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Abstract: Traffic sign recognition is a complex and challenging yet popular problem that can assist
drivers on the road and reduce traffic accidents. Most existing methods for traffic sign recognition
use convolutional neural networks (CNNs) and can achieve high recognition accuracy. However,
these methods first require a large number of carefully crafted traffic sign datasets for the training
process. Moreover, since traffic signs differ in each country and there is a variety of traffic signs, these
methods need to be fine-tuned when recognizing new traffic sign categories. To address these issues,
we propose a traffic sign matching method for zero-shot recognition. Our proposed method can
perform traffic sign recognition without training data by directly matching the similarity of target
and template traffic sign images. Our method uses the midlevel features of CNNs to obtain robust
feature representations of traffic signs without additional training or fine-tuning. We discovered that
midlevel features improve the accuracy of zero-shot traffic sign recognition. The proposed method
achieves promising recognition results on the German Traffic Sign Recognition Benchmark open
dataset and a real-world dataset taken from Sapporo City, Japan.

Keywords: zero-shot traffic sign recognition; traffic sign matching; midlevel feature

1. Introduction

With the increasing number of vehicles on the road, ensuring traffic safety has become
essential in our daily lives [1]. According to the World Health Organization, road traffic
accidents cause approximately 1.3 million deaths and 20–50 million nonfatal injuries each
year (https://www.who.int/health-topics/road-safety, accessed on 16 October 2023). Re-
ducing the occurrence of traffic accidents is crucial not only to protect people’s lives but
also to maintain social stability. As an essential component of road traffic, traffic signs
can provide drivers with important road information. However, traffic sign recognition
is a complex task that is often affected by weather and road conditions [2] and is usually
applied in Driver Assistance Systems (DASs) (for the abbreviations in this paper, refer to
Appendix A Table A1) [3]. Based on traffic sign information, DASs can determine the driv-
ing environment and alert drivers of any mismatches that occur, which can help construct
active vehicle safety systems in critical conditions. Moreover, traffic sign information can
also help GPS providers with updating their geodatabases. Therefore, it is worth exploring
efficient methods for accurate traffic sign recognition.

Traffic sign recognition has attracted widespread interest, and many related methods
have been proposed [4–6] to address it. Before the era of deep learning, several studies used
genetic algorithms [7] or shallow neural networks to perform traffic sign recognition [8,9].
Other methods obtain the features of traffic signs using a feature extraction algorithm
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like scale-invariant feature transform (SIFT) [10] and the histogram of oriented gradient
(HOG) [11]. Although these conventional methods can recognize traffic signs to some
extent, their computational efficiency and accuracy are still insufficient [12,13]. With the
development of deep learning, research on traffic sign recognition has been focused on
two aspects: traffic sign detection (TSD) and traffic sign classification (TSC) [14–16]. TSD
uses object detection networks to detect traffic signs from road images, and TSC classifies
the traffic signs [17]. Some TSC methods based on convolutional neural networks (CNNs)
have been proposed [18–20] and achieved high classification accuracy. These methods
rely on a large amount of carefully crafted data for training. However, as it costs time
to capture many images containing traffic signs, there may be situations where there is
not enough training data. Furthermore, traffic signs differ from country to country, and
these methods need to be fine-tuned when recognizing traffic signs in different countries.
Therefore, solving the traffic sign recognition problem within these settings is necessary.

As shown in Figure 1, due to the lack of adequate training data, recognizing traffic
signs from various countries through simple classification is challenging. However, unlike
TSC, traffic sign matching (TSM) performs traffic sign recognition by matching the similarity
of target and template traffic sign images without training data. The national standard
traffic sign template database provides an easy source of template traffic signs for this
purpose. This approach enables the recognition of traffic sign images from different
countries. Although a TSM method exists [3], it is difficult to achieve high-accuracy
TSM using the handcrafted features of SIFT. Midlevel features have proven effective in
representing image features for other tasks [21,22], but no such method exists for traffic
sign recognition to the best of our knowledge.

Figure 1. Concept of the proposed zero-shot traffic sign recognition method. This method can
perform traffic sign recognition for different countries without collecting training data. Common
traffic sign templates for each country can be used.

To solve the aforementioned problems, we propose a novel method based on midlevel
feature matching to achieve accurate zero-shot traffic sign recognition. We found that
compared with other layers, the midlevel features of CNNs not only obtain semantic infor-
mation but also retain the shape information of traffic signs. We performed the extraction
of midlevel features using different CNN structures, and the proposed method can obtain
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the robust feature representation of traffic signs without modifying any network structure.
Moreover, since no training and fine-tuning is required, the proposed method based on
midlevel features can be easily applied to traffic sign recognition in different countries.

Our contributions are listed as follows:

• We propose a novel TSM method for zero-shot recognition, which can achieve high-
accuracy traffic sign recognition without additional training data.

• We introduce midlevel feature matching for the first time and perform the extraction
of midlevel features on several CNN structures.

• We realize promising traffic sign recognition results on the German Traffic Sign
Recognition Benchmark open dataset and a real-world dataset taken from Sapporo
City, Japan.

2. Related Works

Traffic sign recognition has been extensively studied, and various approaches have
been proposed to address this task. In this section, we provide an overview of related works
in the areas of traditional methods and deep-learning-based approaches, highlighting their
contributions and limitations. In Sections 2.1, 2.2, and 2.3, we, respectively, introduce
traditional traffic sign recognition methods, deep-learning-based traffic sign recognition
methods, and TSM.

2.1. Traditional Traffic Sign Recognition Methods

Traditional methods for traffic sign recognition often relied on handcrafted features
and machine learning algorithms. These approaches employed techniques such as template
matching, edge detection, and feature extraction to recognize traffic signs. For instance,
SIFT features were widely used to capture distinctive key points and descriptors of traffic
signs [10]. Other methods, like HOG, utilized gradient-based image features to represent
traffic signs [11]. These handcrafted features were then fed into classifiers such as support
vector machines or decision trees for recognition [23–26].

Traditional traffic sign recognition methods have several characteristics and limita-
tions. First, they heavily rely on manually designed features that are sensitive to variations
in lighting conditions, occlusions, and complex backgrounds [27]. Second, these meth-
ods often struggle to adapt to diverse traffic sign datasets and real-world scenarios, as
the handcrafted features may not generalize well [28]. Despite these limitations, tradi-
tional methods served as the foundation for early traffic sign recognition research and
demonstrated reasonable performance under controlled conditions [29–32].

2.2. Deep-Learning-Based Traffic Sign Recognition Methods

The emergence of deep learning has inspired traffic sign recognition and has led to
significant advancements in accuracy and robustness. Deep-learning-based approaches
leverage CNNs to automatically learn hierarchical representations from raw image data,
capturing both low-level visual features and high-level semantic information. Various
CNN architectures have been explored for traffic sign recognition, including LeNet [33],
AlexNet [34], VGGNet [35], and ResNet [36]. These architectures help to perform feature
extraction and have contributed to the remarkable success of deep learning in traffic
sign recognition [37–43]. To address the challenge of limited training data in traffic sign
recognition, data augmentation techniques have been employed to expand the training set
artificially. Common augmentation techniques include random rotations, translations, and
scaling, as well as adding noise or distortions to the images. These techniques enhance the
generalization ability of deep learning models and mitigate the risk of overfitting [44,45].

Moreover, recent studies have investigated the fusion of multimodal information
for traffic sign recognition. For instance, combining visual information with temporal
information from video sequences can significantly improve detection and classification
performance, especially in dynamic traffic environments [46–49].
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Despite remarkable results, deep-learning-based approaches still face challenges. They
require substantial amounts of annotated data for training, which can be expensive and
time-consuming to acquire. In addition, the lack of interpretability in model decisions
raises concerns in safety-critical applications. Overcoming these challenges remains an
essential task of research in traffic sign recognition [48].

2.3. Traffic Sign Matching Methods

TSM approaches offer an alternative perspective to traffic sign recognition by focusing
on the similarity matching between target and template traffic sign images. Instead of
relying on labeled training data, TSM methods utilize template traffic signs obtained from
standardized traffic sign databases as references [3].

Early TSM methods often relied on handcrafted features like SIFT or speeded-up
robust features (SURF) to extract local descriptors and perform similarity matching [3,50].
Ren et al. [3] introduced the conversion of urban road images from the RGB to HSV color
space. SIFT and SURF features are then employed to compare the candidate traffic signs
with template signs provided in the database. Peker et al. [51] presented a high-performance
and robust system that involves RGB and depth images, along with template matching
to perform TSM. However, these methods faced challenges in achieving high accuracy,
especially when dealing with variations in scale, viewpoint, and lighting conditions.

Midlevel feature matching has demonstrated effectiveness in other computer vision
tasks, such as scene recognition and object retrieval [21,22]. Aslam et al. introduced a
midlevel feature-based method for representing images in classification problems and
achieved higher classification accuracy. Furthermore, Gordo et al. [52] introduced the
method of local midlevel features based on SIFT, which can construct fixed-length features
for image representation. Lim et al. [53] introduced sketch tokens for learning-based mi-
dlevel representation in contour and object detection. Sketch tokens utilize supervised mi-
dlevel information in the form of hand-drawn contour sketches from images. Liu et al. [54]
proposed a novel midlevel feature learning method for skin lesion classification, which
acquires midlevel feature representations by learning the relationships between different
image samples based on distance metrics. Zhong et al. [55] introduced a method based on
midlevel features to predict facial attributes from faces in the wild, which achieved superior
prediction accuracy compared with high-level features. The application of midlevel features
to traffic sign recognition is the novel contribution of our work. The midlevel features can
extract robust and discriminative representations of traffic signs. Unlike low-level features,
midlevel features capture more abstract information, enabling the model to discern intricate
patterns crucial for traffic sign recognition. Additionally, midlevel features often exhibit
better generalization across diverse conditions compared with high-level features, making
them well-suited for real-world applications with varying environmental factors. Using the
feature representation capabilities and robustness of midlevel features, our method aims to
achieve precise recognition of traffic signs from different countries without the necessity
for fine-tuning or retraining.

3. TSM Method Using Midlevel Features

As shown in Figure 2, this section provides an insightful overview of the envisioned
traffic sign recognition method. The method is designed to not only extract target traffic
signs from original road images but also derive their feature representations through the
extraction of midlevel features from CNNs, facilitating TSM. The proposed method unfolds
through a coherent sequence of three fundamental steps: TSD, midlevel feature extraction,
and zero-shot matching, each meticulously detailed in subsequent Sections 3.1, 3.2, and 3.3.
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Figure 2. Overview of the proposed traffic sign recognition method. We first extract the target traffic signs from the road images based on ViT-Adapter. We then use
the midlevel features of CNNs to perform TSM.



Sensors 2023, 23, 9607 6 of 18

3.1. Traffic Sign Detection

The TSD process represents the initial phase of our method and plays a vital role in
precisely localizing traffic signs within complex urban road images. In this section, we
delve deeper into the techniques employed for TSD. We employ a Vision Transformer
Adapter (ViT-Adapter) [56], an innovative approach inspired by recent advances in vision
transformers [57]. The ViT-Adapter is meticulously tailored for object identification within
images and thus inspires us to extend its capabilities to the specific task of TSD. This
adaptation involves introducing inductive deviations, which help recognize and categorize
traffic signs within road scenes effectively. The initial step involves inputting the original
road images into the ViT-Adapter. The ViT-Adapter performs well in producing segmented
images that represent various object categories in meticulous detail. In our context, these
object categories correspond to different types of traffic signs. Within these segmented
images, various traffic signs within urban road scenes are meticulously color-coded. Each
distinct color corresponds to a specific object category, facilitating their recognition and dif-
ferentiation. To further refine the ViT-Adapter’s outputs for the purpose of distinguishing
traffic signs, we convert these color-coded images into binary masks. This transformation
simplifies subsequent processing steps and provides a clear delineation of traffic sign
areas. The binary encoding effectively separates traffic signs from the background and
other objects within the scene, significantly enhancing the detection and recognition of
traffic signs.

After obtaining the binary masks, we employ contour detection algorithms [58] to
precisely delineate the boundaries of the traffic signs. Suzuki et al. [58] introduced a topo-
logical structural analysis of digitized binary images using a border-following technique.
Given a binary image N represented as a grid of pixels, where each pixel is either fore-
ground (representing the traffic sign) or background (representing the surroundings), the
contour detection algorithm identifies the connected components of the foreground pixels.
Subsequently, it traces the borders of these components, effectively outlining the shape of
the detected traffic sign Id. The calculation process can be expressed as follows:

Id = {(i, j) | Nij = 1}, (1)

where Nij represents the foreground pixel of the traffic sign.
The contour detection algorithm identifies connected components in N and traces the

borders of these components. This process results in a set of coordinates that accurately
define the boundary of each detected traffic sign Id. By employing the contour detection
algorithm, we can detect traffic signs within the binary masks, which is a key step in our
TSD process. Then, we use the detected traffic sign Id to extract the traffic sign image I
from real road images. In the following subsection, we introduce further details on the
extraction of midlevel features from the detected traffic signs.

3.2. Midlevel Feature Extraction

The extraction of midlevel features is crucial in our method. It employs zero-shot
recognition by leveraging the inherent capabilities of pretrained CNNs, initially fine-
tuned on the ImageNet dataset [59]. In this framework, we map traffic sign images onto
different layers of these neural networks, covering a range from early layers, which capture
basic features like shape, color, and edges to more advanced layers packed with semantic
information [34,60]. The core of our method is to make use of the midlevel features inside
CNNs. The middle layers effectively represent both high-level semantic meaning and basic
characteristics such as shape and color, resulting in a complete and informative portrayal of
traffic signs. To provide a clearer visual understanding of this process, Figure 3 illustrates
the composition of our proposed CNN-based method. It shows the architecture of the
early layers, midlevel layers, and final layers. The early layers, typically composed of
a series of convolutional and pooling layers, are responsible for capturing the rudimentary
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characteristics of traffic signs [33,34]. These layers can capture basic visual features like
edges, colors, and shapes.

Figure 3. The structures of the early, midlevel, and last layers in different CNNs.

In contrast, the midlevel layers play a significant role in capturing the rich semantic
features of traffic signs. These layers contribute to the intricate fusion of shape, color, and
semantic content, allowing the network to distinguish details that are crucial for traffic
sign recognition. It is essential to mention that the number of layers and dimensions in
these midlevel layers differs depending on different CNN architectures, such as ResNet-50,
DenseNet-121, and EfficientNet-B0. This gives us the flexibility to choose a framework that
works best for TSM.

The last layer typically comprises a fully connected layer, responsible for mapping the
extracted midlevel features to specific traffic sign categories. This layer connects the neural
network’s internal representations and the actual identification of traffic signs.

Table 1 details the dimensions of midlevel features within the proposed midlevel
feature-based traffic sign recognition method. We show the dimensions of the optimal
middle layer of different CNNs for traffic sign recognition. These dimensions reflect the
richness and complexity of the information extracted by the network and show how the
network transforms original road images into a structured and meaningful representation
that facilitates accurate traffic sign recognition. The extraction of midlevel features is a
fundamental aspect of the proposed method, enabling us to capture both low-level visual
features and high-level semantic content from traffic sign images. This comprehensive
representation forms the basis for our subsequent zero-shot matching process, which is at
the core of the proposed TSM method.

The extraction of midlevel features F from a traffic sign image I using a CNN can be
represented as follows:

Fmid(I) = CNNmid(I), (2)

where CNNmid denotes the subnetwork capturing midlevel features. Fmid(I) represents the
midlevel features of traffic signs by CNNs and is used for performing zero-shot matching.
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Table 1. Dimensions of the different layers used in our method.

Network Layer Dimension

ResNet-50

Early layer 256 × 56 × 56

Middle layer 1024 × 14 × 14

Last layer 2048 × 1 × 1

DenseNet-121

Early layer 256 × 56 × 56

Middle layer 1024 × 14 × 14

Last layer 1024 × 7 × 7

EfficientNet-B0

Early layer 16 × 112 × 112

Middle layer 320 × 7 × 7

Last layer 1280 × 7 × 7

3.3. Zero-Shot Matching

In this section, we delve into the zero-shot matching phase, which is an integral part
of our traffic sign recognition approach based on midlevel feature representations. This
recognition process can be divided into two main components: target traffic signs and
template traffic signs. The former comprises traffic sign images from diverse geographical
locales, while the latter represents an extensive repository of nationally sanctioned traffic
sign templates.

The process begins by assessing the dissimilarity between the midlevel features of
a target traffic sign Itarget and those of the template traffic signs Ti, where i represents
the index of the template traffic sign. This dissimilarity is calculated by the following
Euclidean distance:

Dissimilarity(Itarget, Ti) =

√√√√ n

∑
j=1

(Fmid(I j
target)− Fmid(T

j
i ))

2. (3)

Here, Fmid(Itarget) represents the midlevel features extracted from the target traffic
sign, and Fmid(Ti) corresponds to the midlevel features of a template traffic sign Ti. This
dissimilarity metric quantitatively measures how similar or dissimilar the features of the
target sign are compared with the templates. We rank the top-k template traffic signs that
exhibit the closest similarity to the target traffic sign. This ranking helps us identify the
most likely matches among the template signs and provides a robust basis for recognizing
the target sign.

Our novel approach to traffic sign recognition eliminates the traditional need for
extensive training data. Instead, it leverages midlevel features to achieve recognition,
making it adaptable to a wide range of traffic sign variations and locales. By focusing on
feature similarity rather than explicit training on each sign type, our approach offers a
versatile and effective solution to the challenges of traffic sign recognition.

4. Experiments

In this section, we show the experimental results and evaluations of our TSM method,
demonstrating its effectiveness and robustness in real-world scenarios.

4.1. Experimental Settings

In this subsection, we provide an in-depth look at the experimental framework that
forms the foundation of our study. Our experiments were conducted using the following
two distinct datasets: the German Traffic Sign Recognition Benchmark (GTSRB) dataset [61]
and a dataset consisting of urban road images from Sapporo City, Japan. These datasets
were chosen to evaluate the effectiveness and robustness of the proposed TSM method.
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The GTSRB dataset comprises a diverse collection of 1,213 traffic sign images spanning
43 different classes. From this dataset, we handpicked 43 distinct classes of traffic signs
as template traffic signs for the recognition task. The remaining images from the GTSRB
dataset were designated as target traffic signs. It is noteworthy that the traffic sign images
in the GTSRB dataset have already been extracted from road images, which aligns with
our approach. For the Sapporo urban road dataset, we employed our ViT-Adapter-based
method to meticulously extract traffic signs from the urban road images. This resulted in a
final selection of 71 images representing 18 distinct types of traffic signs, all earmarked for
use as target traffic signs in our experiments. Correspondingly, the template traffic signs for
this dataset consisted of a comprehensive set of 111 categories, adhering to the prevailing
traffic sign templates in Japan.

To assess the performance of the proposed TSM method, we conducted comparative
analyses against conventional methods grounded in the HOG [11] and SIFT [3] techniques.
This allowed us to benchmark our method against established approaches and highlight its
advantages. For the extraction of midlevel features, we harnessed CNNs with ResNet-50,
DenseNet-121, and EfficientNet-B0 architectures. It is crucial to note that all these networks
were pretrained on the ImageNet dataset, and we left their inherent structures unaltered to
ensure generality and applicability to various traffic sign recognition scenarios. To maintain
uniformity and facilitate consistent analysis, we resized both target and template traffic
sign images to the dimensions of 224 × 224 pixels. The evaluation metric we employed,
Top-k accuracy, offers a comprehensive assessment of the method’s performance. This
metric can be succinctly expressed as

Top-k =
tk

Number of target traffic signs
. (4)

Here, tk represents the count of target images that successfully match templates
within the Top-k matching results. Given the inherent challenges of zero-shot traffic sign
recognition, including the absence of training data and the presence of highly similar
template traffic signs, the Top-k metric serves as an effective gauge to measure the success
of our zero-shot traffic sign recognition.

4.2. Experimental Results

In this section, we explore the experimental results and detailed analyses, shedding
light on the effectiveness and adaptability of our TSM method across different datasets
and scenarios.

The experimental results are shown in Tables 2 and 3. In Table 2, we show the Top-
k TSM results of different methods on the GTSRB dataset [61]. The proposed method
based on the midlevel features of CNNs achieves promising results compared with the
previous methods of using handcrafted features. The Top-k accuracy outperforms the
comparative methods on three different CNNs, ResNet-50, DenseNet-121, and EfficientNet-
B0, demonstrating the proposed method’s effectiveness. Furthermore, we also validated
the recognition performance on the early layer, middle layer, and last layer of Table 1. The
experimental results show that the proposed mid-level-feature-based method achieves the
best TSM accuracy in all three CNNs. The results prove our hypothesis that the midlevel
features can fuse the underlying information contained in the low-level features and the
semantic information of the high-level features for better zero-shot traffic sign recognition.

To demonstrate the generality of the proposed traffic sign recognition method, we
show the Top-k TSM results of different methods on the Sapporo urban road dataset in
Table 3. Different from the experimental settings of the GTSRB dataset, the template traffic
signs in the Sapporo urban road dataset are the common traffic sign templates in Japan.
The Top-k accuracy of the proposed method for TSM in the Sapporo urban road dataset
also outperforms the previous methods. In addition, the proposed mid-level-feature-based
method also achieves the highest TSM accuracy on all three CNNs compared with the
other layers, which further illustrates the effectiveness of the proposed method. It is
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worth mentioning that the recognition process does not require additional traffic sign
images for training. The proposed method can obtain good feature representations of
traffic sign images from different countries and achieve high accuracy for zero-shot traffic
sign recognition.

Table 2. Top-k accuracy of different methods on the GTSRB open dataset.

Method Top1 Top5 Top10

HOG [11] 0.089 0.196 0.329

SIFT [3] 0.238 0.551 0.709

ResNet-50

Early Layer 0.141 0.352 0.569

Middle Layer (PM) 0.521 0.781 0.930

Last Layer 0.148 0.359 0.559

DenseNet-121

Early Layer 0.081 0.227 0.374

Middle Layer (PM) 0.468 0.769 0.910

Last Layer 0.394 0.680 0.864

EfficientNet-B0

Early Layer 0.245 0.520 0.687

Middle Layer (PM) 0.444 0.767 0.921

Last Layer 0.333 0.678 0.848

Table 3. Top-k accuracy of different methods on the Sapporo urban road dataset.

Method Top1 Top5 Top10

HOG [11] 0.014 0.296 0.465

SIFT [3] 0.127 0.310 0.338

ResNet-50

Early Layer 0.014 0.211 0.338

Middle Layer (PM) 0.338 0.761 0.873

Last Layer 0.028 0.070 0.141

DenseNet-121

Early Layer 0.014 0.141 0.268

Middle Layer (PM) 0.817 0.873 0.915

Last Layer 0.169 0.606 0.732

EfficientNet-B0

Early Layer 0.099 0.169 0.239

Middle Layer (PM) 0.437 0.732 0.845

Last Layer 0.169 0.423 0.634

Figure 4 presents illustrative matching results obtained with various methods on the
GTSRB dataset. We show the matching results of four target traffic signs, deliberately chosen
for their distinct colors and shapes, to underscore the efficacy of the proposed approach.
The inclusion of the final target traffic sign, selected for its inherent blurriness, serves the
purpose of evaluating the methods’ performance in handling ambiguous traffic signs.
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Figure 4. Examples of matching results for different methods on the GTSRB dataset.
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As shown in Figure 4, the colors of the four target traffic signs in the GTSRB dataset
encompass red, black, and blue, with shapes ranging from circular to triangular. The
proposed mid-level-feature-based method consistently exhibits similar color and shape
attributes in the top-matched template traffic signs across three neural networks, namely
ResNet-50, DenseNet-121, and EfficientNet-B0. Furthermore, in comparison with manually
crafted techniques such as HOG and SIFT, the proposed method also preserves semantic
features. For instance, the central motif of the “No Passing” sign comprises vehicles, and
the proposed method proficiently recognizes such semantic characteristics while retaining
color and shape information. Notably, for the final example featuring a blurred traffic
sign, the proposed CNN-based midlevel feature method accurately identifies the traffic
sign, demonstrating its robustness. This characteristic is particularly pertinent in real-
world scenarios, where signs may be subject to distortion or blurring due to adverse
environmental conditions.

Figure 5 illustrates matching results obtained with different methods on the Sapporo
urban road dataset. Given that this dataset comprises only original urban road images,
we employed the ViT-Adapter and contour detection algorithms to extract traffic signs
from the raw road images. We selected matching results for four target traffic signs to
demonstrate the effectiveness of the proposed mid-level-feature-based TSM method. These
target traffic signs exhibit various shapes, including rectangles, circles, and triangles, and
come in different colors. As shown in Figure 5, the experimental results on the Sapporo
urban road dataset reveal that the proposed midlevel feature method consistently exhibits
similar color and shape attributes in the top-matched template traffic signs across three
neural networks, namely ResNet-50, DenseNet-121, and EfficientNet-B0. Furthermore, in
comparison with manually crafted techniques such as HOG and SIFT, the proposed method
also preserves semantic features. For instance, the “Stop Line” and ”Temporary Stop” signs
contain text, and the proposed method accurately recognizes this textual semantic feature
while retaining color and shape information.

Additionally, the average computation time for traffic sign matching per target image
in our proposed method, based on midlevel features for three different CNNs, is presented
in Table 4. For the GTSRB dataset, the computation time per target image is 1.15 s for
ResNet-50, 1.26 s for DenseNet-121, and 1.82 s for EfficientNet-B0. For the Sapporo urban
road dataset, the computation time per target image increases to 3.63 s for ResNet-50, 4.01 s
for DenseNet-121, and 5.35 s for EfficientNet-B0 due to the increased number of classes
in the template traffic signs. Our approach exhibits reasonably efficient matching times
across all three networks, which demonstrates the potential for application in traffic sign
recognition within practical scenarios.

The proposed method consistently demonstrates similar matching results on examples
from both datasets. This consistency underscores its effectiveness in traffic sign recognition
across different scenarios. Specifically, on the GTSRB dataset, our method successfully
matches target traffic signs with varying colors and shapes, showcasing its ability to handle
diverse signage characteristics. It not only preserves color and shape information but also
retains semantic features, making it a robust choice for real-world applications. Similarly,
on the Sapporo urban road dataset, the proposed method exhibits remarkable performance
in recognizing traffic signs with different shapes and colors, even when the signs are
embedded within complex urban road scenes. Such versatility and reliability are essential
for ensuring road safety and traffic management in urban environments. Our proposed
mid-level-feature-based method consistently delivers robust matching results on both
datasets, affirming its suitability for TSD and recognition tasks across diverse settings.
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Figure 5. Examples of matching results for different methods on the Sapporo urban road dataset.
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Table 4. Computation time per target traffic sign on two datasets across three different CNNs. “Class”
represents the classes of template traffic signs.

Dataset Class Proposed Method Computation Time (Seconds)

GTSRB 43

ResNet-50 1.15

DenseNet-121 1.26

EfficientNet-B0 1.82

Sapporo Urban Road 111

ResNet-50 3.63

DenseNet-121 4.01

EfficientNet-B0 5.35

5. Discussion

In this section, we delve into a comprehensive discussion of the results obtained in
our study, considering them in the context of prior research and our initial hypotheses. We
also explore the broader implications of our findings and identify potential avenues for
future research.

5.1. Interpretation of Results

Our study focused on the development and evaluation of a mid-level-feature-based
method for traffic sign recognition using CNNs. The results presented in Tables 2 and 3
and Figures 4 and 5 demonstrate the robustness and effectiveness of our proposed method
on two distinct datasets, GTSRB and the Sapporo urban road dataset. On the GTSRB
dataset, our method consistently achieved accurate matching results for traffic signs with
varying colors and shapes. This suggests that our approach can effectively handle the
diversity of traffic signage encountered on real-world roads. Furthermore, our method can
preserve both color and shape information, as well as semantic features, differentiating it
from traditional handcrafted methods such as HOG and SIFT. Similarly, on the Sapporo
urban road dataset, our method excelled in recognizing traffic signs within complex urban
road scenes. The capacity to extract meaningful information from cluttered backgrounds is
crucial for real-world traffic sign recognition systems, especially in urban environments.

5.2. Implications

The results of our study have several important implications. First, the proposed mid-
level-feature-based method showcases the potential of leveraging CNNs for robust and
versatile traffic sign recognition. This approach can be a valuable component of advanced
driver assistance systems and autonomous vehicle technology, contributing to improved
road safety. Second, our findings highlight the adaptability of our method to diverse
datasets and scenarios. This adaptability is pivotal for real-world applications, where traffic
signs can exhibit substantial variability in terms of appearance, lighting conditions, and
environmental clutter.

5.3. Determining the Final Matched Traffic Signs

When determining the final matched traffic sign, it is important to consider the accuracy
fluctuations within the Top-k rankings. The Top-k rankings are obtained based on the dis-
similarity values between the target and each template traffic sign (Dissimilarity(Itarget, Ti)).
Lower dissimilarity values indicate higher rankings of the matched template traffic sign
within the Top-k results. In practical applications in urban road scenarios, to assist drivers
in making informed judgments in DASs, the final matched traffic sign from the Top-k
matches can be guided by setting a dissimilarity threshold. When the dissimilarity value
is below the threshold, the matched traffic signs are considered potential candidates for
the final matched traffic sign. The proposed method is intended to assist the driver in
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making judgments. The threshold value varies based on actual road conditions, weather
conditions, etc. For example, in clear weather conditions, where traffic signs are more easily
recognizable, the threshold can be lower. In adverse road or weather conditions where
signs may be blurry and harder to identify, the threshold can be higher.

5.4. Future Directions

Considering future directions, there are several avenues that warrant exploration.
One particularly promising area is the integration of real-time video processing to extend
the scope of our method for dynamic traffic sign recognition in video streams. Moreover,
further refinement and optimization of the model architecture can enhance its efficiency
and accuracy. Furthermore, enhancing the template database by incorporating a more
diverse set of traffic sign variations and scenarios can significantly benefit the robustness
and adaptability of our method. Rotating, distorting, or blurring the template traffic signs to
simulate recognition under different road and weather conditions is also one of our future
research directions. Meanwhile, we also need to consider the issue of traffic sign matching
time, as an increase in the number of template traffic signs will escalate computation
time, potentially compromising real-time performance. Additionally, incorporating more
comprehensive and diverse datasets from different regions and countries can help validate
the generalizability of our approach across various traffic sign standards and designs.

6. Conclusions

Our study presented a pioneering approach to zero-shot traffic sign recognition
through a novel TSM method grounded in midlevel features. Through meticulous ex-
perimentation and analysis, we gained valuable insights into the capabilities of midlevel
features extracted from CNNs. Our findings illuminate the significance of midlevel features,
showcasing their proficiency in capturing both semantic and shape information intrinsic to
traffic signs. This novel approach obviates the need for extensive training or fine-tuning on
country-specific datasets, rendering it highly adaptable for traffic sign recognition across
diverse geographical locales. In comparison with existing research, our work offers a fresh
perspective on the challenges of traffic sign recognition. The TSM method, with its reliance
on midlevel features, demonstrates superior adaptability and efficiency. This approach
mitigates the need for extensive training, addressing a common limitation in current meth-
ods. This positions our study as a significant advancement, particularly in scenarios where
access to large annotated datasets is constrained. The robustness and effectiveness of our
method are underscored by the promising experimental results on two distinct datasets:
the GTSRB and the Sapporo urban road dataset. These results demonstrate the method’s
aptitude for accurate and efficient traffic sign recognition.
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Appendix A

Table A1. Abbreviations used in this article and their full forms.

Abbreviation Full Form

CNNs Convolutional Neural Networks
DASs Driver Assistance Systems
SIFT Scale-invariant Feature Transform
HOG Histogram of Oriented Gradients
TSD Traffic Sign Detection
TSC Traffic Sign Classification
TSM Traffic Sign Matching
GTSRB German Traffic Sign Recognition Benchmark
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