c represent test Case B’s bandwidth and transfer rate (with the implemen-
tation of the research article [71] using the traditional Round-Robin method).

A comparison of QoS results obtained from Case A and B with the proposed algorithm
(DASLM):

Table 8 summarizes the QoS parameters obtained in Cases A and B with the proposed
algorithm (DASLM).

Table 8. Comparison of QoS obtained from I-Perf utility.

Method Used Time Bam Th Tf (in 15 s)

QoS parameters with
DASLM Algorithm. 0–15 s 3.48 Gbps 3.23 Gbps 6.07 Gbytes

Case B 0–15 s 1.48 Gbps 1.38 Gbps 2.59 Gbytes
Case A 0–15 s 1.50 Gbps 1.40 Gbps 2.63 Gbytes

Figure 20 illustrates the comparative analysis of QoS parameters (maximum available
bandwidth and transfer rate).
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A Summary of the Comparative Analysis:
With reference to Table 8, the QoS parameters verify that the maximum available

bandwidth, throughput, and transfer rate of a user-defined network are improved by
implementing the proposed technique in a real-time controlled SDN environment. The
performance of the proposed algorithm (DASLM) is far superior to the method mentioned
in the research articles [70,71].

5. Conclusions

In this study, we achieved the desired results by enhancing the QoS parameters of
the HTTP server-based telecom network with the implementation of the proposed server
load-balancing technique in a real-time controlled SDN environment, which is the DASLM
(dynamic active sensing load managing) algorithm. The simulation in this manuscript was
performed in two parts for 15 s: (1) QoS parameter analysis without implementing the
DASLM algorithm; (2) QoS parameter analysis with the implementation of the DASLM
algorithm. QoS analyses using I-Perf and Gnu-plot utility in the above-mentioned cases
were performed based on two scenarios (normal flow with 150 HTTP requests and loaded
flow with “15,000” HTTP requests). The QoS parameters in normal flow (with negligible
load on the network servers) are considered a reference value to determine the network’s
performance in loaded conditions (“15,000” HTTP requests in our simulation model). With
the implementation of the proposed technique (DASLM), the QoS parameters (Bam, Tf, Th,
and L) have increased from 943 Mbps to 3.48 Gbps, 1.65 Gbytes to 6.07 Gbytes, 0.88 Gbps
to 3.23 Gbps, and 12 ms to 0.87 ms, respectively, under loaded conditions (“15,000” HTTP
requests). The maximum available bandwidth percentage (%Bmax) has increased from
4.78% (without DASLM implementation in the loaded scenario) to 86.57% (with DASLM
implementation in the loaded scenario). The achievable transfer rate percentage (%Taf)
has also increased from 4.65% (without DASLM implementation in the loaded scenario) to
86.47% (with DASLM implementation in the loaded scenario). These QoS parameters verify
that the maximum available bandwidth, throughput, and transfer rate are improved by the
implementation of the proposed method (DASLM). For the authenticity of the proposed
algorithm, the QoS results obtained from DASLM were compared with the QoS results
obtained from the traditional server load-balancing algorithm: (a) server load balancing
by calculating the least server response time method and (b) server load balancing by
the traditional Round-Robin method; however, the values of the QoS parameters (Bam,
Tf, Th, and L) in the proposed algorithm (DASLM) were far superior to the traditional
load-balancing methods and prove the effectiveness of the proposed technique. For future
work, the proposed algorithm can be applied to the hierarchical, logically distributed SDN
controller environment for server load management, where the whole network is divided
into local domains. Each domain will have its controller work under the control parameters
of the route and universal controller.
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