
Citation: Liu, Y.; Kang, K.-D. Filtering

Empty Video Frames for Efficient

Real-Time Object Detection. Sensors

2024, 24, 3025. https://doi.org/

10.3390/s24103025

Academic Editor: Zhe-Ming Lu

Received: 2 April 2024

Revised: 29 April 2024

Accepted: 8 May 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Filtering Empty Video Frames for Efficient Real-Time
Object Detection
Yu Liu and Kyoung-Don Kang *

Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Parkway East,
Vestal, NY 13850, USA; yliu456@binghamton.edu
* Correspondence: kang@binghamton.edu

Abstract: Deep learning models have significantly improved object detection, which is essential
for visual sensing. However, their increasing complexity results in higher latency and resource
consumption, making real-time object detection challenging. In order to address the challenge,
we propose a new lightweight filtering method called L-filter to predict empty video frames that
include no object of interest (e.g., vehicles) with high accuracy via hybrid time series analysis. L-
filter drops those frames deemed empty and conducts object detection for nonempty frames only,
significantly enhancing the frame processing rate and scalability of real-time object detection. Our
evaluation demonstrates that L-filter improves the frame processing rate by 31–47% for a single
traffic video stream compared to three standalone state-of-the-art object detection models without
L-filter. Additionally, L-filter significantly enhances scalability; it can process up to six concurrent
video streams in one commodity GPU, supporting over 57 fps per stream, by working alongside the
fastest object detection model among the three models.

Keywords: real-time object detection; filtering; frame processing rate; scalability; long short-term
memory

1. Introduction

Real-time object detection is crucial for visual sensing using cameras in key IoT
(Internet of Things) applications with great societal impact, such as smart transportation,
surveillance, and manufacturing. State-of-the-art models based on deep learning, such as
R-CNN (region-based convolutional neural network) [1], Fast R-CNN [2], Faster R-CNN [3],
EfficientDet [4], SSD (single-shot multibox detector) [5], and YOLO models [6,7], effectively
analyze visual sensor data. They have significantly enhanced the quality of object detection,
such as accuracy, precision, and recall.

The increasing complexity of deep learning models, however, makes real-time ob-
ject detection—which requires the minimum processing rate of 30 fps (frames per sec-
ond)—challenging. This is a serious issue, since outdated sensor data analysis results may
considerably degrade the effectiveness of decision-making in critical IoT applications, such
as smart transportation and surveillance.

In order to address the issue, we previously introduced a lightweight CNN model
called ERD (empty road detection) [8], which has considerably enhanced the frame pro-
cessing rate of object detection in the context of real-time traffic monitoring. ERD is a CNN
that preprocesses every video frame to detect if there is any object of interest, such as a
vehicle, motorcycle, or pedestrian, in the frame. ERD filters empty frames with no object of
interest and forwards only nonempty frames to the object detection model to improve the
end-to-end frame processing rate.

ERD has a high classification accuracy of 0.96 [8] and significantly enhances the frame
processing rate (fps) of object detection. Being a preprocessing method, ERD works along-
side any object detection model. Thus, it is orthogonal and complementary to object detec-
tion. As ERD only performs binary classification (the road being empty or not), it is much

Sensors 2024, 24, 3025. https://doi.org/10.3390/s24103025 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103025
https://doi.org/10.3390/s24103025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3686-9301
https://doi.org/10.3390/s24103025
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103025?type=check_update&version=1

Sensors 2024, 24, 3025 2 of 16

smaller and faster compared to various lightweight CNN models, such as MobileNetV3 [9],
ShuffleNetV2 [10], SqueezeNet [11], EfficientNetV2 [12], and InceptionV3 [13], as summa-
rized in Table 1.

Table 1. Comparisons of lightweight CNN models (GPU: NVIDIA RTX 3080Ti, CPU: Intel® Core
i7-7820X CPU). In this paper, a boldface number in a table indicates the most efficient one.

Models Parameters GFLOPs Latency@GPU Latency@CPU

MobileNetV3-Small 2.5 M 0.27 8.4 ms 14.2 ms

ShuffleNetV2-X0 2.3 M 0.71 9.3 ms 20.3 ms

SqueezeNet1.1 1.2 M 1.74 5.5 ms 22.5 ms

EfficientNet-B0 5.3 M 1.88 12.2 ms 46.1 ms

EfficientNetV2-Small 21.5 M 13.4 25.1 ms 94.5 ms

InceptionV3 23.8 M 15.01 18.6 ms 80.9 ms

ERD (our previous work) 0.15 M 0.54 4.7 ms 10.2 ms

The CNN-based ERD model, however, has a limitation; when most frames are
nonempty, for example, during rush hour, its overhead for analyzing every frame cannot be
amortized by dropping many empty frames. The main contribution of this paper is the sig-
nificant enhancement of the fps and scalability of real-time object detection by substantially
extending ERD [8]. We introduce a new, lightweight hybrid time series analysis method
called L-filter, which extends ERD by integrating it with a specially designed LSTM (long
short-term memory) model. L-filter (L stands for LSTM) operates the ERD model periodi-
cally (e.g., once per second), recognizing that consecutive frames may exhibit similarity,
and conducting dense pixel analysis for every frame (via ERD) is computationally intensive.
For frames occurring between two periodic ERD executions, L-filter determines their occu-
pancy status by analyzing concise numerical time series data instead of directly analyzing
pixels. This approach substantially decreases overhead while maintaining higher accuracy
compared to ERD, as it conducts time series analysis rather than analyzing dense pixels
frame by frame without considering their similarity over short time intervals. Thereby,
our approach boosts the frame processing rate and allows the system to conduct real-time
object detection for multiple traffic video streams concurrently, improving the scalability
crucial in real-world situations. For example, one real-time object detection system can
simultaneously monitor several directions in a traffic intersection instead of requiring a
dedicated machine in each direction.

Our evaluation reveals that the classification accuracy of L-filter for inferring the
road occupancy status (empty or not) is 0.99, which is higher than that of RNN (recurrent
neural network) [14], ERD [8], background subtraction [15], and ARIMA (autoregressive
integrated moving average) [16] methods by 1–18%. Our results show that L-filter boosts
the fps of three state-of-the-art (SOTA) object detection models: YOLOv5 [6], SSD [5], and
EfficientDet [4] by 31–47%, respectively, while ERD improves them by 10–44%. Remarkably,
L-filter combined with YOLOv5, the fastest model among the three object detection models,
handles up to six concurrent streams, delivering over 57 fps per stream in a single consumer
GPU (NVIDIA GeForce RTX 3080Ti). This signifies a total of 342 fps, which is 3.79× higher
than that of ERD combined with YOLOv5, which achieves a total of 90 fps for a maximum
of three concurrent streams.

The rest of the paper is organized as follows. In Section 2, related work is discussed.
In Section 3, we briefly review ERD and introduce L-filter. The datasets used in this paper
are described in Section 4. In Section 5, the performance of L-filter is compared to ERD and
three orthogonal SOTA object detection models. Section 6 provides a summary of the key
observations that verify the cost-effectiveness of L-filter, and we discuss our limitations
and future research issues. Finally, we conclude the paper in Section 7.

Sensors 2024, 24, 3025 3 of 16

2. Related Work

Object detection has been well studied with a long history of research. Recently, CNN-
based object detection models have significantly outperformed traditional algorithms not
based on deep learning, including [15,17–19]. (Due to the wealth of research on object
detection, we only discuss works closely related to ours. Thus, our discussion in this section
is neither complete nor comprehensive.)

Object detection using CNNs can be classified into two-stage and one-stage methods.
Two-stage detectors, such as SPPNet [20], R-CNN [1], Fast R-CNN [2], Faster R-CNN [3],
masked R-CNN [21], FPN [22], cascade R-CNN [23], and Libra R-CNN [24], use a region
proposal network to generate the regions of interest (RoI) in the first stage. They perform
bounding-box regression and object classification for the RoI in the second stage.

In contrast, single-stage detectors, such as SSD [5], EfficientDet [4], a series of YOLO
models [6,7,25–31], Retina-net [32], CornerNet [33], CenterNet [34], and FCOS [35], pre-
dict bounding boxes and object classification in a single stage. Therefore, they are more
effective for real-time applications. In general, newer models keep enhancing object de-
tection accuracy at the cost of increasing complexity, as demonstrated, for example, in the
YOLO models.

Novel vision transformers, such as [36–39], considerably improve the inference qual-
ity (e.g., accuracy) of vision tasks. Transformer-based object detection models include
DETR [40], Deformable DETR [41], ViT-FRCNN [42], YOLOS [43], and ViTDet [44]. How-
ever, self-attention, which is the backbone of vision transformers, suffers from quadratic
computational complexity and memory footprint.

In [45], a YOLO model has been pruned to make the model smaller. Lin et al. [46]
applied advanced neural architecture search techniques to make computer vision tasks
run on tiny IoT devices. However, model compression [47] usually decreases the inference
accuracy. Thus, we do not adopt a compressed model in this paper.

Overall, we introduce a new filtering method that is complementary to object detection
research, which is briefly reviewed in this section. In contrast to most of the existing work
on object detection, we aim to (1) enhance the real-time frame processing rate by dropping
empty frames that do not contribute to object detection and (2) support scalable real-time
object detection for multiple concurrent video streams by utilizing otherwise idle resources
in the GPU.

3. Empty Road Detection and L-Filter

In this section, we give a concise review of the ERD model [8]. Moreover, we introduce
the L-filter framework to significantly boost the fps and scalability of real-time object
detection while minimizing overhead.

3.1. ERD Model

Figure 1 depicts the object detection pipeline that integrates ERD [8] and an object
detection model, such as EfficientDet, SSD, or YOLO. In a nutshell, the pipeline works
as follows:

1. Execute the ERD model to infer whether the current traffic video frame is empty;
2. If the frame is nonempty, detect objects in the frame. Else, skip it;
3. Repeat the procedure for every frame.

In general, there is a tradeoff between prediction accuracy and latency. In order to
strike a balance between the potentially conflicting requirements for high accuracy and
the low latency of road occupancy classification, we have explored a comprehensive set of
CNN architectures with different depths and widths to find the CNN architecture with as
high accuracy and low latency as possible.

As a result, we have found the ERD model architecture in Figure 1. ERD consists of
13 layers that are grouped into six blocks: the first five blocks are convolutional, while
the sixth block consists of the three fully-connected layers. Batch normalization and the
rectified linear unit (ReLU) activation function are applied in each convolution layer to

Sensors 2024, 24, 3025 4 of 16

speed up convergence in training, mitigating possible gradient dispersion (Max/average
pooling, being parameterless, is not considered a separate layer).

180 x 320 x 16

360 x 640 x 8

22 x 40 x 32

90 x 160 x 16

… …

FC32 FC32 FC2

…

Conv + Norm + ReLU

Max Pooling

Average Pooling

Full Connection
360 x 640 x 3

Stage 1: Check if there is any object on the road Stage 2: Detect objects

YOLO v5 /
SSD /

efficientDet

45 x 80 x 32 If nonempty

Figure 1. Object detection pipeline, consisting of ERD and an orthogonal object detection model.

Being a binary classification model, ERD has 146,000 parameters only; it is smaller
than the lightweight CNN models in Table 1 by one or two orders of magnitude. For more
details on the ERD model, please refer to [8].

3.2. L-Filter

A disadvantage of ERD is the overhead needed to analyze dense pixels in every frame,
as discussed before. In order to alleviate the issue, L-filter takes a hybrid approach:

• Our LSTM model conducts a time series analysis of concise numerical data in a sliding
window representing the road occupancy status.

• It also triggers the ERD model every N > 1 frames to decrease the frequency of
ERD executions by N times, while effectively calibrating the predictions made by the
LSTM model.

Algorithm 1 outlines how L-filter works. In the algorithm, W and N represent the
sliding window size and the ERD execution period, respectively. In lines 1–3, for the first
W frames, L-filter executes ERD and performs object detection using an object detection
model, such as a YOLO model. During the ith iteration, as specified in lines 2–3, we store
the binary classification result in B[i] and object count, i.e., the number of the detected
objects, in C[i] for the ith frame. Thus, L-filter works the same way as ERD does for the first
W frames and stores the numerical results in B[i] and C[i].

Beginning from the (W + 1)th frame, L-filter works more efficiently than ERD does,
as specified in lines 4–13, which is the main difference between ERD [8] and L-filter. In
lines 5–6, L-filter uses ERD to classify every Nth frame as empty or nonempty (0 or 1) and
stores the result in B[i]. In lines 7–8, however, L-filter uses our LSTM model to analyze the
other frames that are not the kNth frame, where k ≥ 1. In line 8, to classify the ith frame,
our LSTM model analyzes the previous binary classification results, B[i − W, . . . , i − 1],
and object counts, C[i − W, . . . , i − 1], in the sliding window of size W. It stores the result
of the classifying frame i in B[i].

Sensors 2024, 24, 3025 5 of 16

Algorithm 1: L-filter to predict empty frames (based on the recent history in the
sliding window)

1 for i=1, i≤W, i++ do
// W: window size

2 B[i] = ERD(f rame i);
// B[i] = 0 if frame i is empty (1 if nonempty)

3 C[i] = Object_Detection(f rame i);
// C[i] = number of detected objects in frame i

4 while true do
5 if i % N == 0 then
6 empty = B[i] = ERD(f rame i);

7 else
8 empty = B[i] = LSTM(B[i − W, . . . , i − 1], C[i − W, . . . , i − 1]);

9 if empty == false then
10 C[i] = Object_Detection(f rame i);

11 else
12 C[i] = 0;

13 i++;

In lines 5–8, we enhance both the speed and accuracy of road occupancy classification
instead of doing a tradeoff between them. In lines 5–6, we reduce the classification latency
by periodically performing ERD. In lines 7–8, we aim to improve the accuracy by analyzing
the sequence data that capture the potential similarity between the frames in the sliding
window of size W. This is different from ERD, which analyzes each frame individually
without considering the possible relationships between consecutive frames. Moreover,
L-filter improves scalability by utilizing GPU resources (e.g., memory and stream multipro-
cessors), which are saved by skipping object detection for empty frames to analyze more
traffic video streams concurrently.

In lines 9–10, if ERD or LSTM has inferred that frame i is nonempty, L-filter conducts
object detection. The object detection model displays bounding boxes and provides the
number of detected objects. In line 10, L-filter stores the object count in C[i]. On the other
hand, if the frame is empty, L-filter stores 0 in C[i] in line 12. Finally, the frame number is
incremented by 1 in line 13, and lines 5–13 are repeated for the next video frames. If L-filter
concurrently processes multiple traffic video streams, it applies Algorithm 1 to each stream.

3.3. LTSM Model for Road Occupancy Predictions

In this paper, we devise a specialized LSTM model to efficiently infer road occupancy
status with high accuracy. We use LSTM, as it is known to be very effective for sequence data
predictions [48]. It mitigates the limitations of RNNs [14], such as short-term information
maintenance and vanishing gradients, through the use of memory cells.

In particular, our objective is to support higher accuracy as well as shorter latency
compared to ERD. To this end, we have explored various LSTM architectures to maximize
accuracy while decreasing the complexity of the network structure as much as possible.
In this way, we have designed the LSTM model, as depicted in Figure 2. Given the input
sequence data in the sliding window of size W, our LSTM model in Figure 2 infers the road
occupancy status of frame i and outputs the inference result, i.e., B[i], without doing dense
pixel analysis, which is different from ERD. The model consists of two LSTM layers and
one fully connected (FC) layer that uses a sigmoid function for activation. The first LSTM
layer has a hidden state vector of size 64, while the second layer has a hidden state vector
of size 16.

Sensors 2024, 24, 3025 6 of 16

LSTM ... LSTM

LSTM LSTM ...

... FC FC

B[i-W], C[i-W] B[i-1], C[i-1]

Output

[i-W+1] B B [i]

St-1 St
+ X

X X

σ σ σ

Ft It Ot

Ht Ht-1

tanh

tanh

Input

Xt

St

~
16

64

...

Figure 2. Architecture of the LSTM in L-filter for classifying frame i as empty or not.

Within the recurrent hidden layers, LSTM incorporates specialized memory blocks.
In each LSTM cell, as illustrated on the right side in Figure 2, these blocks house memory
cells with self-connections, allowing them to preserve the temporal state of the network
at any moment, t, between frame i − W and frame i − 1. Additionally, every memory
block contains unique multiplicative units known as gates: input gate, output gate, and
forget gate. In Figure 2 and Equations (1)–(6), Xt, Ht, and St represent the input, hidden
state, and cell state, respectively, of the LSTM cell at time step t. The input gate (It)
regulates the flow of input activations into the memory cell. Similarly, the output gate (Ot)
governs the flow of output into the rest of the network. Meanwhile, the forget gate (Ft)
adjusts the internal state of the memory cell before incorporating it, thus enabling adaptive
memory retention. W f , Wi, Ws, Wo, b f , bi, bs, and bo represent the learnable parameters
and bias terms associated with the forget gate, input gate, candidate cell state, and output
gate, respectively. σ is the sigmoid function, tanh is the hyperbolic tangent, and ⊙ is the
Hadamard (elementwise) product.

Forget Gate: Ft = σ(W f · [Ht−1, Xt] + b f) (1)

Input Gate: It = σ(Wi · [Ht−1, Xt] + bi) (2)

Cell State: S̃ = tanh(Ws · [Ht−1, Xt] + bs) (3)

Updated Cell State: St = Ft ⊙ St−1 + It ⊙ S̃t (4)

Output Gate: Ot = σ(Wo · [Ht−1, Xt] + bo) (5)

Hidden State: Ht = Ot ⊙ tanh(St) (6)

By effectively analyzing the sequence data in the sliding window, our LSTM model
boosts accuracy compared to ERD while reducing latency for road occupancy classification.
Furthermore, we have considered the background subtraction [15], ARIMA [16], and
RNN [14] methods to infer road occupancy. However, we have selected LSTM due to its
superior accuracy. A more detailed discussion is given in Section 5.

4. Datasets, Model Training, and Implementation

In this section, we discuss the datasets used in this paper, the training of L-filter, and
model implementation.

Sensors 2024, 24, 3025 7 of 16

4.1. Datasets

Finding an appropriate dataset to evaluate ERD and L-filter is challenging:

• Many computer vision datasets, including [49–51], are used for specific tasks, such as
object detection or segmentation. We have found that they have few empty frames,
even though traffic videos may involve a large fraction of empty frames, especially
during the off-peak time.

• Traffic datasets, including [52–54], do not label each frame as empty or not. Thus,
computer vision or traffic datasets need to be labeled frame by frame, which is very
time-consuming and costly.

In order to tackle these challenges, in this paper, we use two datasets called Dataset 1
and Dataset 2 hereafter.

4.1.1. Dataset 1

We have generated Dataset 1 by manually labeling every frame in the DZ Computer
Vision dataset [55] as empty or nonempty. The dataset contains images extracted from
high-definition video with 1280 × 720 resolution captured on the road from the Bolshoy
Moskvoretsky Bridge to the Kremlin Embankment in Moscow, Russia.

Through manual labeling, we have found that only 21% of the images in the dataset
are empty. Thus, the labels are considerably imbalanced, which may lead to overfitting. In
order to significantly reduce the risk of overfitting and enhance generalizability, we take
several approaches:

• Data augmentation: We augment the dataset by synthesizing every image labeled 0
(empty) by rotating, flipping, changing lighting, and blurring them. As a result, the
fraction of empty images with no object of interest has increased to 35%, obtaining a
total of 6,438 images with no object of interest.

• Early stopping: We analyze training and validation losses over epochs and terminate
training early as soon as the losses converge to small values and stabilize. (A more
detailed discussion is given in Section 4.2).

• LSTM architecture search: In an iterative feedback loop, we vary the depth and width
of the LSTM model of L-filter and analyze losses for different LSTM architectures.
Thereby, we find a low-complexity LSTM model that converges to minimal validation
as well as training losses in a small number of epochs.

• Generalizability analysis using a different dataset: In this paper, we train the LSTM of
L-filter using Dataset 1; however, we analyze its possible impact on object detection
performance using a different dataset—Dataset 2—in terms of mAP (mean average
precision), which is a common metric for evaluating object detection.

4.1.2. Dataset 2

In order to evaluate the object detection performance provided by L-filter, we used a
public dataset [56]. Dataset 2 is annotated with ground truth bounding boxes that identify
vehicles. Moreover, all the frames in this dataset are nonempty. The objectives of using this
dataset follow:

• The first objective is to evaluate the generalizability of L-filter using Dataset 2, as
discussed in Section 4.1.1. As Dataset 2 is already annotated with bounding boxes,
we evaluate the mAP by comparing them to the bounding boxes provided by L-filter
when it works alongside an object detection model, e.g., a YOLO model.

• Another objective is to analyze the worst-case overhead of L-filter using a real-world
traffic video with no empty frame [56], which represents a heavy traffic scenario,
where L-filter is subject to the highest overhead (the evaluation results are described
in Section 5).

Dataset 2 has 499 annotated frames in total. All of them are used as a test set, because
Dataset 2 is not used for training.

Sensors 2024, 24, 3025 8 of 16

4.2. LSTM Training Using Dataset 1

Dataset 1 was used to train our LSTM model, and it has 20,595 frames in total. The
frames are split into training, validation, and test sets, as specified in Table 2. (In this study,
we used the pretrained ERD model [8]. For more details of ERD, interested readers are
referred to [8]).

Table 2. The number of frames in the training, validation, and test sets of Dataset 1.

Dataset Training Validation Testing

Number 13,180 3296 4119

For L-filter, we captured the numeric features from every frame because LSTM needs
sequential features. In particular, we created two feature vectors. As described in Section 3.2,
the first vector represents road occupancy status, 0 or 1, for each frame in the dataset. The
second feature vector records the object count in each frame obtained using an object
detection model, e.g., YOLOv5. We divided both vectors into windows of size W each. We
then combined road occupancy status and object count vectors into one matrix to form
samples. By doing this, we generated a total of 20,595 samples, as is shown in Table 2.

In order to train the LSTM model of L-filter, we defined the MSE (mean squared error)
loss function:

L =
1
n

n

∑
i=1

(yi −B[i])2 (7)

where yi is the ground truth that indicates if frame i is 0 or 1, B[i] is L-filter’s classification
of frame i, and n is the number of samples in the training dataset. Hence, 0 ≤ L ≤ 1.

In order to minimize the loss, we used the Adam optimizer. Specifically, the optimizer
tunes LSTM parameters by using the following equation:

θi+1 = θi −
η√

v̂i + ϵ
m̂i (8)

where η denotes the learning rate, m̂i estimates the first momentum (mean) of gradients, v̂i
estimates the second momentum of gradients, and ϵ is a small constant added to prevent
division by zero. In this paper, we set the learning rate η = 0.001 and updated parameters
for 5 epochs with a batch size of 8. Since there are 16,476 sample frames in the training and
validation sets, as shown in Table 2, there are 2060 iterations per epoch. The 4119 samples
in the test set were reserved for evaluation in Section 5.

Furthermore, we empirically configure the window size (W) and ERD execution period
(N) in Algorithm 1. Specifically, we set W = 5, which is the smallest window size that
supports high inference accuracy. Similarly, we set N = 30 frames to allow infrequent ERD
executions while maintaining high accuracy.

By following the described training procedure, we gained insights into the training
process by analyzing the MSE loss in Equation (7) for successive epochs. As depicted in
Figure 3, we observe that the validation as well as training loss curves keep descending
until they reach a plateau after the 5th epoch. As the figure shows a desirable pattern
of consistently decreasing losses that quickly stabilize, we halted the training early at
epoch 5 to prevent overfitting. Furthermore, to minimize the risks of both underfitting and
overfitting, we fine-tuned the L-filter complexity by adjusting the number of layers and
neurons while analyzing their losses over epochs, as discussed above. By repeating this
process, we derived the architecture of the L-filter, as illustrated in Figure 2.

Sensors 2024, 24, 3025 9 of 16

2 4 6 8 10
Epoch

0.01

0.02

0.03

0.04

0.05

0.06

Lo
ss

Training Loss
Validation Loss

Figure 3. The training and validation losses of L-filter (Equation (7)) for training epochs.

4.3. Implementation

Our preprocessing system is flexible in that it can work with any object detection
model to enhance efficiency by reliably removing empty frames. For the evaluation, we
used EfficientDet [4], SSD [5], and YOLOv5 [25], which are effective single-stage object
detection models. We selected them for their higher inference speed when compared to
similar detection accuracy in two-stage object detection models, such as R-CNN [1], Fast
R-CNN [2], and Faster R-CNN [3]. Specifically, we chose EfficientDet-B0, SSD300, and
YOLOv5s for our study because they are smaller than their variants while still achieving
high-quality object detection.

For our evaluation, we used a workstation with an Intel® Core i7-7820X CPU, 64 GB
RAM, and an NVIDIA GeForce RTX 3080Ti GPU. It mimics an edge server that supports
object detection at the edge rather than sending all visual sensor data (video frames) to the
cloud, incurring high latency and potential congestion in the Internet core. The operating
system is Ubuntu 18.04.6 LTS. We have used Python 3.9, PyTorch 1.13, and OpenCV-python
4.6.0 [57] to implement and evaluate the deep learning models.

5. Evaluation

In this section, the frame processing rate (fps), scalability, and mean average precision
(mAP) are evaluated by using the test sets that were unseen by the models during model
training. Specifically, the test set of Dataset 1 was used in Sections 5.1–5.3, while both the
test set of Dataset 1 and the entirety of Dataset 2 were used for evaluation in Section 5.4.

5.1. Road Occupancy Classification Accuracy

Figure 4 illustrates the road occupancy classification performance of background
subtraction [15], ARIMA [16], RNN [14], ERD, and L-filter. As shown in the figure, our
LSTM model of L-filter achieves the highest accuracy, precision, recall, and F1-score, as
it conducts hybrid sequence analysis that combines periodic ERD executions and LSTM-
based predictions in between. The inference performance of the other methods in Figure 4
is lower than that of L-filter for the following potential reasons. Background subtraction is
not robust to noise, such as trees in the wind [58]. ARIMA suffers from poor performance
since it assumes a stationary time series, where statistical properties, such as the mean
and variance, are assumed to remain constant over time [59]. However, the assumption
may not hold in dynamic traffic scenarios. Although comparable to L-filter, the inference
performance of RNN is slightly lower. In general, RNN is not as effective as LSTM in
grasping prolonged dependencies in sequential data and is subject to vanishing gradient
problems [48]. Thus, we utilized LSTM instead of RNN in this paper.

Furthermore, as shown in Table 3, the latency of L-filter is only 45% of that of ERD. It
is only about 12%, 5%, and 2% of the latency for object detection in YOLOv5, SSD300, and
EfficientDet-B0, respectively. Thus, L-filter is cost-effective.

Sensors 2024, 24, 3025 10 of 16

Empty road

Nonempty road

Prediction

Empty road

Nonempty roadGr
ou

nd
 Tr

ut
h 133 6

137 1011
200

400

600

800

1000

(a)

Empty road

Nonempty road

Prediction

Empty road

Nonempty roadGr
ou

nd
 Tr

ut
h 361 5

47 874
200

400

600

800

(b)

Empty road

Nonempty road

Prediction

Empty road

Nonempty roadGr
ou

nd
 Tr

ut
h 0 309

459 3351

0

500

1000

1500

2000

2500

3000

(c)

Empty road

Nonempty road

Prediction

Empty road

Nonempty roadGr
ou

nd
 Tr

ut
h 274 22

53 3770 1000

2000

3000

(d)

Empty road

Nonempty road

Prediction

Empty road

Nonempty roadGr
ou

nd
 Tr

ut
h 295 8

10 3806

500

1000

1500

2000

2500

3000

3500

(e)

Figure 4. Confusion matrix of road occupancy predictions. (a) Background subtraction: Accuracy:
0.89, recall: 0.88, precision: 0.99, and F1-score: 0.93. (b) ARIMA. Accuracy: 0.81, recall: 0.87, precision:
0.91, and F1-score: 0.89. (c) RNN. Accuracy: 0.98, recall: 0.98, precision: 0.99, and F1-score: 0.99.
(d) ERD. Accuracy: 0.96, recall: 0.95, precision: 0.97, and F1-score: 0.97. (e) L-filter. Accuracy: 0.99,
recall: 0.99, precision: 0.99, and F1-score: 0.99.

Table 3. Latency of L-filter, ERD, and the object detection models.

Model Average Latency (ms)

L-filter 2.2

ERD 4.9

YOLOV5s 17.7

SSD300 42.0

EfficientDet-B0 105.3

5.2. Frame Processing Rate Enhancements by Erd and L-Filter for One Traffic Video Stream

As shown in Table 4, when ERD runs alongside an object detection model, it enhances
the fps of YOLOv5, SSD, and EfficientDet by approximately 10–44%. In the table, L-filter
outperforms ERD by improving the fps of the three tested object detection models by
roughly 31–47%. L-filter outperforms ERD more noticeably when it is paired with YOLOv5;
that is, it is the fastest among the three tested object detection models. This is because
the lower overhead of L-filter (than that of ERD) becomes most impactful in terms of fps
improvement when it is integrated with the fastest object detection model (A more detailed
overhead analysis of ERD and L-filter is given in Section 5.4).

Table 4. Frame processing rate improvements achieved by ERD and L-filter when they work alongside
YOLOv5s, SSD300, and EffcientDet-B0, respectively. In each cell, the first number is the total frame
processing rate (fps), and the second number in the parenthesis is the enhancement of the fps achieved
by ERD and L-filter, respectively.

YOLOv5 SSD EfficientDet

ERD 62.4 (10.4%) 33.3 (39.9%) 13.7 (44.2%)

L-filter 73.8 (30.6%) 33.6 (41.2%) 14 (47.4%)

Sensors 2024, 24, 3025 11 of 16

5.3. Scalability of ERD and L-Filter for Concurrent Streams

In this subsection, we evaluate how many concurrent traffic video streams ERD+YOLOv5
and L-filter+YOLOv5 can process while supporting at least 30 fps per stream, which is
required for real-time object detection.

As summarized in Table 5, ERD can concurrently process up to three streams with
at least 30 fps per stream before depleting the GPU memory. Thus, its aggregate frame
processing rate for three streams is over 91 fps.

Markedly, L-filter+YOLOv5 processes up to six concurrent streams, supporting over
57 fps per stream, as illustrated in Table 6. The aggregate fps achieved by L-filter+YOLO
for six streams exceeds 345 fps, which is more than 3.79× the total fps supported by
ERD+YOLOv5 for three streams. Thus, L-filter significantly upgrades the scalability of
real-time object detection.

Table 5. Per-stream frame processing rate (fps) of ERD+YOLOv5 when one or more streams are
processed concurrently.

Number of Streams 1 2 3

ERD+YOLOv5 62.4 53.1 30.6

Table 6. Per-stream frame processing rate (fps) of L-filter+YOLOv5 when one or more streams are
processed concurrently.

Number of Streams 1 2 3 4 5 6

L-filter+YOLOv5 73.8 70.1 65.5 63.4 60.2 57.6

5.4. mAP and Overhead of L-Filter

For the clarity of the presentation, we use a single video stream to analyze the mAP
and overhead of L-filter in this subsection.

5.4.1. mAP

By using Dataset 2 (Section 4.1.2), which was not utilized for training the LSTM model
of L-filter, we analyze the mAP and generalizability of L-filter. As shown in Table 7, the mAP
of L-filter+YOLOv5 is comparable to that of YOLOv5 for different IoU (Intersection over
Union) thresholds. These results reveal that L-filter supports acceptable object detection
performance when compared to YOLOv5. Moreover, it is generalizable to different datasets
of traffic surveillance.

Table 7. mAP of object detection for different IoU thresholds.

IoU threshold 0.1 0.2 0.5

YOLOv5 0.442 0.441 0.400

L-filter+YOLOv5 0.448 0.442 0.400

5.4.2. Overhead

In order to estimate the worst-case overhead of L-filter in an extreme case with all
nonempty frames, we assess the frame processing rate using Dataset 2. The YOLOv5
without L-filter supports 56.5 fps, whereas YOLOv5+L-filter provides 51.2 fps. Thus, the
observed overhead of L-filter is 9.38% for Dataset 2.

Additionally, we adjusted the proportion of empty frames in Dataset 1 via data
augmentation (Section 4.1.1) to undertake a further cost-benefit analysis of ERD and L-filter.
Specifically, we evaluated the fps for different proportions of empty frames in Dataset 1,
ranging from 0% to 100%, with a 10% increment. In Figure 5, each dotted horizontal line
shows the fps of an independent object detection model without ERD or L-filter. They are

Sensors 2024, 24, 3025 12 of 16

not affected by the proportion of empty frames in the traffic video. Thus, their fps values in
Figure 5 are constant, regardless of the fraction of empty frames in the traffic monitoring
video. As depicted in Figure 5, ERD or L-filter conjoined with an object detection model
achieves a higher fps than the corresponding object detection model does on its own when
the percentage of empty frames is beyond a break-even threshold or vice versa. Thus, the
lower the threshold, the better.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Empty road frames %

0

25

50

75

100

125

150

175

200
FP

S
ERD (in GPU) + OD (in GPU)

ERD+Yolov5
Yolov5
ERD+SSD
SSD
ERD+efficientDet
efficientDet

(a) ERD

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Empty road frames %

0

25

50

75

100

125

150

175

200

FP
S

L-filter (in GPU) + OD (in GPU)
L-filter+Yolov5
Yolov5
L-filter+SSD
SSD
L-filter+efficientDet
efficientDet

(b) L-filter

Figure 5. Percentage of empty frames vs. fps.

In Table 8, the break-even threshold of L-filter is lower than that of ERD by approxi-
mately 47–52%. Therefore, L-filter is significantly more efficient than ERD. In addition, we
observe that the slowest EfficientDet model and the fastest YOLOv5 model have the lowest
and highest threshold, respectively. This is because the ratio of ERD or L-filter execution
time to that of a faster model is greater.

As shown in Figure 5 and Table 9, the fps monotonically increases as the proportion
of empty frames in the video increases. When there is no empty frame in the traffic
video stream, the 50.7 fps provided by L-filter+YOLOv5 in Table 9 is similar to the 51.2 fps
previously observed for Dataset 2, which lacks empty frames. For the entire range of empty
frames, L-filter achieves higher fps than ERD does. Furthermore, the enhancement upon
ERD grows as the fraction of empty frames increases.

Table 8. Break-even thresholds of ERD and L-filter.

YOLOv5 SSD EfficientDet

ERD 24.4% 17.3% 7.0%

L-filter 11.4% 8.3% 3.7%

Table 9. Proportion of empty frames vs. fps. In each cell, the first and second number are the fps
when 0% and 100% of the frames are empty, respectively.

YOLOv5 SSD EfficientDet

ERD 45.5–193.5 20.8–167.2 8.9–160.0

L-filter 50.7–374.6 22.5–311.5 9.1–271.7

6. Discussion

Enhancing the efficiency and scalability of real-time object detection is still an open
problem. SOTA deep learning models for object detection, including the models discussed
in Section 2, improve object detection performance at the cost of increasing model com-
plexities and resource requirements. In order to shed light on this issue, as described in
Section 3, L-filter predicts empty video frames that include no object of interest, such as
a vehicle, via a hybrid time series analysis. It skips frames deemed empty to boost the
efficiency and scalability of real-time object detection. In our LSTM model training, we
systematically applied SOTA approaches to minimize the risk of overfitting while striving

Sensors 2024, 24, 3025 13 of 16

to enhance generalizability. In addition, we verified that the training and validation losses
converge reliably, as discussed in Section 4.

Our evaluation results in Section 5 verify the cost-effectiveness of the L-filter design:

• L-filter increases the accuracy of road occupancy classification by 1–18% compared to
ERD and the other tested classification baselines;

• The object detection performance of L-filter+YOLOv5, in terms of mAP, is comparable
to that of YOLOv5;

• L-filter enhances the fps of real-time object detection for a single video stream by
31–47% compared to the three effective object detection models;

• Without depleting GPU resources, L-filter can process up to six concurrent video
streams in a consumer GPU, supporting more than 57 fps per stream. Thus, it can
significantly reduce the cost for deploying AI-based traffic surveillance systems in a
smart city.

L-filter, however, incurs overhead when the traffic surveillance video has fewer empty
frames. Related future research directions toward further reducing the overhead include
the following:

• The diurnal and seasonal traffic patterns can be leveraged to dynamically turn on
L-filter only when it is expected to be effective; that is, the expected number of empty
frames is higher than the break-even threshold. Accurate predictions, however, are
challenging in the presence of unpredictable traffic incidents. Care should be taken
to immediately turn L-filter off when an incident that can cause an abnormal traffic
pattern occurs.

• Another approach to reduce the overhead could be integrating L-filter with an object
detection model, e.g., a YOLO model, and make them share certain layers instead
of utilizing L-filter as a separate unit for preprocessing. An effective design and
fine-tuning of an integrated model represent the main challenge in this approach.

Another challenge is the lack of datasets, wherein each frame is labeled as empty or
nonempty. A possible approach to alleviating this issue in the future is leveraging emerging
technology for synthetically generating realistic data [60] instead of manually labeling
video frames.

In this paper, we focus on enhancing the efficiency and scalability of generic object
detection. Small object detection [61,62] is important for remote (e.g., aerial/maritime)
sensing and medical image analysis, but it has not been considered. Improving both the
accuracy and efficiency of small object detection remains an open problem that requires
more in-depth research. Furthermore, in this paper, we focus on efficiently detecting
predefined objects of interest, such as vehicles, in real time. Objects that are not predefined,
e.g., a small bird, are out of interest. A potential extension in the future would allow a
user to reconfigure objects of interest according to the application at hand. For example, a
user can specify birds, drones, and other features to identify drones in a restricted flight
zone [61,63]. An end-to-end framework that enables the configuration, model design,
training/fine-tuning, and efficient real-time inference will be desirable.

A thorough investigation of these research issues is beyond the scope of this paper
and is reserved for future work.

7. Conclusions

Recent advancements in deep learning have significantly improved object detection.
Those models, however, have grown in complexity, leading to challenges in terms of sup-
porting the required frame processing rate of at least 30 fps and enhancing the scalability of
real-time object detection. In order to address the challenge, we propose a new lightweight
filtering method called L-filter. Based on hybrid time series analysis, L-filter predicts empty
video frames that do not include any object of interest (e.g., vehicles) with high accuracy.
Subsequently, L-filter drops empty frames and performs object detection for nonempty
frames only. Our evaluation validates the efficiency and scalability of L-filter, verifying

Sensors 2024, 24, 3025 14 of 16

its object detection performance when it works alongside an object detection model as a
preprocessing unit for filtering empty frames. It demonstrates that L-filter improves the
frame processing rate (fps) by 31–47% for a single traffic video stream when compared to
three standalone object detection models without L-filter. L-filter, conjoined with YOLOv5,
supports similar mean average precision to that of YOLOv5 without L-filter. Additionally,
L-filter substantially improves the scalability of real-time object detection: it orchestrates
object detection for up to six concurrent streams, supporting over 57 fps for each stream in a
single commodity GPU. Encouraged by these promising results, we will continue exploring
more advanced approaches to efficient real-time object detection, including the future work
issues outlined in Section 6.

Author Contributions: Conceptualization, K.-D.K. and Y.L.; methodology, Y.L. and K.-D.K.; software,
Y.L.; validation, Y.L. and K.-D.K.; formal analysis, Y.L. and K.-D.K.; investigation, Y.L. and K.-D.K.;
resources, K.-D.K.; data curation, Y.L.; writing—original draft preparation, Y.L.; writing—review and
editing, K.-D.K.; visualization, Y.L.; supervision, K.-D.K.; project administration, K.-D.K.; funding
acquisition, K.-D.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded, in part, by National Science Foundation grants CNS-2007854
and CNS-2326796.

Data Availability Statement: Our source code and labeled dataset are available at: https://github.
com/Real-Time-Lab/Filtering-Empty-Video-Frames-for-Efficient-Real-Time-Object-Detection (ac-
cessed on 1 April 2024).

Acknowledgments: We appreciate anonymous reviwers for their constructive reviews and the
Editorial Office of MDPI Sensors for processing this paper.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

2. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015.

4. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

5. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings
of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer:
Cham, Switzerland, 2016; pp. 21–37.

6. YOLOv5. Available online: https://github.com/ultralytics/yolov5/wiki (accessed on 23 November 2023).
7. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
8. Liu, Y.; Kang, K.D. Preprocessing via Deep Learning for Enhancing Real-Time Performance of Object Detection. In Proceedings of

the IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023.
9. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching

for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27
October–2 November 2019; pp. 1314–1324.

10. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

11. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

12. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

13. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

https://github.com/Real-Time-Lab/Filtering-Empty-Video-Frames-for-Efficient-Real-Time-Object-Detection
https://github.com/Real-Time-Lab/Filtering-Empty-Video-Frames-for-Efficient-Real-Time-Object-Detection
https://github.com/ultralytics/yolov5/wiki

Sensors 2024, 24, 3025 15 of 16

14. Medsker, L.R.; Jain, L. (Eds.) Recurrent Neural Networks: Design and Applications; CRC Press: Boca Raton, FL, USA, 2001; Volume 5,
p. 2.

15. Sen-Ching, S.C.; Kamath, C. Robust techniques for background subtraction in urban traffic video. In Proceedings of the Visual
Communications and Image Processing, San Jose, CA, USA, 18–22 January 2004; SPIE: San Jose, CA, USA, 2004; Volume 5308,
pp. 881–892.

16. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,
USA, 2015.

17. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
18. Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. In Proceedings of the 17th IEEE Interna-

tional Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; Volume 2, pp. 28–31.
19. Dutt Jain, S.; Xiong, B.; Grauman, K. Fusionseg: Learning to combine motion and appearance for fully automatic segmentation of

generic objects in videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 3664–3673.

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

22. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

23. Cai, Z.; Vasconcelos, N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 2019, 43, 1483–1498. [CrossRef] [PubMed]

24. Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra r-cnn: Towards balanced learning for object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 821–830.

25. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 7263–7271.

26. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

27. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
28. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976.
29. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696
30. Reis, D.; Kupec, J.; Hong, J.; Daoudi, A. Real-Time Flying Object Detection with YOLOv8. arXiv 2023, arXiv:2305.09972
31. Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information.

arXiv 2024, arXiv:2402.13616.
32. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
33. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer

Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.
34. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6569–6578.
35. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell.

2020, 44, 1922–1933. [CrossRef] [PubMed]
36. Yin, H.; Vahdat, A.; Alvarez, J.M.; Mallya, A.; Kautz, J.; Molchanov, P. AdaViT: Adaptive tokens for efficient vision transformer. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 10809–10818.

37. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

38. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation
through attention. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 10347–10357.

39. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

40. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland,
2020; pp. 213–229.

41. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv
2020, arXiv:2010.04159.

http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/TPAMI.2019.2956516
http://www.ncbi.nlm.nih.gov/pubmed/31794388
http://dx.doi.org/10.1109/TPAMI.2020.3032166
http://www.ncbi.nlm.nih.gov/pubmed/33074804

Sensors 2024, 24, 3025 16 of 16

42. Beal, J.; Kim, E.; Tzeng, E.; Park, D.H.; Zhai, A.; Kislyuk, D. Toward transformer-based object detection. arXiv 2020,
arXiv:2012.09958.

43. Fang, Y.; Liao, B.; Wang, X.; Fang, J.; Qi, J.; Wu, R.; Niu, J.; Liu, W. You only look at one sequence: Rethinking transformer in vision
through object detection. In Proceedings of the Advances in Neural Information Processing Systems 34 (NIPS 2021), Online, 6–14
December 2021; pp. 26183–26197.

44. Li, Y.; Mao, H.; Girshick, R.; He, K. Exploring plain vision transformer backbones for object detection. In Proceedings of the
European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 280–296.

45. Taheri Tajar, A.; Ramazani, A.; Mansoorizadeh, M. A lightweight Tiny-YOLOv3 vehicle detection approach. J. Real-Time Image
Process. 2021, 18, 2389–2401. [CrossRef]

46. Lin, J.; Chen, W.M.; Lin, Y.; Gan, C.; Han, S. MCUNet: Tiny deep learning on IoT devices. In Proceedings of the Advances in
Neural Information Processing Systems 33 (NIPS 2020), Online, 6–12 December 2020; pp. 26183–26197.

47. Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive
Survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]

48. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019,
31, 1235–1270. [CrossRef] [PubMed]

49. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [CrossRef]
50. Wen, L.; Du, D.; Cai, Z.; Lei, Z.; Chang, M.; Qi, H.; Lim, J.; Yang, M.; Lyu, S. DETRAC: A new benchmark and protocol for

multi-object tracking. arXiv 2015, arXiv:1511.04136.
51. Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. Bdd100k: A diverse driving dataset for

heterogeneous multitask learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 2636–2645.

52. Highway Traffic Videos Dataset. Available online: https://www.kaggle.com/datasets/aryashah2k/highway-traffic-videos-
dataset (accessed on 3 March 2024).

53. Traffic-Surveillance-Dataset. Available online: https://github.com/gustavovelascoh/traffic-surveillance-dataset (accessed on 3
March 2024).

54. Tang, Z.; Naphade, M.; Liu, M.Y.; Yang, X.; Birchfield, S.; Wang, S.; Kumar, R.; Anastasiu, D.; Hwang, J.N. CityFlow: A city-scale
benchmark for multi-target multi-camera vehicle tracking and re-identification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8797–8806.

55. DZ Computer Vision. Traffic Count, Monitoring with Computer Vision. 4K, UHD, HD. 2021. Available online: https://www.
youtube.com/watch?v=2kYpqSMqrzg (accessed on 23 November 2023).

56. Sboukraa, I. Car Object Detection in Road Traffic. 2023. Available online: https://www.kaggle.com/datasets/boukraailyesali/
traffic-road-object-detection-dataset-using-yolo (accessed on 1 April 2024).

57. Opencv-Python. Available online: https://pypi.org/project/opencv-python/ (accessed on 3 March 2024).
58. Garcia-Garcia, B.; Bouwmans, T.; Silva, A.J.R. Background subtraction in real applications: Challenges, current models and future

directions. Comput. Sci. Rev. 2020, 35, 100204. [CrossRef]
59. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the

2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December
2018; pp. 1394–1401.

60. Cascante-Bonilla, P.; Shehada, K.; Smith, J.S.; Doveh, S.; Kim, D.; Panda, R.; Varol, G.; Oliva, A.; Ordonez, V.; Feris, R.; et al. Going
Beyond Nouns with Vision & Language Models Using Synthetic Data. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), Paris, France, 2–6 October 2023; pp. 20155–20165.

61. Rekavandi, A.M.; Rashidi, S.; Boussaid, F.; Hoefs, S.; Akbas, E.; bennamoun, M. Transformers in Small Object Detection: A
Benchmark and Survey of State-of-the-Art. arXiv 2023, arXiv:2309.04902

62. Rekavandi, A.M.; Xu, L.; Boussaid, F.; Seghouane, A.K.; Hoefs, S.; Bennamoun, M. A Guide to Image and Video based Small
Object Detection using Deep Learning: Case Study of Maritime Surveillance. arXiv 2022, arXiv:2207.12926

63. Coluccia, A.; Fascista, A.; Schumann, A.; Sommer, L.; Dimou, A.; Zarpalas, D.; Akyon, F.C.; Eryuksel, O.; Ozfuttu, K.A.; Altinuc,
S.O.; et al. Drone-vs-bird detection challenge at IEEE AVSS2021. In Proceedings of the IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), Washington, DC, USA, 16–19 November 2021; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11554-021-01131-w
http://dx.doi.org/10.1109/JPROC.2020.2976475
http://dx.doi.org/10.1162/neco_a_01199
http://www.ncbi.nlm.nih.gov/pubmed/31113301
http://dx.doi.org/10.1177/0278364913491297
https://www.kaggle.com/datasets/aryashah2k/highway-traffic-videos-dataset
https://www.kaggle.com/datasets/aryashah2k/highway-traffic-videos-dataset
https://github.com/gustavovelascoh/traffic-surveillance-dataset
https://www.youtube.com/watch?v=2kYpqSMqrzg
https://www.youtube.com/watch?v=2kYpqSMqrzg
https://www.kaggle.com/datasets/boukraailyesali/traffic-road-object-detection-dataset-using-yolo
https://www.kaggle.com/datasets/boukraailyesali/traffic-road-object-detection-dataset-using-yolo
https://pypi.org/project/opencv-python/
http://dx.doi.org/10.1016/j.cosrev.2019.100204

	Introduction
	Related Work
	Empty Road Detection and L-Filter
	ERD Model
	L-Filter
	LTSM Model for Road Occupancy Predictions

	Datasets, Model Training, and Implementation
	Datasets
	Dataset 1
	Dataset 2

	LSTM Training Using Dataset 1
	Implementation

	Evaluation
	Road Occupancy Classification Accuracy
	Frame Processing Rate Enhancements by Erd and L-Filter for One Traffic Video Stream
	Scalability of ERD and L-Filter for Concurrent Streams
	mAP and Overhead of L-Filter
	mAP
	Overhead

	Discussion
	Conclusions
	References

