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Abstract: Ensuring precise prediction of the remaining useful life (RUL) for bearings in rolling
machinery is crucial for preventing sudden machine failures and optimizing equipment maintenance
strategies. Since the significant interference encountered in real industrial environments and the high
complexity of the machining process, accurate and robust RUL prediction of rolling bearings is of
tremendous research importance. Hence, a novel RUL prediction model called CNN-VAE-MBiLSTM
is proposed in this paper by integrating advantages of convolutional neural network (CNN), vari-
ational autoencoder (VAE), and multiple bi-directional long short-term memory (MBiLSTM). The
proposed approach includes a CNN-VAE model and a MBiLSTM model. The CNN-VAE model
performs well for automatically extracting low-dimensional features from time–frequency spectrum
of multi-axis signals, which simplifies the construction of features and minimizes the subjective bias
of designers. Based on these features, the MBiLSTM model achieves a commendable performance
in the prediction of RUL for bearings, which independently captures sequential characteristics of
features in each axis and further obtains differences among multi-axis features. The performance of
the proposed approach is validated through an industrial case, and the result indicates that it exhibits
a higher accuracy and a better anti-noise capacity in RUL predictions than comparable methods.

Keywords: remaining useful life; variational autoencoder; bi-directional long short-term memory

1. Introduction

Bearings are a fundamental and vulnerable part of industrial rotating equipment.
Numerous factors (e.g., running load, operation temperature, lubrication, installation,
corrosion, material defects, etc.) lead to severe bearing faults and influence the normal
operation of machines [1]. Thus, regular bearing maintenance is crucial for reducing
machine downtime and improving productivity [2]. In recent years, predictive maintenance
(PdM) has become an increasingly significant field in modern manufacturing, as it can
estimate the health status of machines to minimize risks of sudden breakdowns [3,4]. One
key technique of PdM is RUL prediction that refers to the remaining time left for machines
to operate normally before a serious bearing failure occurs [5]. Consequently, accurate RUL
prediction of bearings contributes to minimizing machine downtime, reducing maintenance
frequency, and maximizing the service life of bearings [6–9].

Generally, approaches for predicting the RUL of bearings can be roughly classified as
two main groups: mechanism model methods [10–12] and data-driven methods [13–15].
Specifically, mechanism model methods typically rely on failure principles of bearings
and try to establish accurate mathematical models to describe the degradation process of
bearings [16]. Hu et al. [17] proposed an RUL prediction model for bearings based on the
diffusion process; the model addresses the uncertainty in prediction results and enhances
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the accuracy of predictions. Gao et al. [18] developed fatigue reliability models that consider
the combined effects of fatigue damage accumulation and effective stress growth, resulting
in an accurate performance degradation prediction of composite materials. In theory,
mechanism model methods have the potential to adequately reflect the system nature by
describing the mechanisms and characteristics of the bearing degradation process [19].
Nevertheless, for complex mechanical systems, physical principles underlying bearing
failures are not yet fully understood [20], which leads to difficulties in developing precise
and reliable mechanism models.

Recently, the development of artificial intelligence (AI) as well as big data technologies
brings significant opportunities for data-driven methods to eliminate the need for complex
control equations during the analysis process [21]. By extracting features from enormous
data and establishing specific relational models between feature patterns and the RUL
of bearings, data-driven methods offer innovative solutions in the prediction of RUL for
bearings [22]. In the literature [23], based on the open-accessed bearing dataset from the
FEMTO-ST institute, principal component analysis (PCA) as well as least squares-support
vector regression (LS-SVR) are applied to extract features and predicting RUL, respectively.
This method provides a soft computing technique to identify patterns among features,
which improves the accuracy in RUL prediction. Additionally, Dong et al. [24] proposed
a novel method that integrates kernel PCA with a support vector machine (SVM). In this
method, vibration signals are decomposed to obtain fault information. Following that,
characteristic features extracted by a kernel PCA are inputted into the SVM to establish
a classification model for operational status. Ultimately, this approach achieves effective
recognition of bearing operating status.

Currently, deep learning (DL) is considered as a major breakthrough in the data-driven
methods. With deep neural networks, DL is able to capture deep representation of the
dataset and achieve better performance than other data-driven methods in the fault diagno-
sis and the prediction of RUL [25–27]. Gao et al. [28] integrate fuzzy inference and neural
networks to capture the nonlinear relationship between parameters and fatigue status.
Additionally, introducing non-proportionality and phase differences enables the model
to accurately predict the fatigue life of various materials. Zhu et al. [29] combined time–
frequency representations (TFRs) and multiscale convolutional neural network (MSCNN)
for bearing RUL prediction, in which wavelet transform (WT) is utilized to obtain non-
stationary property of TFRs and address the difficulty in applying CNN directly to raw
time series. Xiao et al. [30] proposed a fusion method that merges empirical mode decom-
position with a gated recurrent unit (GRU) to effectively address the problem of accurately
assessing bearing degradation. The key innovation of this method lies in decomposing the
original signal and extracting the most sensitive trend features, which are then inputted
into GRU to calculate the health index.

In practical industrial environments, the large data volume, high data dimension,
strong interference noise, and coupling effects between parameters make it difficult to
achieve high accuracy and strong robustness in the prediction of bearing RUL. Hence, a
novel prediction framework called CNN-VAE-MBiLSTM is proposed for RUL prediction
of bearings in this paper. The CNN-VAE part of the framework is obtained by fusing
symmetric CNN and VAE; it can effectively capture accurate low-dimensional TFRs from
time–frequency spectrum of signals using the advantage of efficient image processing
provided by CNN and the continuous learning ability of data distribution offered by
VAE. Then, the MBiLSTM is introduced to transform features from multi-axis signals into
estimated RUL values. The MBiLSTM consists of two steps: Firstly, statistical variables
and TFRs from each direction are input into a sub-model to encode temporal information.
In the second step, outputs of sub-models are combined to extract the differences among
multi-axis features.

At last, the effectiveness of CNN-VAE-MBiLSTM is verified using experimental
datasets of bearings. The key contributions of this study are presented as follows:
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(1) The CNN-VAE part is an unsupervised model that can adaptively extract TFRs with-
out relying on hand-designed labels, which avoids laborious work of feature construc-
tion, eliminates the influence of personal participation, and successfully applies the
high-dimensional time–frequency spectrum to RUL prediction.

(2) Bi-directional long short-term memory (BiLSTM) is employed as the sub-model in
MBiLSTM, which is excellent for capturing sequential characteristics of features and
has a significant improvement in accuracy of RUL prediction. In addition, the two-
step approach designed in MBiLSTM imitates the architecture of ensemble learning to
enhance the accuracy and robustness of RUL prediction. Experimental results indicate
that the MBiLSTM has better performance than the single BiLSTM.

Subsequent sections of this paper are arranged as follows. The related works are
reviewed in Section 2. Subsequently, problem formulation and methodology are described
in Section 3. Then, the proposed approach is verified in Section 4, which consists of dataset
description, evaluation metrics, feature construction, as well as the RUL prediction and
discussion. Lastly, the conclusion of the paper is offered in Section 5.

2. Related Work

Severe bearing failures will result in equipment breakdowns, leading to substantial
economic loss and threatening the health of operators [31]. Therefore, timely analysis of
operation conditions for bearings is of great research importance. Recent studies have
demonstrated the effectiveness of using operating data to reflect the bearing degradation
caused by material defects or other intricate factors [32]. Therefore, data-driven approaches
have become an essential strategy of the PdM for bearings.

Typically, the construction of RUL prediction models for bearings using data-driven
approaches consists of two key phases: one is to utilize signal processing techniques (SPTs)
to extract physical features, and the other is to employ machine learning models to learn
the underlying correlation between these features and bearing degradation [33,34]. For
instance, Singleton et al. [35] extracted the time–frequency domain features (TFDFs) from
vibration signals and then tracked the TFDF to evaluate the RUL of bearings using curve
fitting and extended Kalman filtering algorithms. Huang et al. [36] integrated the attention
mechanism into neural network and utilized time domain features (TDFs) and frequency
domain features (FDFs) as inputs, achieving good RUL prediction results of bearings.

Although physical features extracted using SPTs have proven effective in qualitative
classification of bearing health status, these features still face challenges in fully capturing
subtle changes during the degradation process for quantitative prediction [37]. Moreover,
due to the diverse and complex nature of degradation processes, determining appropriate
features also requires substantial expertise and human labor, so that some researchers
introduce end-to-end deep frameworks into RUL estimation in bearings [38,39]. In the
literature [40], the LSTM network is combined with the CNN network to form an end-
to-end deep framework. Within this framework, the convolutional layer directly extracts
degradation features from sensor data, while LSTM layers are utilized for accurate quanti-
tative prediction of the degradation process. In addition, Ye et al. [41] adopted multi-scale
convolutional autoencoder (MSCAE) to automatically capture both global and local infor-
mation from vibration signals. Health indicators (HI) were then constructed to replace
time–frequency features as inputs of the prediction model (i.e., LSTM network). Ulti-
mately, the effectiveness of this approach was validated using an open-source dataset.
Compared to machine learning models, end-to-end deep framework not only significantly
improves prediction performance but also simplifies the modeling process by skipping
the feature engineering. However, the simplification of processes results in redundancy of
hyper-parameters and poor model generalization [42].

To solve the aforementioned issues, there is an increasing interest to introduce deep
learning methods into feature engineering and model construction, respectively. Specifi-
cally, traditional SPTs are combined with deep neural networks to extract deep features.
Then, these deep features are used in a deep neural network to establish an accurate re-
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lationship with the target values [43]. Li et al. [44] proposed an intelligent method for
RUL prediction based on deep CNNs, where short-time Fourier transform (STFT) is em-
ployed to obtain the time–frequency spectrum of vibration signals. The time–frequency
spectrum is then processed by CNN to extract and analyze multi-scale features, resulting
in high-precision RUL prediction results. Saucedo-Dorantes et al. [45] introduced a novel
data-driven diagnosis methodology for identifying bearing faults, in which stacked auto-
encoders (SAE) are used to extract fault-related deep features and a deep neural network is
employed to fuse the information from different domains. The experiment showed that
this approach achieves advantageous results in the fault diagnosis of different bearings.

As mentioned above, deep neural networks have been explored to predict bearing
RUL in some research, but further improvements are needed to achieve more accurate and
robust predictive performance.

3. Problem and Methods

Precise RUL prediction plays a pivotal role in the PdM for bearings, serving as a vital
measure to improve bearing utilization efficiency and prevent failures of machines. The
diagram of the proposed approach is displayed in Figure 1, and the RUL prediction of
bearings consists of three parts.
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Figure 1. The diagram of the proposed approach.

(1) Data Acquisition and Pre-processing: Generally, the sensor data for bearings includes
a vibration signal [46], acoustic emission signal [47], and temperature signal [48].
Among them, vibration-based techniques have been widely acknowledged as some
of the most effective approaches to monitor the degradation of bearings [49]. Con-
sequently, this paper applied vibration signal to predicting the RUL of bearings.
Following that, to control the data size of signal, a sliding window technique was
used to divide the raw signal into several segments. It is worth noting that the sliding
window size and sliding amount should be determined by the specific industrial
process and the characteristic of the machine.

(2) Feature Engineering: In this phase, representative features related to bearing health
status were extracted from sensor data. The representative features included TDFs,
FDFs, and TFDFs, in which TDFs and FDFs are obtained with traditional SPTs, while
TFDFs are attained with the CNN-VAE part of the proposed approach.
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(3) Model Construction: The MBiLSTM part of the proposed approach was constructed
to establish the underlying correlation between these representative features and the
RUL of bearings. Furthermore, capturing sequential characteristics and extracting dif-
ferences among multi-axis information make the MBiLSTM achieve high performance
in RUL prediction.

As noted above, the details of feature engineering and model construction are dis-
cussed in subsequent subsections.

3.1. Feature Engineering

SPTs have the advantage of extracting physically interpretable features from high-
frequency vibration signals. However, these techniques still face challenges when it comes
to fully interpreting and compressing the valuable information of raw signals [25]. To max-
imize the mining of effective information and enhance the robustness of prediction model,
SPTs were combined with deep learning methods in the proposed approach, achieving the
extraction of following features:

3.1.1. TDFs

TDFs of vibration signals focus on estimating the variation of amplitudes over time,
which are effective at capturing the decay trend of bearings. Classically, TDFs comprise
16 statistical parameters, as illustrated in Table 1, where xi is the ith amplitude value in
vibration signal, and N denotes the data length of vibration signal.

Table 1. List of TDFs.

Name Function Name Function

Mean (µ ) ∑N
i=1 xi
N

Absolute mean ∑N
i=1|xi |

N

Minimum Min(xi) Standard deviation (σ )
√

∑N
i=1(xi−µ)2

N

Maximum Max(xi) Variance
(
σ2 ) ∑N

i=1(xi−µ)2

N

RMS
√

∑N
i=1(xi)

2

N
Root square amplitude (RMA)

(
∑N

i=1

√
|xi |

N

)2

Peak Max(|xi|) Peak factor Max(|xi |)
RMS

Skewness 1
N ∑N

i=1

(
xi−µ

σ

)3 Skewness factor Skewness
RMS3

Kurtosis 1
N ∑N

i=1

(
xi−µ

σ

)4 Kurtosis factor Kurtosis
RMS4

Clearance factor Max(|xi |)
RMA Impulse factor N ∗ Max(|xi |)

∑N
i=1|xi |

3.1.2. FDFs

Using discrete Fourier transform technology [50], vibration signals can be decomposed
into a linear combination of multi-sinusoidal waves, as defined by:

X(t) =
∞

∑
w=0

ancos(2πw ∗ t) + bnsin(2πw ∗ t) (1)

where X(t) is raw vibration signal, an and bn are weights of multi-sinusoidal waves, and w
is the frequency of sinusoidal wave.

During the above process, types and weights of these waves are sensitive to the
differences in vibration signals over time. Hence, FDFs are essential in the analysis of RUL
for bearings. Specifically, FDFs consist of 12 statistical parameters, as described in Table 2.
In Table 2, wi and fi represent the weight and frequency of ith sinusoidal wave, and M is
the number of sinusoidal waves.
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Table 2. List of FDFs.

Name Function Name Function

Spectral mean (µs ) ∑M
i=1 wi
M

Spectral standard deviation (σs )
√

∑M
i=1(wi−µs)

2

M

Spectral skewness 1
M ∑M

i=1

(
wi−µs

σs

)3 Spectral root mean square
√

∑M
i=1(wi)

2

M

Spectral kurtosis 1
M ∑M

i=1

(
wi−µs

σs

)4 Gravity frequency ( fc ) ∑M
i=1 wi∗ fi

∑M
i=1 wi

Effective frequency
√

∑M
i=1 w2

i ∗ f 4
i

∑M
i=1 wi

Standard deviation of frequency
(

σf )
√

∑M
i=1 wi∗( fi− fc)

2

∑M
i=1 wi

Skewness of frequency 1
∑M

i=1 wi
∑M

i=1 wi ∗
(

fi− fc
σf

)3 Mean square frequency ∑M
i=1 wi∗ f 2

i

∑M
i=1 wi

Variance of frequency ∑M
i=1 wi∗( fi− fc)

2

∑M
i=1 wi

Variation coefficient of frequency σf
fc

Given that the extraction of TDFs and FDFs from each vibration signal results in
an exponential growth in the feature number, feature evaluation is further utilized to
select effective features and reduce the feature number. The feature evaluation includes
monotonicity evaluation, correlation evaluation, and robustness evaluation. The formulas
are expressed as follows:

SMon =

∣∣∣∑N
n=1 H(xn+1 − xn)− ∑N

n=1 H(xn − xn−1)
∣∣∣

N − 1
(2)

H(x) =
{

0, x < 0
1, x ≥ 0

(3)

Scor =

∣∣∣∑N
n=1 (xn − x) ∗

(
ruln − rul

)∣∣∣√
∑N

n=1(xn − x)2 ∗ ∑N
n=1

(
ruln − rul

)2
(4)

Srob =
1
N ∑N

n=1 exp
(
−
∣∣∣∣ xn − bn

xn

∣∣∣∣) (5)

where N denotes the sequence length of feature, xn denotes the nth value of feature, bn
denotes the nth stable value of feature, ruln denotes the nth value of RUL, and SMon, Scor,
and Srob represent scores of monotonicity evaluation, correlation evaluation, and robustness
evaluation, respectively.

3.1.3. TFDFs

Vibration signals of bearings in industrial equipment are non-stationary signals, while
discrete Fourier transform technology treats the signal as a stationary signal when extracting
FDF, and results in the loss of temporal information in the original signal. To address this,
various time–frequency analysis methods have been developed to extract frequency spectra
with temporal distribution information, including STFT [51], WT [52], Hilbert–Huang
transform (HHT) [53], etc. Among them, the WT and the HHT involve the decomposition
of signal and the filtration of sub-signals, requiring hand-designed parameters or artificial
selections. Hence, this study combines STFT with a deep neural network to achieve
automatic distribution learning and compression for TFDFs.

The schematic diagram of TFDFs extraction is shown in Figure 2 and the calculation
steps are described as follows.
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Firstly, the raw vibration signals are transformed into 2D images of time–frequency
spectrum using the STFT. The definition of the STFT is expressed as Equation (6):

S(τ, ω) =
1

2π

∫ +∞

−∞
v(t)η(t − τ)e−jωtdt (6)

where v(t) is raw vibration signal, η(t) is a symmetric window function [54], and S(τ, ω)
denotes the function of both modulated frequency (ω) and translated time (τ).

Secondly, 2D images of the time–frequency spectrum provide a comprehensive rep-
resentation of the raw vibration signal, while extremely high dimensionality make them
hard to directly serve as the input of RUL prediction model for bearings. Therefore, further
information compression is needed. As a method of unsupervised learning, VAE has found
extensive application in feature dimensionality reduction tasks, which can effectively esti-
mate numerous high-dimensional samples and produce low-dimensional representations
with continuity [55–57]. Additionally, CNN has been widely employed in the field of image
processing, exhibiting significant achievements in extracting texture, contour, and seman-
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tic features from images [58–60]. Consequently, a novel feature extraction model named
CNN-VAE is proposed, combining strengths of the VAE and the CNN. The framework of
CNN-VAE comprises two symmetric subnetworks: the encoding block and the decoding
block. Each block consists of several convolutional layers and fully connected layers. The
training process of the CNN-VAE involves five steps:

(1) Feature Encoding: The original 2D time–frequency spectrum is processed through
convolutional layers at first, resulting in a down-sampled image achieved by multiple
convolutions and pooling operations. The down-sampled image is then flattened into
a 1D vector and passed through multiple fully connected layers to further reduce
dimensionality. This process ultimately yields the TFDF and its standard deviations.

(2) Resampling: Treating TFDFs and their standard deviations as the mean and standard
deviation of a normal distribution, new low-dimensional samples are generated by
randomly sampling from this distribution. These samples serve as inputs to the
decoding block.

(3) Feature Decoding: Utilizing multiple fully connected layers and transposed convolu-
tional layers [61], the low-dimensional samples are up-sampled to reconstruct a 2D
time–frequency spectrum.

(4) Hyperparameter Update: The difference between the reconstructed 2D time–frequency
spectrum and the original 2D time–frequency spectrum is used to calculate the re-
construction error. This error is then used to update the hyperparameters of the
CNN-VAE with the error backpropagation algorithm [62].

(5) Steps 1 to 4 are repeated for several epochs until the reconstruction error gradually
stabilizes to a sufficiently low value.

Finally, the encoding block of the CNN-VAE was utilized to obtain the TFDFs.

3.2. Model Construction

In many industrial cases, bearings gradually degrade rather than abruptly failing in
their life cycles. Therefore, in addition to independently assessing the operational features
of bearings collected at each moment, it is equally crucial to examine feature differences
between adjacent moments.

The recurrent neural network (RNN) is specifically designed for handling sequential
data, as illustrated in Figure 3. Features from different time steps are sequentially fed
into the network in accordance with the time order to update the current state of network,
enabling the RNN to capture temporal dependencies within the sequence [63,64]. However,
the problems of vanishing and exploding gradients impose limitations on the performance
of RNN when handling long time-series data [65,66]. To overcome these challenges, a novel
type of RNN called the BiLSTM has been developed, which consists of two parallel layers
that operate in both forward and backward propagation directions [67]. The structure
of the BiLSTM is depicted in Figure 4, and corresponding operations are described in
Equations (7)–(14).

σ(x) = 1/
(

1 + e1−x
)

(7)

tanh(x) =
(
ex − e−x)/

(
ex + e−x) (8)

f = σ
(

inputtW
f

input + ht−1W f
h + b f

)
(9)

g = tanh
(

inputtW
g
input + ht−1Wg

h + bg
)

(10)

i = σ
(

inputtW
i
input + ht−1Wi

h + bi
)

(11)

o = σ
(

inputtW
o
input + ht−1Wo

h + bo
)

(12)

ct = f ⊙ ct−1 + g ⊙ i (13)

ht = o ⊙ tanh(ct) (14)
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where inputt, ht, and ct denote the input vector, hidden state of neuron and memory of
neuron at time step t, respectively; W f

input, W f
h , Wg

input, Wg
h , Wi

input, Wi
h, Wo

input, and Wo
h

are weight matrices and b f , bg, bi, and bo are vectors of bias; and ⊙ means the point-wise
multiplication of two vectors.
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Figure 3. The architecture of RNN.
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Figure 4. The structure of a neuron in the BiLSTM and the architecture of the BiLSTM.

Based on the utilization of feature engineering and the BiLSTM network, a MBiLSTM
is presented to predict the RUL of bearings. For better understanding, the whole proposed
deep learning framework will be explained below. The schematic diagram of CNN-VAE-
MBiLSTM is shown in Figure 5, and the calculation steps are outlined as follows:

(1) Automatic Extraction of Sequential Characteristics: Using the sliding window tech-
nique, original vibration signals are divided into numerous signal segments. Then,
TDFs, FDFs, and TFDFs extracted from each signal segment are normalized and
employed as inputs for BiLSTM, aiming at deep encoding of degradation information
and automatic extraction of sequential characteristics.

(2) Fusion of Multi-Axis Information: Typically, vibration signal acquisition involves
multiple directions, so the outputs of the BiLSTM for each vibration direction will
be concatenated into a matrix. This matrix is subsequently fed into another BiLSTM
to fuse information, achieving the adaptive exploration of trend differences across
multiple vibration directions.

(3) RUL Estimation: To enhance the robustness of prediction, the sliding window in (1)
adopts an overlapping sliding mechanism, allowing the RUL value at each moment to
be estimated multiple times. Ultimately, the median of the multiple estimated values is
taken as the final result for reducing the impact of random errors in prediction results.
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4. Experiment and Analysis

The proposed RUL prediction approach for bearings was validated using an industrial
case from a textile company located in Jinhua, Zhejiang Province, China. In this case, based
on the prior maintenance knowledge of machines, bearing datasets were simultaneously
collected from the crucial bearing installed in six weaving machines (Picanol GTMax-
I 3.0,Picanol Group, Ieper, Belgium), and these weaving machines kept intermittently
operating until they had to be shut down due to severe bearing failures. In addition, only
vibration signals were recorded in bearing datasets using sensors (CT1010L and PCIE-1803,
Shenzhen Jilantin Intelligent Technology Co., Ltd., Shenzhen, China). The experimental
platform is shown in Figure 6.
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4.1. Dataset Description

During the entire lifespan of the weaving machine, vibration signals of main bearing
contained multiple axes, namely X-axis, Y-axis, and Z-axis. In this case, the entire long
maintenance cycle of bearings was about two years, indicating the degradation rate of
bearings was slow. Thus, the intermittent sampling method was adopted. The sampling
interval was set as 1 h, and sampling duration and sensor acquisition frequency were set
as 1 s and 5000 Hz, respectively. The details of the experimental datasets are presented in
Table 3.

Table 3. Details of experiment datasets.

Bearing Dataset Number of Samples Fault Element Category

Bearing_1 12,514 Outer race Training set
Bearing_2 11,323 Inter race Testing set
Bearing_3 13,017 Inter race Training set
Bearing_4 10,431 Outer race Training set
Bearing_5 12,018 Cage Training set
Bearing_6 11,510 Outer race Testing set

Following the practical experience in numerous bearing studies, six bearing datasets
were separated into a training set and a testing set to verify the effectiveness of the proposed
approach. The training set accounted for about 70% and the testing set accounted for about
30%, which is also shown in Table 3.

In practical industrial environments, the degradation process of bearings has complex
behaviors. As shown in Figure 7, the Bearing_1 dataset was evenly divided into 10 equal
segments, and the boxplot method was employed to estimate amplitudes of vibration
within each segment. It revealed a notable variation in the amplitude distribution over
time, as well as significant differences among multiple axes, which also indicate the crucial
potential of sequential characteristics and the fusion of vibration signals from various
directions in predicting the RUL.
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4.2. Experiment Setup and Evaluation Metrics

Due to different degradation mechanisms, the maximum operation cycles among
bearing datasets usually have significant differences. Meanwhile, ensuring consistent
scales between inputs and outputs of a model is advantageous for enhancing its prediction
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performance. Therefore, the RUL values of samples in this case were normalized in
pretreatment.

Furthermore, to calculate prediction errors of approaches, an improved score function
from the IEEE PHM 2012 challenge [23], mean absolute error (MAE) and root mean squared
error (RMSE) were selected. The formulas for these metrics are defined as follows:

MAE =
1
N ∑N

i=1

∣∣∣∼y i − yi

∣∣∣ (15)

RMSE =

√
1
N ∑N

i=1

(∼
y i − yi

)2
(16)

Eri =
(

yi −
∼
yi

)
∗ 100 (17)

Ai =

{
e−Eri∗ln(0.5)/5, Eri < 0
eEri∗ln(0.5)/20, Eri ≥ 0

(18)

Score =
1
N ∑N

i=1 Ai (19)

where N is the number of samples, and
∼
y i and yi are the ith predictive RUL value and

actual RUL value, respectively.

4.3. Feature Construction

To obtain more comprehensive bearing degradation information, it is essential to
construct multi-domain features (TDFs, FDFs, and TFDFs). In this case, TDFs consist
of 16 statistical parameters and FDFs involve 12 statistical parameters. However, some
statistical parameters are not sensitive to the degradation state of the bearing, which need
to be eliminated to prevent negative effects. Therefore, monotonicity (Mon), correlation
(Corr), as well as robustness (Rob) were considered for screening features [68], and a linear
combination of these criteria was utilized as a comprehensive evaluation metric (Cem)
to fully evaluate the applicability of degradation features. The formulas are outlined
as follows:

δ(k) =
{

0, k < 0
1, k ≥ 0

(20)

Mon(x) =
1

N − 1
∗
∣∣∣∣∣N−1

∑
i=1

δ(xi+1 − xi)−
N−1

∑
i=1

δ(xi − xi+1)

∣∣∣∣∣ (21)

Corr(x) =

∣∣∣∑N
i=1 (yi − y)(xi − x)

∣∣∣√
∑N

i=1(yi − yi)
2 ∗ ∑N

i=1(xi − xi)
2

(22)

Rob(x) =
1
N ∑N

i=1 exp
(
−
∣∣∣∣ xi − x̂i

xi

∣∣∣∣) (23)

Cem(x) =
1
3
∗ [Mon(x) + Corr(x) + Rob(x)] (24)

where N is the number of samples; yi and y are the ith actual value and the mean value of
RUL, respectively; xi and x are the ith value and the mean value of feature, respectively;
and x̂i denotes the ith smoothed value of feature.

Based on the training set, the results of comprehensive evaluation are shown in
Figure 8, and the impact of parameters number on the proposed RUL prediction model
are shown in Table 4. Finally, the threshold value of Cem is highlighted as the red line
in Figure 8, the top eight statistical parameters of TDFs and FDFs were selected, which
included:

(1) Time domain parameters: RMS, mean, minimum, variance, clearance factor;
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(2) Frequency domain parameters: spectral mean, spectral root mean square, gravity
frequency.
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Table 4. The impact of parameter number on the proposed RUL prediction model.

Parameter Number Dataset MAE RMSE Score

4
Training set 0.0302 0.0706 0.8343

Testing set 0.0491 0.0916 0.7745

8
Training set 0.0104 0.0120 0.8693

Testing set 0.0281 0.0401 0.7894

12
Training set 0.0298 0.0600 0.8449

Testing set 0.0435 0.0795 0.7666

16
Training set 0.0329 0.0647 0.8277

Testing set 0.0449 0.0813 0.7581

20
Training set 0.0330 0.0648 0.8273

Testing set 0.0473 0.0843 0.7435

24
Training set 0.0357 0.0688 0.8119

Testing set 0.0495 0.0870 0.7299

28
Training set 0.0466 0.0835 0.7477

Testing set 0.0550 0.0932 0.6943

Additionally, the proposed CNN-VAE model has the capability to dynamically com-
press effective degradation information from the time–frequency spectrum into TFDFs.
The compression effect of bearing datasets in the X-axis using the CNN-VAE model are
presented in Figure 9.
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As illustrated in Figure 9, the high-dimensional time–frequency spectrum of bearing
datasets was efficiently compressed into nine TFDFs. The compression effectiveness of the
CNN-VAE model is demonstrated in following aspects:

(1) TFDFs curves of the Bearing_1 dataset in X-axis were closely related to the trend of
the amplitude distribution over time in Figure 7. This means that the obtained TFDFs
contained the important information of degradation process.

(2) In addition, all TFDFs in the training set exhibited good monotonicity and robustness,
which further proves the high performance of the CNN-VAE model in capturing
important degradation information.

(3) Moreover, it can be observed that the CNN-VAE model also had a successful performance
in the testing set, and the extracted TFDFs had excellent continuity, indicating that the
compression achieved by the CNN-VAE model demonstrates superior generalization.

4.4. RUL Prediction and Discussion

To validate the superiority of the proposed approach, this case sets up comparative
experiments between the CNN-VAE-MBiLSTM model and four prediction models. These
prediction models include linear support vector regression (LSVR), kernelized support
vector regression (KSVR), DCNN, and BiLSTM. The main parameters and structures of
these models are outlined below.

LSVR and KSVR: LSVR and KSVR are directly implemented using scikit-learn [69].
The penalty coefficients used for LSVR were set as 5, 50, 500, and 5000, respectively. The
kernel trick for KSVR uses a radial basis function (RBF). Additionally, LSVR was utilized as
the baseline model for comparison with other models.

DCNN: DCNN combines a CNN and a fully connected layer. The CNN part adopts
the same structure as the CNN in the encoding part of the CNN-VAE model, as shown in
Table 5. In addition, the fully connected layer is responsible for converting high-dimensional
outputs from the CNN into prediction values of RUL.
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Table 5. The structure of the CNN part in DCNN.

Layer Name Kernel Strides Channels Feature Map Size

Convolutional Layer 3 × 3 (1,1)
16

128 × 512

MaxPool Layer 1 × 2 (1,2) 128 × 216

Convolutional Layer 3 × 3 (1,1)
32

128 × 216

MaxPool Layer 1 × 2 (1,2) 128 × 128

Convolutional Layer 3 × 3 (1,1)
64

128 × 128

MaxPool Layer 2 × 2 (2,2) 64 × 64

Convolutional Layer 3 × 3 (1,1)
128

64 × 64

MaxPool Layer 4 × 4 (4,4) 16 × 16

Convolutional Layer 3 × 3 (1,1)
256

16 × 16

MaxPool Layer 4 × 4 (4,4) 4 × 4

BiLSTM: BiLSTM utilizes the same feature engineering as the proposed approach.
But, in the prediction process, extracted features obtained from multi-axis were directly
combined and then input into a single BiLSTM. The single BiLSTM follows the same
structure as the BiLSTM part in the CNN-VAE-MBiLSTM model, in which the number of
hidden layers and hidden neurons were set as 2 and 10, respectively.

Moreover, to ensure a fair and unbiased comparison, all models were evaluated using
the same training set and testing set. All neural networks were trained with the Adam
optimizer. The training epochs and the learning rate were set as 500 and 0.0005, respectively.
To prevent contingency, the experiments were repeated three times, and those results were
then averaged to obtain the final result. The experimental results are presented in Table 6
and Figure 10.

Table 6. The comparison of prediction ability among models.

Model Feature Application Dataset MAE RMSE Score

LSVR TDFs and FDFs
Training set 0.1198 0.1516 0.5064

Testing set 0.1717 0.1998 0.4755

KSVR TDFs and FDFs
Training set 0.0613 0.0770 0.6731

Testing set 0.1880 0.2489 0.4270

DCNN
TDFs, FDFs, and

time–frequency spectrum
Training set 0.0500 0.0878 0.7171

Testing set 0.0550 0.0883 0.6655

BiLSTM TDFs, FDFs, and TFDFs
Training set 0.0189 0.0361 0.8310

Testing set 0.0414 0.0784 0.7312

CNN-VAE-MBiLSTM TDFs, FDFs, and TFDFs
Training set 0.0104 0.0120 0.8693

Testing set 0.0281 0.0401 0.7894
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The detailed comparisons among these models are described as follows:

(1) Based on TDFs and FDFs, both of the LSVR model and the KSVR model exhibited
significant fluctuations in prediction results in the testing set. But, it is evident that the
KSVR model outperformed the LSVR model in the training set, which indicates that
better non-linear fitting ability is more conducive to establish an effective mapping
relationship between features and bearing RUL.

(2) Additionally, compared to the KSVR model, the MAE value and the RMSE value
of DCNN model in the testing set decreased to 0.055 and 0.0883, respectively. This
reduction of prediction errors is due to the utilization of additional TFRs, which also
further verifies the significant impact of TFDFs in feature engineering.
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(3) Furthermore, the performance of the BiLSTM model was much better than the DCNN
model, as shown in Figure 10. The MAE value and the RMSE value of the BiLSTM
model in the testing set were 0.0414 and 0.0784, respectively. Meanwhile, TFDFs
were adopted in the BiLSTM model to avoid the influence of TFRs. Thus, the differ-
ence between the BiLSTM model and the DCNN model reflects important effects of
sequential characteristics.

(4) Ultimately, the proposed CNN-VAE-MBiLSTM model integrates the extraction of
TFRs and the obtainment of sequential characteristics. It is obvious that the proposed
method achieves the best accuracy and robustness in RUL prediction. The values
of MAE, RMSE, and Score in the testing set were 0.0281, 0.0401, and 0.7894, respec-
tively, which means that the proposed approach can satisfy requirements of bearing
maintenance in machines.

4.5. Robust Analysis

Generally, the noise in real industrial environments will result in a decrease in the
predictive performance in various AI algorithms. Hence, the anti-noise capacity of algo-
rithms plays a crucial role in determining its practicality. To evaluate anti-noise capacities
of the proposed approach, different white Gaussian noises were added into the above
comparative experiments. The intensity of white Gaussian noises was decided by the
signal-to-noise ratio (SNR), as defined by:

SNR = 10log10

(
∑n

i=1 Ai, s/∑n
i=1 Ai, n

)
(25)

where n is the signal length; Ai,s and Ai,n denote the ith amplitude value in raw data and
white Gaussian noise, respectively; and the unit of SNR is decibel (dB).

In this section, the anti-noise capacity of the above algorithms was analyzed under
different values of SNR that ranged from 10 dB to 2 dB. The lower SNR represents the
higher intensity of the white Gaussian noise utilized. The experimental results are shown
in Tables 7–9 and Figure 11.

Table 7. The MAE of models under different white Gaussian noises.

Model Dataset Raw
SNR (dB)

10 5 2 0

LSVR
Training set 0.1198 0.1202 0.1664 0.6273 1.8530

Testing set 0.1717 0.1734 0.2677 1.0532 2.8579

KSVR
Training set 0.0613 0.0685 0.1510 0.2455 0.3211

Testing set 0.1880 0.2331 0.2550 0.3336 0.3599

DCNN
Training set 0.0500 0.0863 0.1354 0.1603 0.1587

Testing set 0.0550 0.1198 0.1219 0.2247 0.2304

BiLSTM
Training set 0.0189 0.0322 0.0894 0.1136 0.1529

Testing set 0.0414 0.0494 0.0963 0.1235 0.1829

CNN-VAE-MBiLSTM
Training set 0.0104 0.0183 0.0380 0.0818 0.0800

Testing set 0.0281 0.0300 0.0400 0.0632 0.1635
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Table 8. The RMSE of models under different white Gaussian noises.

Model Dataset Raw
SNR (dB)

10 5 2 0

LSVR
Training set 0.1516 0.1535 0.2166 1.1201 3.2188

Testing set 0.1998 0.2021 0.3691 1.4647 3.6824

KSVR
Training set 0.0770 0.0862 0.1925 0.2896 0.3670

Testing set 0.2489 0.3017 0.3204 0.3882 0.4162

DCNN
Training set 0.0878 0.1400 0.1991 0.2142 0.2019

Testing set 0.0883 0.1821 0.1557 0.2817 0.2788

BiLSTM
Training set 0.0361 0.0525 0.1444 0.1694 0.2083

Testing set 0.0784 0.0892 0.1532 0.1668 0.2317

CNN-VAE-MBiLSTM
Training set 0.0120 0.0342 0.0694 0.1367 0.1232

Testing set 0.0401 0.0584 0.0630 0.0985 0.2209

Table 9. The Score of models under different white Gaussian noises.

Model Dataset Raw
SNR (dB)

10 5 2 0

LSVR
Training set 0.5064 0.5035 0.4807 0.3530 0.1374

Testing set 0.4755 0.4699 0.4472 0.2250 0.0488

KSVR
Training set 0.6731 0.6554 0.5207 0.3968 0.3283

Testing set 0.4270 0.4383 0.4127 0.3202 0.2981

DCNN
Training set 0.7171 0.6384 0.5751 0.5145 0.5021

Testing set 0.6655 0.5978 0.5567 0.4636 0.4695

BiLSTM
Training set 0.8310 0.8047 0.6937 0.6423 0.5628

Testing set 0.7312 0.7110 0.6238 0.5437 0.4983

CNN-VAE-MBiLSTM
Training set 0.8693 0.8449 0.7798 0.7126 0.6151

Testing set 0.7894 0.7765 0.7132 0.6447 0.5109

According to Figure 11, with the increase in the intensity of white noise, the accuracy
of different models tends to decline. Specifically, when the SNR changed from 5 dB to 2 dB,
there was a significant decreased in the accuracy of the LSVR model and KSVR model.
Score values of both models in the testing set reduced from 0.4472 and 0.4127 to 0.2250 and
0.3202, respectively. In contrast, the accuracy of the DCNN model, BiLSTM model, and the
CNN-VAE-MBiLSTM model declined more slowly; the scores of these models were 0.4636,
0.5437 and 0.6447 when the SNR was 2 dB. This suggests that the use of TFRs contributes
to improving the robustness of models. Furthermore, when SNR was 2 dB, the proposed
approach outperformed the other models, and achieved a further 18.6% improvement in
Score compared to the BiLSTM model.

As discussed above, the proposed approach exhibited the best anti-noise capacity and
the highest accuracy in noisy environment.
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5. Conclusions and Future Research

In this paper, a novel approach for bearing RUL prediction called CNN-VAE-MBiLSTM
is proposed. This approach can be divided into two parts: the CNN-VAE model and the
MBiLSTM model. The CNN-VAE model is capable of automatically compressing the
high-dimensional time–frequency spectrum of raw data into low-dimensional TFRs, which
avoids laborious works of feature construction and eliminates the influence of personal
participation. The MBiLSTM model adopts a two-step strategy that extracts features
from each acquisition direction of a signal and will independently capture sequential
characteristics at the first step. Following that, differences among multi-axis features are
further obtained at second step. Ultimately, the proposed approach achieves accurate and
robust RUL predictions.

In comparative experiments, the proposed CNN-VAE-MBiLSTM model was com-
pared with four RUL prediction models (LSVR, KSVR, DCNN, and BiLSTM) to judge its
prediction performance using three evaluation metrics. The comparison results confirmed
the superiority of the proposed approach for RUL prediction. The MAE, RMSE, and Score
of the proposed approach in the testing set were 0.0281, 0.0404, and 0.7894, respectively.
In addition, the anti-noise capacity of the proposed approach was further analyzed by
artificially adding different white Gaussian noises to the raw signals. As mentioned above,
the proposed approach exhibited the best anti-noise capacity and the highest accuracy in a
noisy environment.

In future research, the generalization of the proposed approach on different types
of machines is planned to be discussed, and the network architecture of the proposed
approach will be further optimized, aiming to achieve a better prediction performance and
lower computational complexity.
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