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Abstract: In this paper, an innovative cyclic noise reduction method and an improved CAPON
algorithm (also the called minimum variance distortionless response (MVDR) algorithm) are proposed
to improve the accuracy and reliability of DOA (direction of arrival) estimation. By processing the
eigenvalues obtained from the covariance matrix of the received signal, the signal-to-noise ratio (SNR)
can be increased by up to 5 dB by the cyclic noise reduction method, which will improve the DOA
estimation accuracy. The improved CAPON algorithm has a convolution neural network (CNN)
structure, whose input is the processed covariance matrix of the received signal, and the CAPON
spectral value is used as the training label to obtain the estimated spatial spectrum. It retains the
advantages of the CAPON algorithm, which can achieve blind source estimation, and simulations
show that the proposed algorithm exhibits a better performance than the traditional algorithm in
conditions of various SNRs and snapshot numbers. The simulation results show that, based on a
certain SNR, the root mean square error (RMSE) of the improved CAPON algorithm can be reduced
from 0.86◦ to 0.8◦ compared to traditional algorithms, and the angle estimation error can be decreased
by up to about 0.3◦. With the help of the cyclic noise reduction method, the angle estimation error
decreases from 0.04◦ to 0.02◦.

Keywords: DOA estimates; CAPON; CNN; noise reduction

1. Introduction

DOA estimation is an application of array signal processing [1,2]. Usually, an array
is composed of several sensors arranged in a certain form and distributed in different
positions in space. All the elements in the array sense the spatial signals, which will be
used to determine the direction of multiple target sources. Nowadays, DOA estimation is
widely used in various fields such as radar antennas, sonar systems, and wireless network
positioning. In radar antenna design, designers utilize this technology to optimize the
layout of the antenna array and the configuration of antenna elements in order to more
precisely determine the direction of signals [3]. By accurately controlling the directivity and
beam width of the antenna, it is possible to effectively avoid or reduce interference from
other signal sources, thus enhancing the radar’s detection capabilities towards targets [4].

Signal denoising is a traditional classical problem. The first denoising algorithms were
used to smooth signals and eliminate singular points in receiving signals. Such denoising
algorithms include the mean algorithm and median algorithm [5]. We find that eigenvalue
decomposition of the covariance matrix can improve the SNR by about 5 dB after the
minimum noise variance is repeatedly subtracted from the signal and noise characteristics.
In this paper, we name this method ’cyclic noise reduction’, and it will be described in
detail in later sections.

Traditional DOA estimation algorithms are model-based estimation methods, which
determine the signal parameters through mathematical derivation and related super-
resolution algorithms. However, these algorithms usually have a poor estimation per-
formance under harsh conditions. Subspace-based DOA estimation methods, such as the
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multiple signal classification (MUSIC) algorithm [6], require complex operations such as
matrix eigenvalue decomposition and spectral peak searching, and a lot of computing
resources. Minimum variance spectral estimation (MVM), proposed by Capon [7] in 1969,
is an adaptive beamforming method and is not constrained by the array aperture. However,
the disadvantage with these algorithms is that when the SNR is low, the DOA estimation
errors are large. In view of the above problems, some scholars have adopted machine
learning techniques [8–10] such as neural networks and support vector machines [11] to
estimate the DOA. Compared with traditional machine learning techniques, deep learning
(DL) does not rely on interpretable model designs and can autonomously learn from a large
amount of raw data to extract and mine features. DL models have a superior predictive
performance, and once trained, the network requires only simple inference to complete esti-
mation tasks [12,13]. Current DL-based DOA estimation studies typically use the received
signals and their processed forms as network inputs, with the outputs being the corrected
received signals or predicted angles [14,15]. Furthermore, DL has also been used to enhance
traditional DOA estimation methods. For instance, Elbir [16] proposed the Deep MUSIC
algorithm, which uses a learning-based data-driven architecture to learn the nonlinear
relationship between input and output data through neural networks, achieving good DOA
estimation results. However, the number of signal sources still needs to be preset.

Current DOA estimation methods based on deep learning can roughly be divided into
two categories. In the first group of methods, the DOA estimation problem is transformed
into a neural network classification problem. The spatial angles are classified and the
mapping relationship between the network input data and the DOA is learnt. For example,
Liu et al. [17] proposed a two-level framework, which uses a multi-task autoencoder to
roughly divide the parameter space and a parallel multi-layer classifier to further divide
the sub-region. The framework uses the real and imaginary parts of the array receiving
data covariance as input, and then extracts features to achieve high-precision direction
estimation in the presence of array errors. In the second group of methods, the DOA
estimation problem is transformed into a neural network regression problem, and features
related to location information are extracted from the received signal and directly mapped
to the source location through deep learning. For example, Wu et al. [18] regarded DOA
estimation as a sparse linear inverse problem in compressed sensing, proposing a deep
convolutional network that learns the inverse transformation from a large training dataset
using sparse priors to obtain the DOA of the signal effectively in real time.

In this paper, a regression model with ULA is used in the improved CAPON algorithm.
By preprocessing the covariance of the real complex signal received by the uniform linear
array, the DOA is estimated after training with the CAPON spectrum value as the label.
The reduction in noise proves that, in the case of Gaussian noise, the algorithm combined
with machine learning not only outputs better DOA estimation results in terms of accuracy,
but also has more advantages in low-SNR environments compared to the traditional
CAPON algorithm.

The remainder of this paper is structured as follows. Section 1 presents the data
model of bearing estimation for uniform linear arrays. Section 2 describes the ‘cyclic
noise reduction’ method. In Section 3, we present the network architecture. In Section 4,
the simulations and performance evaluations are described. Finally, Section 5 concludes
the paper.

2. Array Signal Model

Consider a uniform linear array, as shown in Figure 1. It is assumed that K far-
field narrowband non-coherent target signal sources impinge on an M-element uniform
linear array with an arbitrary distance d from the angle θ [19]. The received signal can be
expressed as:

X(t) =
K

∑
k=1

a(θk)sk(t) + N(t) = A(θ)S(t) + N(t) (1)
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where sk(t) denotes the kth source’s transmitting signals at time t, N(t) is the Gaussian
white additive noise with mean value 0 and variance σ2, N(t) = [n1(t), n2(t), . . . , nM(t)]T,
and[·]T denotes the transpose operation.

a(θk) =
[
1, e−j2πdλ sin θk , . . . , e−j2π(M−1)dλ sin θk

]T
(2)

is the steering vector,
A(θ) = [a(θ1), a(θ2), . . . , a(θk)] (3)

is the steering matrix of the array, and λ is the wavelength of the signal. The covariance
matrix of the array output X(t) is:

Rxx = E
[
X(t)XH(t)

]
= A(θ)RsA

H(θ) + σ2I (4)

where E[·] denotes mathematical expectation and [·]H denotes the conjugate transpose
operation. Rs denotes the covariance matrix of the signal source and I is the identity matrix.

Figure 1. Uniform linear array.

3. Noise Reduction Preprocessing

Based on the covariance matrix Rxx, we can compute the eigenvalues D (a diagonal
matrix) and eigenvector V. Under the assumption that the number of array sensors is larger
than the number of signal sources, the minimum value of D will be the noise variance
σ2. To reduce the noise impact, we subtract this minimum value from D to obtain Dn, as
shown in Figure 2. Thus, the reduced noise covariance matrix is obtained by multiple Dn
and V, which can be used in the proposed CNN structure to estimate DOAs.

Figure 2. Noise reduction by subtracting the minimum value of the diagonal elements.

The accuracy of this process depends on the length of the received signal, as the
limited number of samples can lead to errors in real situations. Therefore, to reduce
the approximation error of the covariance matrix, a large number of samples need to
be considered.

In order to verify the accuracy of the cyclic noise reduction method, we study environ-
ments with SNRs of 0 dB and 5 dB and actual angle values of −51.5◦, −7◦, and 8.85◦ using
the MUSIC algorithm.

From Figure 3, it can be observed that at an SNR of 0 dB, the MUSIC algorithm
estimates the angles with a slight error. At an SNR of 5 dB, the MUSIC algorithm can
estimate the angles more accurately. At an SNR of 0 dB, the algorithm employing the cyclic
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noise reduction method achieves an estimation performance that is almost equivalent to
that of the algorithm without noise reduction at an SNR of 5 dB, which indicates that the
cyclic noise reduction method results in an SNR improvement of roughly 5 dB.

Figure 3. Normalized-power spectrum with SNR = 0 dB, SNR = 5 dB, and SNR = 0 dB after denoising.

4. Improved CAPON and CAPON
4.1. CAPON Algorithm and CAPON Algorithm Estimation Framework

The main advantage of the CAPON algorithm lies in its practicality, as it operates
effectively without the need for prior knowledge or assumptions regarding signals. At the
same time, the algorithm also has a certain anti-interference ability and robustness and can
be applied to different types of signal processing with different complexities.

The CAPON algorithm analyzes signals and noise by collecting array signals and
computing the covariance matrix. The core step involves optimizing the weight vector
using the Lagrange multiplier method, with the goal of minimizing the output power of
the received signals while ensuring that the gain in the desired signal direction remains
unchanged. Following this optimization, the optimal weight vector w is obtained [7], as
shown in Equation (5). In this equation, R−1 represents the inverse of the signal covariance
matrix, θ denotes the array response vector, and aH(θ) is the conjugate transpose of a(θ).
The optimal weight vector is:

w =
R−1a(θ)

aH(θ)R−1a(θ)
(5)

The power spectrum in the CAPON algorithm is the reciprocal of the output power of
the beamformer in each direction. Convert the above optimal weight vector to:

P(θ) =
1

wHRw
=

1
aH(θ)R−1a(θ)

(6)

By scanning θ, the corresponding CAPON power spectrum P(θ) is obtained. After the
angle search, the maximum point of the spatial spectrum is found, which is the direction of
arrival of the signal.

The resolution of the CAPON algorithm is limited by the array geometry and the
signal wavelength, which means that it may be difficult to distinguish these signals when
the angle of the incident signal is very low. At a low SNR, due to the weak signal strength,
noise will have a significant impact on the estimation of the covariance matrix, which will
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reduce the effect of the weight vector and thus affect the DOA estimation accuracy. In
order to solve this problem, we design an improved CAPON algorithm combined with
machine learning. By establishing a nonlinear mapping between the signal and the useful
parameters from the data, an estimated angle of arrival is obtained. By expanding the
dataset and modifying the model, the algorithm has improved anti-noise abilities and a
high resolution.

The estimation framework of the improved CAPON algorithm is shown in Figure 4.
Directly using the received signal as input to construct a neural network model will not only
increase the complexity of the model’s structure, but also increase the difficulty of model
convergence during training and significantly increase the size of the required training
sample. Therefore, methods such as the time difference, phase difference, covariance
matrix of the received signal, and eigenvector of the covariance matrix are usually used to
preprocess the received data to reduce their dimensions and extract key eigenvalues.

Figure 4. Improved CAPON algorithm framework.

4.2. Dataset Construction

In order to construct an input dataset for our proposed network framework, we used
the real and imaginary parts and angles of the covariance matrix Ry. Let X be a real-valued
matrix with a size of M×M× 3; then, the (i, j)-th element of the first and second ’channel’
of X is given by [[X] :, :, 1]i,j = Re{Rxx}i,j and [[X] :, :, 2]i,j = Im{Rxx}i,j, respectively. A
schematic diagram of the construction of matrix X is illustrated in Figure 5. Similarly, the
(i, j)-th element of the third ’channel’ of X is defined as [[X] :, :, 3]i,j = ∠{Rxx}i,j, where
∠· denotes the angle information of a complex number. The processed input information
is sent to the neural network, and the real CAPON spectrum value is used as a label for
training. After normalizing the output of the network, the corresponding angle value is
selected by using a segmentation line with a threshold of 0.5.

For the improved CAPON algorithm model, the angle range is set to [−60◦, 60◦].
Firstly, one angle is selected every 5◦ within the range of [−60◦, 60◦], yielding a total of
Nθ = 25 angle values. Subsequently, for each of these angles, k = 100 reception signal
matrices X are generated using the spatial channel model (SCM). To ensure improved
detection at a higher SNR, SNR values were chosen at intervals of 5 dB within the range
of [−10, 10] dB, resulting in a total of NSNR = 5 SNR values. Gaussian white noise
corresponding to these SNRs is added to the reception signal matrices, with noise for each
SNR value being added Nnoise = 1000 times to mitigate random effects. Following this,
the covariance matrix of the received signal Rxx is computed to generate a training set R̄,
and the CAPON algorithm is utilized to calculate the spatial spectrum p corresponding to
Rxx, which is used as the label set ũ for training the network. The dataset ES for training
has a size of k × Nθ × NSNR × Nnoise = 1, 250, 000, with each dataset consisting of data
pairs (R̄, ũ). Prior to the initiation of training, the entire dataset is shuffled, and 80% of the
dataset is allocated as the training set and the remainder is designated as the validation set.
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Figure 5. Transformation from the covariance matrix to training data.

4.3. Model Design and Training

The network structure of the improved CAPON algorithm model is shown in Figure 6.
This model is mainly responsible for reconstructing the input matrix and establishing a non-
linear relationship with the CAPON spectrum value. In this paper, the task is modeled as a
regression task. The purpose is to fit the mapping relationship to the power spectrum value
P and Rxx according to Equation (4), which is defined as the nonlinear function from the in-
put space to the output space, namely fCNN : RM×M×3 → RL. The nonlinear function fCNN

is parameterized by an eight-layer CNN, where fCNN

(
R̄x = f (8)

(
f (7)
(
· · · f (1)(R̄x)

)))
= û.

Specifically, the function
{

f (i)(·)
}

i={1,2,3}
represents a series of convolutional layers: a

two-dimensional convolutional layer containing 512 neurons with a convolution kernel
size of 5× 5, a Max-pooling layer, and a two-dimensional convolutional layer containing
512 neurons with a convolution kernel size of 3× 3. f (4)(·) is the batch normalization
function, f (5)(·) is the Flatten layer, which is used to convert the output of the batch
normalization layer into a one-dimensional vector, f (6)(·) is the Dropout layer, and the
parameter is set to 0.3. f (7)(·) is a fully connected layer containing 1024 neurons and the
ReLU activation function. The final output layer f (8)(·) is a fully connected layer containing
floor (r/q) neurons, in which r is the angle range of scanning, while q is the number of
partitions. The output of the neural network is expressed as û = [û1, · · · , ûN ]

T.

Figure 6. Architecture of the proposed CNN.

In network training, the mean square error (MSE) between the actual output and the
label is used as the loss function.

LMSE

(
ũ(k,i), û(k,i)

)
=

1
N

N

∑
n=1

(
ũ(k,i)

n − û(k,i)
n

)2
(7)
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The optimizer used is Adam, the learning rate is 0.001, the number of hidden layers is
8, the batch size is 128, the number of training rounds is 100, and the training is terminated
when the accuracy of the verification set no longer improves after five iterations.

5. Simulation Results and Analysis

In this section, the estimation performance of the proposed method is verified via
simulations. The experimental software environment is TensorFlow on RTX 3090. The
number of Monte Carlo experiments was set to Mc = 100, the number of snapshots was set
to T = 200, and the receiving array was a ULA with an interval of d = 0.15 m. Next, the
performance of the CNN is demonstrated by evaluating its performance in DOA estimation.
It should be noted that in order to avoid the influence of the data consistency between the
test and training sets on the experimental results, the incident angle used in this experiment
was added to the selected angle with a random value in the range of [−0.5, 0.5]. In terms of
DOA estimation, the performance of the improved CAPON in this chapter is compared
with MUSIC. The root mean square error (RMSE) is used to evaluate the DOA estimation
performance, which is defined as follows:

RMSE =

√√√√ 1
KMC

K

∑
k=1

MC

∑
t=1

(
θk − θ̂k,t

)2
(8)

Here, the true value of the k-th DOA angle is θk and the estimated value of the k-th
DOA angle in the t-th Monte Carlo experiment is θ̂k,t.

5.1. Effect of the SNR on Estimation Accuracy

The relationship between the RMSEs of the angle and the SNRs of the CAPON, MUSIC,
and the improved CAPON methods is shown in Figure 5.

It can be seen from Figure 7 that the performance of the improved CAPON algorithm
is significantly better than that of the traditional algorithm. The performance is best
around an SNR of 0 dB, where the improved CAPON algorithm can fully learn the signal
characteristics. Although it outperforms traditional algorithms in the range of 10 dB
to 20 dB, the RMSE metrics remain comparatively elevated. This is because the signal
characteristics are already quite apparent compared to the noise characteristics in this range,
and finding angle information by minimizing the output power is challenging, which to
some extent also affects the performance of the improved CAPON algorithm.

Figure 7. RMSE variation at different SNRs.
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In the range of −10 dB to 10 dB, we studied the spectral value–angle plots at SNRs of
−10, 5, and 10, as shown below.

In Figures 8–10, the vertical lines are the true angle values, where the red lines indicate
the spectral values normalized by the improved CAPON algorithm and the blue lines
indicate the spectral values normalized by the CAPON algorithm. The spectral peaks of
the improved CAPON algorithm are clearly closer to the vertical lines of the true angle
values, i.e., the DOA values estimated by the improved CAPON algorithm deviate less
from the true angles. Taking Figure 8 as an example, the true angle values are −29.5◦,
−17.5◦, and 34.5◦ at an SNR of −10 dB, and the values estimated by the CAPON algorithm
are −29.95◦, −17.9◦, and 34.05◦, respectively. The improved CAPON algorithm estimates
values of −29.62◦, −17.69◦, and 34.22◦, respectively; thus, it can be seen that the angle
estimates of the improved CAPON algorithm are more accurate. Compared to the CAPON
algorithm, the improved CAPON algorithm’s actual angle error is reduced by about 0.3◦,
demonstrating a very accurate angular measurement estimation.

Figure 8. Normalized-spectrum at SNR = −10 dB; the accurate DOAs are −29.5◦, −17.5◦, and 34.5◦.

Figure 9. Normalized-spectrum at SNR = 5 dB; the accurate DOAs are −63.5◦, −10◦, and 25◦.
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Figure 10. Normalized-spectrum at SNR = 10 dB; the accurate DOAs are −15◦, −8◦, and 40◦.

5.2. The Effect of Adding Noise Reduction

After using the cyclic noise reduction method, simulations were performed with
parameters consistent with those above, and the SNR was set to 0 dB. The estimation
accuracy is shown in Figure 11.

From Figure 11, it can be seen that after noise reduction, the performance of the
improved CAPON is improved at the same SNR. With the help of the noise reduction
method, the angle estimation error decreases from 0.04◦ to 0.02◦. The results of these
comprehensive analyses show that the improved CAPON algorithm performs better in
combination with the cyclic noise reduction algorithm.

Figure 11. Normalized-spectrum comparisons using noise reduction; the accurate angles are −17.4◦,
−6.3◦, and 27◦.

5.3. Effect of the Snapshot Number on Estimation Accuracy

In this section, the impact of the number of snapshots on the proposed algorithm’s
performance is analyzed. The structural parameters of the array are consistent with those
used in the above sections. The SNR of the training and test sets is 5 dB. The number of
snapshots used in the test was set between 50 and 1000. The root mean square error of
angle measurements for different snapshot numbers is shown in Figure 12.
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Figure 12. Differences in algorithm performance at varying snapshot lengths.

From Figure 12, it can be seen that at different snapshot counts, the performance of the
improved CAPON algorithm is consistently better than that of the traditional algorithm.
Particularly, in scenarios with a high number of snapshots, taking the case of 500 snapshots
as an example, the RMSE of the improved CAPON algorithm decreases from 0.86° to 0.8°.
This is because data with a high number of snapshots are more diverse in time or space,
which can help the neural network extract features that are more complex and distinctive.
If evaluated based on the number of snapshots, the improved CAPON algorithm is suitable
for scenarios with multiple snapshots and exhibits a superior performance.

5.4. Summary of Simulation Results

The improved CAPON algorithm outperforms the traditional CAPON algorithm, as
shown in Figures 7–10, especially at SNR = 0 dB, where it learns signal traits better, leading
to more precise DOA estimates. Figure 8 highlights that this algorithm has a reduced error
by about 0.3◦, indicating closer estimates to the true angles.

Figure 11 highlights the performance improvement after cyclic noise reduction, and
Figure 12 showcases the improved results across different snapshot counts, notably for a
high snapshot number. This is due to the algorithm’s ability to leverage diverse data for
more detailed feature extraction.

The accuracy of the improved CAPON algorithm primarily stems from its proficient
assimilation of signal characteristics, which is especially effective in environments with an
abundance of snapshot data. The performance can be further enhanced by integrating the
cyclic noise reduction algorithm.

6. Conclusions

In this paper, we propose an improved CAPON algorithm based on a neural network
technique. The simulations show that the CNN-based method performs better in the mid-
and low-SNR regions, and its results are superior to those of CAPON and MUSIC when
the amount of snapshots is large. The DOA estimation method proposed in this paper has
a higher positioning accuracy and a lower error rate than the traditional CAPON algorithm
at a low SNR. In addition, the proposed method does require knowledge of the number
of signal sources in advance and has good adaptability and robustness. The experimental
results show that deep learning technology can effectively extract signal features, thereby
improving the DOA estimation accuracy.

We describe a radio wave propagation environment with distant scattering clusters.
Thus, the received signal is a linear combination of the signals from the effective scattering
clusters. The DOA is the center of a scattering cluster, which is the key to building correlated
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MIMO channels. Adding up all the scattering clusters, we can reconstruct the physical
propagation environment for radio waves.
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