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Abstract: In this study, we propose a classification method of expert–novice levels using a graph
convolutional network (GCN) with a confidence-aware node-level attention mechanism. In classification
using an attention mechanism, highlighted features may not be significant for accurate classification,
thereby degrading classification performance. To address this issue, the proposed method introduces a
confidence-aware node-level attention mechanism into a spatiotemporal attention GCN (STA-GCN) for
the classification of expert–novice levels. Consequently, our method can contrast the attention value
of each node on the basis of the confidence measure of the classification, which solves the problem of
classification approaches using attention mechanisms and realizes accurate classification. Furthermore,
because the expert–novice levels have ordinalities, using a classification model that considers ordinalities
improves the classification performance. The proposed method involves a model that minimizes a loss
function that considers the ordinalities of classes to be classified. By implementing the above approaches,
the expert–novice level classification performance is improved.

Keywords: expert–novice level classification; motion data; graph convolutional network; attention
mechanism

1. Introduction

In the context of sports, the transfer of “expert techniques” from outstanding athletes
and coaches to the next generation of players is essential for development. However,
most expert techniques are tacit knowledge, and the transfer of such techniques requires
prolonged guidance from experienced athletes or coaches. Thus, the construction of support
technologies to facilitate the efficient transfer of these expert techniques is expected. To
effectively implement support technologies, it is essential to delineate the differences
between expert and novice athletes. Therefore, the classification of athletes into “expert”
and “novice” is a fundamental methodology [1]. In recent years, the popularization of
wearable devices, such as smartwatches and motion capture devices, has facilitated the
acquisition of biometric data, and various methods for expert–novice level classification
using biometric data have been proposed [2–20]. For example, Kuo et al. proposed a
classification method for laparoscopic surgical skills based on multiple machine learning
methods such as a multilayer perceptron using gaze information [19]. Furthermore, Guo et
al. proposed a skill-level classification method based on convolutional neural networks
using a Single Inertial Sensor attached to the arm [20]. In particular, motion data are closely
related to tacit knowledge. Several expert–novice level classification methods using motion
data have been proposed [21–27]. For example, Ross et al. proposed a method for classifying
athletes’ skill levels using machine learning techniques such as support vector machines
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and logistics regression based on motion data collected during specific movements [25].
Furthermore, Vincenzo et al. proposed a method for classifying violin performance levels
by the random forest method using motion data [26]. In addition, Xuan et al. proposed a
method for classifying surgical skill levels using a convolutional neural network (CNN)
and long short-term memory (LSTM) based on motion data collected during surgical
simulation [27]. From the above methods, expert–novice classification is realized using a
machine-learning-based approach with biometric information. In particular, motion data
have attracted attention as information that can accurately classify expert–novice levels
and are used in many previous methods.

In classification tasks using motion data, many methods handle motion as a graph
structure, which is used to construct a graph convolutional network (GCN) [28] based
on motion data [29–38]. GCNs allow the relationships between joints in the human body
to be captured in a graph structure, facilitating the classification of complex movements.
However, conventional GCNs, typically used in classification tasks, only output classi-
fication results without providing explanations. Therefore, there is a need for methods
that elucidate the reasoning behind the classification results. In this regard, a classifica-
tion method using motion data via a spatiotemporal attention GCN (STA-GCN), which
introduces the attention mechanism into the GCN, has been proposed [39]. The STA-GCN
improves classification performance and provides explanations for the classification results.
In the STA-GCN, the feature extractor is placed close to the input, whereas the attention
and perception branches are placed closer to the output. The attention branch performs
classification using feature maps obtained using the feature extractor and generates atten-
tion nodes and edges. These generated attention nodes and edges are used to highlight the
parts that are critical for accurate classification. Conversely, the perception branch performs
the final classification using feature maps, attention nodes, and attention edges derived
from both the feature extractor and the attention branch. From the above procedures,
the attention mechanism in the STA-GCN enables the highlighting of important parts for
classification. However, if the parts emphasized by the attention mechanism differ from the
actual focal parts, there is a potential for reduced classification performance [40]. Therefore,
in the attention mechanism, the influence of attention that fails to highlight important parts
needs to be diminished.

To address this issue, we previously proposed an expert–novice level classification
method (confidence-aware STA-GCN: ConfSTA-GCN) that introduces an attention mecha-
nism that considers the confidence measure of critical parts [41]. Because the confidence
measure is treated as the probability of class assignment obtained through expert–novice
level classification in the attention branch, the same confidence measure is applied as
a weight to all attention nodes in the previous method. However, it is anticipated that
there will be variations in the confidence measure at each attention node for accurate
classification. Therefore, by calculating different confidence measures for each attention
node, classification performance can be improved. In addition, previous methods construct
classification models under the assumption that there is no ordinality between the classes
of the expert and novice levels; thus, they do not consider relationships between these
classes. Given the ordinariness of the expert–novice levels, this can lead to limitations in
classification performance.

In this study, we propose a method for expert–novice level classification using a GCN
with a confidence-aware node-level attention mechanism. The proposed method calculates
the probability of belonging to an actual expert–novice level when specific attention nodes
are excluded. This process is repeated for the number of attention nodes, and the computed
probabilities are regarded as confidence measures. A novel attention mechanism that
considers the confidence measure of each attention node is one of the main contributions
of this study. The perception branch outputs the final classification results using feature
maps computed from these attention nodes, and these features are adjusted according
to the confidence measure. Furthermore, the proposed method considers the ordinality
of the expert–novice level, an aspect not considered in previous methods using attention
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mechanisms. Because this allows for consideration of the relationships between classes, it
is expected to further improve of expert–novice level classification performance. The main
contributions of this study can be summarized as follows.

• Proposal of a method for improving existing GCN-based classification approaches by
individually calculating and applying the confidence measure to attention nodes.

• Construction of a classification model that allows for consideration of the order of
expert–novice levels among classes.

Note that this is an extended version of the ConfSTA-GCN for skeleton-based expert–
novice level classification [41]. Specifically, the proposed method can calculate the confi-
dence measure for each joint, separately, resulting in a node-level attention mechanism.

This paper is organized as follows. In Section 2, the classification of the expert–novice
levels using the STA-GCN with a confidence-aware node-level attention mechanism is
explained. The experimental results are described in Section 3 to evaluate the classifica-
tion performance of our method. Finally, Section 4 concludes this study and describes
future work.

2. Classification of Expert–Novice Levels Using STA-GCN with Confidence-Aware
Node-Level Attention Mechanism

This section describes the proposed method to improve the existing approach and
this study’s novelty. It also structures a classification model considering the expert–novice
level ordering relationship between classes. An overview of the proposed method is
shown in Figure 1. The proposed method comprises a feature extractor, an attention
branch, and a perception branch. First, the proposed method uses a spatiotemporal graph
(ST-graph) to represent spatial and temporal motion data as a graph structure. Using the
feature extractor process, feature maps are calculated. Next, the attention branch obtains
attention nodes, which represent the significance of each joint, and attention edges, which
indicate the important relationships between joints. Furthermore, the attention branch
uses the confidence-aware node-level attention mechanism to generate a new feature
map in which important joints and their connections are emphasized for classification.
Finally, by inputting the attention nodes and edges along with the feature map into the
perception branch, the classification results of the expert–novice levels are obtained. During
this process, the attention nodes computed using the attention branch are output as a
visualization of important joints for expert–novice level classification.

Figure 1. Overview of the proposed method. In the proposed method, feature maps extracted
from graphed motion data are used to calculate attention nodes and edges through an attention
mechanism that considers the confidence measure in emphasizing elements crucial for classification.
Subsequently, the classification results of the expert–novice levels are obtained using the perception
branch. Furthermore, the attention nodes used in the classification are visualized.
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2.1. ST-Graph Construction and Feature Extractor

This subsection describes the calculation of features that take into account spatiotem-
poral information from motion data. Specifically, we describe the construction approach
of an ST-graph and the feature extractor method separately. First, the proposed method
constructs an ST-graph from motion data in the same manner as [29]. Specifically, the
ST-graph represents human joints as nodes v f ,n( f = 1, 2, . . . , F; F denoting the number of
frames, n = 1, 2, . . . , N; N representing the number of nodes), as shown in Figure 2. The
ST-graph connects them with inter-frame and intra-body edges. The inter-frame edges
connect the same joint across consecutive frames, i.e., the f -th and ( f + 1)-th frames in the
motion data. Conversely, the intra-body edges connect nodes in the ST-graph according to
the adjacency relationships of each joint in the human body.

Figure 2. Overview of ST-graph constructed using the proposed method. The ST-graph is constructed
by connecting nodes representing joints (blue points) with inter-frame edges (yellow lines) and
intra-body edges (black lines).

The proposed method computes the feature map using a spatiotemporal graph con-
volutional (STGC)-block. The network configuration of the STGC-block is depicted in
Figure 3. This block performs spatial graph convolution (S-GC) and temporal graph con-
volution (T-GC). Let y(v f ,n) ∈ RD (D denoting the dimension of node features) be the
feature vector for the n-th node in the f -th frame. Our method defines the feature map
obtained from the ST-graph as Yin = [y(v f ,1), y(v f ,2), · · · , y(v f ,N)]

⊤ ∈ RN×D. First, the
output Yspace

out ∈ RN×N , which is obtained by applying S-GC to the feature map Yin, is
computed as follows:

Yspace
out =

H

∑
h=1

WEdge
h ◦ (Λ−1/2

h (Aspace
h + I)Λ−1/2

h )YinWNode
h , (1)

where WNode
h and WEdge

h (h = 1, 2, . . . , H; H denoting the number of adjacent nodes con-
nected by intra-body edges) denote the weight matrices of the nodes and edges, respectively,
and Aspace

h denotes the adjacency matrix in the spatial direction. The symbol “◦” denotes the
Hadamard product, and I ∈ RN×N denotes the identity matrix. Furthermore, Λh ∈ RN×N

denotes a diagonal matrix whose diagonal elements are Λnn = ∑i(Ani + Ini).
The proposed method calculates the output Y time

out ∈ RF×N×D using T-GC as follows:

Y time
out =


ytime(v1,1) ytime(v1,2) · · · ytime(v1,N)
ytime(v2,1) ytime(v2,2) · · · ytime(v2,N)

...
...

. . .
...

ytime(vF,1) ytime(vF,2) · · · ytime(vF,N)

 (2)
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ytime(v f ,n) =
⌊κ/2⌋

∑
τ=−⌊κ/2⌋

ατ ◦ x(v f−τ,n) ∈ RD, (3)

where κ denotes the size of the T-GC kernel and ατ ∈ RD denotes the weight vector of
T-GC. In the STGC-block, YFE

out ∈ RF×N×D is calculated using the network architecture
shown in Figure 3. The STGC-block consists of S-GC, batch normalization [42], the ReLU
activation function [43], T-GC, and Dropout [44], with a skip connection [45].

Figure 3. Network configuration of STGC-block in the proposed method.

2.2. Attention Branch

This work aims to improve the attention branch in the existing GCN-based classification.
The attention edges E(YFE

out) ∈ R1×N×N are derived by applying several 1 × 1 convolution
layers [46] and global average pooling (GAP) [46] to the feature map YFE

out. This is followed
by batch normalization and the application of the Tanh and ReLU functions to convert the
values of non-important parts to zero. The attention edges E(YFE

out), which contain only
the connections important for classification, are computed by employing several 1 × 1
convolution layers and GAP to the feature map YFE

out. Subsequently, batch normalization is
performed, and the Tanh and ReLU activation functions are used to convert the values of
non-essential parts to zero, thereby computing the attention edges.

Furthermore, the attention branch in the proposed method employs a process to
obtain the attention nodes and edges using the feature map YFE

out calculated in the previous
subsection. The attention nodes V(YFE

out) ∈ R1×N×N are obtained by applying several 1×1
convolution layers, batch normalization, upsampling, and the sigmoid function to YFE

out. In
the upsampling process, linear interpolation is performed so that the number of frames in
the feature map after the 1×1 convolution processes and batch normalization in T-GC and
the input feature map YFE

out become the same. Using the computed attention nodes V(YFE
out),

a new feature map YAN
out ∈ R1×F×N , which emphasizes information about important parts

for expert–novice level classification, is computed as follows:

YAN
out = V(YFE

out)Y
FE
out. (4)

The proposed method uses these attention nodes and edges for expert–novice level
classification.

Our method applies the confidence-aware node-level attention mechanism to the
feature map YAN

out to emphasize important nodes. We obtain a novel feature map YCAN
out

from the attention nodes. In the confidence-aware node-level attention mechanism, we
first calculate the confidence measure of each attention node. The calculation approach
for the confidence measure is depicted in Figure 4. The proposed method computes the
probability of belonging to each expert–novice level via a network in the attention branch
when one of the attention nodes is masked, i.e., the attention value of the target node is set
to zero. Let cn, f be the probability value calculated when the n-th attention node in the f -th
frame is masked. The proposed method derives the confidence measure c̄n, f of the n-th
attention node in the f -th frame as follows:

c̄n, f = 1 − cn, f . (5)
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Figure 4. Overview of the calculation approach for the confidence measure. The proposed method
calculates the probability of belonging to each expert–novice level by masking one attention node
(setting its attention node to zero) and derives the confidence measure on the basis of the probability
value. In this attention mechanism, the product of the calculated confidence measure and the attention
node is taken, allowing the calculation of controlled attention nodes.

In the confidence-aware node-level attention mechanism, we calculate the confidence
measure for all attention nodes, and the feature maps YCAN

out are calculated using the feature
maps YAN

out and the confidence measure, as shown in the following equations:

YCAN
out = C ◦ YAN

out , (6)

C =


c̄11 c̄12 · · · c̄1N
c̄21 c̄22 · · · c̄2N
...

...
. . .

...
c̄F1 c̄F2 · · · c̄FN

 ∈ R1×F×N . (7)

Equation (6) enables the controlled influence of attention nodes calculated using the
confidence-aware node-level attention mechanism, moderated by the confidence measure
of each attention node. From the above, the proposed method obtains the attention edges
E(YFE

out) and the feature maps YCAN
out calculated from the attention nodes V(YFE

out) in the
attention branch to realize accurate expert–novice level classification.

2.3. Perception Branch

This work aims to compute classification results from features acquired in the feature
extraction and attention branch. The perception branch obtains the final expert–novice
level classification results by using a new feature map Yout. First, the proposed method
computes Yper

out ∈ RN×N using the graph convolution of the attention edge and the feature
map Yin obtained from the ST-graph as follows:

Yper
out =

ϕ

∑
φ=1

(Λ−1/2
φ (Aper

φ + I)Λ−1/2
φ )YinWper

φ , (8)
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where Aper
φ ∈ RN×N (φ = 1, 2, . . . , ϕ; ϕ denoting the number of attention edges) denotes a

normalized adjacency matrix of the attention edges, and Wper
φ ∈ RD×N denotes the weight

matrix. Furthermore, Λφ ∈ RN×N denotes a diagonal matrix. The proposed method
obtains the final feature map Yout ∈ RN×N using Yspace

out calculated using Equation (1) and
Yper

out as follows:
Yout = Yspace

out + Yper
out . (9)

Using multiple STGC-blocks, GAP, a fully connected layer, and the softmax function,
we calculate the probability of belonging to each expert–novice level class. The class with
the highest probability is considered the final classification result in the proposed method.

2.4. Training Approach

The purpose of this work is to construct a GCN learning approach that considers
ordinality. The proposed method learns the STA-GCN by minimizing the loss function
Ltotal, which is calculated on the basis of the probability of belonging to each expert–novice
level class. Specifically, Ltotal is defined as follows:

Ltotal = Latt + Lper, (10)

Latt = −
M

∑
m=1

q(m) log p(m)
att −

M

∑
m=1

(
|label − m|2(1 − δ(m)) log

(
1 − p(m)

att

))
, (11)

Lper = −
M

∑
m=1

q(m) log p(m)
per −

M

∑
m=1

(
|label − m|2(1 − δ(m)) log

(
1 − p(m)

per

))
, (12)

where M represents the number of classes corresponding to the expert–novice levels, and
label ∈ {1, 2, · · · , M} denotes the ground truth of the expert–novice levels. p(m)

att and p(m)
per

denote the probabilities of belonging to the m-th class (m = 1, 2, . . . , M), as determined by
the attention and perception branches, respectively. δ(m) is defined as follows:

δ(m) =

{
1 if m = label,
0 otherwise.

(13)

In the proposed method, the squared difference between the ground truth and the
classification result is used as a weight in the second term of Equations (11) and (12).
Consequently, the loss function outputs larger values when there is a more significant
discrepancy between the ground truth and the classification result. In addition, to ensure a
certain level of accuracy in the attention edges and nodes, the sum of the loss functions
Lper and Latt at the attention branch point is minimized. By minimizing the defined loss
function Ltotal, the parameters in the STA-GCN are determined.

3. Experimental Results

In this section, we present the experimental results to evaluate the classification
performance of the proposed method. This experiment classifies expert–novice levels using
motion data during sports activities, i.e., soccer and diving. In addition, we quantitatively
evaluated the classification performance and discussed the effectiveness of explaining the
classification results by visualizing the attention nodes.

3.1. Experimental Settings

In this subsection, we explain the experimental setting. To evaluate the classification
performance of our GCN-based method, we used the expert–novice soccer dataset [47]
and the action quality assessment (AQA) dataset [48]. These datasets contain motion data
on sports and their expert–novice levels. Specifically, the expert–novice soccer dataset
contains motion data of eight participants for nine types of soccer plays (penalty kick (PK),
free kick (FK), direct shot (DS), cross shot (CS), volley, long dribble, straight dribble, short
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dribble, and juggling), four times each, for 288 samples. These motion data were obtained
using the PERCEPTION NEURON PRO (https://neuronmocap.com), which was used
to capture whole-body motion [49,50]. The nine types of soccer plays in this dataset are
illustrated in Figure 5. In this dataset, the number of motion data frames differs based on
the participant and the specific play. Note that the proposed method requires the number
of frames in the input motion data to be identical. Therefore, to unify the temporal duration
of all motion data, downsampling was performed by sampling the data at regular intervals
to match the shortest motion data. In addition, each soccer play was classified according
to a four-tiered expert–novice level, predetermined by individuals with more than five
years of soccer experience. The AQA dataset consists of videos of athletes from seven
sports (e.g., diving and 10 m platform) taken during the summer and winter Olympics.
With this dataset, the experiment used motion data extracted from videos via MediaPipe
2 (https://google.github.io/mediapipe/, accessed on 23 February 2024). Because of the
challenges of capturing motion data from the complex movements and changing camera
angles present in many of the videos in the AQA dataset, only the “10 m platform single
dive” data were used. The 10 m platform single dive in the AQA dataset is illustrated in
Figure 6. The AQA dataset shows variability in motion data acquisition time across athletes
and actions, which is similar to the expert–novice dataset. Therefore, to unify the temporal
duration of all motion data, downsampling was performed in the same manner as in the
expert–novice dataset experiment. The obtained motion data comprised 367 samples, of
which 321 samples were used as training data and the remaining samples as test data. Each
sample was given a score between 21.60 and 102.60 points. In the experiment, samples
were categorized into four expertise levels, ranging from novice to expert, on the basis of
the quartiles derived from their scores. To evaluate classification performance, we used the
mean absolute error (MAE) and accuracy, which are defined as follows:

MAE =
1
K

K

∑
k=1

|gk − rk|, (14)

Accuracy =
Number of correctly classified samples

Number of all samples
. (15)

In Equation (14), gk and rk (k = 1, 2, . . . , K; K representing the number of test samples)
denote the ground truth and classification results for the k-th test sample, respectively.
In the MAE equation, |gk − rk| denotes the difference between the actual expert–novice
levels and the classification results. Therefore, the MAE calculated from Equation (14)
indicates the extent to which the classification results deviate from the actual expert–novice
level. A lower MAE indicates smaller classification errors, whereas a higher accuracy
indicates a larger number of samples in which the classification results match the actual
expert–novice level.

To evaluate the classification performance of the proposed method (PM), it was com-
pared with the following eight comparative methods: the ST-GCN [29], ST-GCN with the
proposed loss function Ltotal (ST-GCN w/Ltotal), STA-GCN [33], STA-GCN with Ltotal (STA-
GCN w/Ltotal), ConfSTA-GCN [41], ConfSTA-GCN with Ltotal (ConfSTA-GCN w/Ltotal),
spatiotemporal graph ConvNeXt (TSGCNeXt) [51], and proposed method without Ltotal
(PM w/o Ltotal). The ST-GCN, which is capable of incorporating spatial and temporal
information, is GCN-based. As a basic method in GCN-based classification that consid-
ers spatiotemporal information, the ST-GCN was used as a comparative method. The
STA-GCN is a GCN-based classification method that introduces the conventional attention
mechanism. The ConfSTA-GCN verifies the effectiveness of the computation of confi-
dence measures in the PM. The ST-GCN w/Ltotal, STA-GCN w/Ltotal, ConfSTA-GCN
w/Ltotal, and PM w/o Ltotal were used to verify the effectiveness of our loss function Ltotal.
TSGCNeXt is a state-of-the-art method for GCN-based classification using motion data.

In this experiment, the number of joints in the expert–novice soccer and AQA datasets
is 22 and 33, respectively. For the proposed and comparative methods, the learning rate

https://neuronmocap.com
https://google.github.io/mediapipe/
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and the batch size were set to 0.01 and 64, respectively, and this experiment used stochastic
gradient descent [29] as the optimization approach. In addition, the kernel size of T-GC
was set to nine, consistent with the conditions of [29,39].

Figure 5. Nine types of soccer plays included in the expert–novice soccer dataset.

Figure 6. 10 m platform single dive included in the AQA dataset.

3.2. Evaluation of Expert–Novice Level Classification Performance

This subsection shows the performance of expert–novice level classification via the
proposed and comparative methods. Tables 1 and 2 show the MAE and accuracy of the
expert–novice level classification results obtained using the proposed and comparative
methods for the expert–novice soccer dataset. Furthermore, the MAE and accuracy of the
classification results for the AQA dataset are presented in Table 3. From these performance
indices, the PM outperforms all comparative methods, demonstrating its effectiveness.
Because the PM outperforms the ST-GCN and ST-GCN w/Ltotal, we can conclude that it can
classify with higher accuracy than the ST-GCN when an attention mechanism is introduced.
Furthermore, because our method outperforms the STA-GCN and STA-GCN w/Ltotal,
accurate classification becomes feasible using the confidence-aware attention mechanism.
By comparing the classification results of the PM, ConfSTA-GCN, and ConfSTA-GCN
w/Ltotal, we can verify the effectiveness of the node-level attention mechanism that can
control the impact of each attention node. Because the proposed method outperforms the
PM w/o Ltotal, we can confirm the effectiveness of the expert–novice level classification
using the loss function Ltotal. Finally, by comparing the classification results of the PM and
TGCNeXt, we confirm that the proposed method outperforms the state-of-the-art method
for GCN-based classification using motion data. These results confirm that the PM allows
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for accurate classification of expert–novice levels by employing the confidence-aware
node-level attention mechanism and the loss function Ltotal.

Table 1. MAE (↓) of expert–novice level classification results obtained using the proposed and
comparative methods for the expert–novice soccer dataset.

ST-
GCN [29]

ST-GCN
w/Ltotal

STA-
GCN [39]

STA-
GCN

w/Ltotal

ConfSTA-
GCN [41]

ConfSTA-
GCN

w/Ltotal

TGC
NeXt [51]

PM w/o
Ltotal

PM

PK 0.844 0.375 0.594 0.313 0.281 0.344 0.563 0.250 0.188
FK 0.656 0.594 0.156 0.281 0.313 0.188 0.500 0.125 0.0625
DS 0.500 0.656 0.563 0.250 0.125 0.0938 1.16 0.0938 0.0938
CS 0.594 0.594 0.688 0.438 0.594 0.188 0.375 0.344 0.313
volley 0.594 0.688 0.250 0.219 0.250 0.125 0.656 0.188 0.156
long dribble 0.406 0.656 0.500 0.375 0.344 0.438 0.688 0.0625 0.0625
straight dribble 0.688 0.531 0.281 0.156 0.313 0.313 0.594 0.125 0.0938
short dribble 0.719 0.750 0.219 0.188 0.281 0.281 1.22 0.125 0.0313
juggling 0.531 0.438 0.563 0.375 0.531 0.406 0.906 0.344 0.188

Average 0.615 0.587 0.424 0.288 0.337 0.263 0.740 0.278 0.132

Table 2. Accuracy (↑) of expert–novice level classification results obtained using the proposed and
comparative methods on expert–novice soccer dataset.

ST-
GCN [29]

ST-GCN
w/Ltotal

STA-
GCN [39]

STA-
GCN

w/Ltotal

ConfSTA-
GCN [41]

ConfSTA-
GCN

w/Ltotal

TGC
NeXt [51]

PM w/o
Ltotal

PM

PK 0.469 0.719 0.656 0.813 0.750 0.750 0.563 0.750 0.813
FK 0.500 0.406 0.844 0.719 0.688 0.813 0.563 0.875 0.938
DS 0.594 0.500 0.781 0.813 0.875 0.906 0.344 0.938 0.906
CS 0.594 0.563 0.656 0.563 0.625 0.813 0.625 0.719 0.719
volley 0.688 0.688 0.750 0.781 0.813 0.938 0.500 0.813 0.844
long dribble 0.656 0.500 0.718 0.750 0.781 0.750 0.469 0.938 0.938
straight dribble 0.594 0.656 0.813 0.875 0.781 0.781 0.500 0.875 0.906
short dribble 0.656 0.563 0.875 0.875 0.844 0.813 0.375 0.875 0.969
juggling 0.531 0.563 0.688 0.656 0.594 0.688 0.406 0.719 0.813

Average 0.587 0.573 0.753 0.760 0.750 0.778 0.483 0.833 0.872

Table 3. MAE and accuracy of expert–novice level classification results obtained using the proposed
and comparative methods for the AQA dataset.

MAE (↓) Accuracy (↑)

ST-GCN [29] 1.17 0.348
ST-GCN w/Ltotal 1.13 0.348
STA-GCN [39] 1.00 0.348
STA-GCN w/Ltotal 0.935 0.391
ConfSTA-GCN [41] 0.913 0.370
ConfSTA-GCN w/Ltotal 0.891 0.413
TGCNeXt [51] 1.09 0.391
PM w/o Ltotal 0.870 0.478
PM 0.696 0.587

In addition, the confusion matrices for the PM, PM w/o Ltotal, and ConfSTA-GCN
w/Ltotal are shown in Figures 7 and 8. These results demonstrate that the proposed method
is capable of accurately classifying the expert–novice levels compared with the PM w/o
Ltotal and ConfSTA-GCN w/Ltotal and that can classify the expert–novice levels closely to
the ground truth.
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Examples of the classification results of the PM and ConfSTA-GCN for the expert–
novice soccer and AQA datasets are shown in Figures 9 and 10, respectively. These results
confirm that by considering the ordinality between the expert and novice levels, we can
accurately classify the expert–novice levels and enable classifications that are close to the
ground truth. Consequently, in GCN-based classification, we verify the effectiveness of the
confidence-aware node-level attention mechanism and the importance of considering the
ordinality of the expert–novice levels.

Figure 7. Confusion matrices of expert–novice level classification results obtained using the PM,
PM w/o Ltotal, and ConfSTA-GCN w/Ltotal for the expert–novice soccer dataset.

Figure 8. Confusion matrices of expert–novice level classification results obtained using the PM,
PM w/o Ltotal, and ConfSTA-GCN w/Ltotal for the AQA dataset.

This evaluation of expert–novice level classification performance demonstrates an
improvement in classification performance, attributable to the contributions of this study,
which include enhancements to the existing approach (ConfSTA-GCN) and the construction
of a classification model that considers the ordinality between classes. Specifically, the
effectiveness of improvements to the existing approach was verified by comparing the
PM and ConfSTA-GCN w/Ltotal. Furthermore, the efficacy of the classification model that
considers the ordinality between classes was confirmed through the comparison of the PM
and PM w/o Ltotal. Consequently, this study achieves the research objectives of enhancing
the existing approach and improving the classification performance of expert–novice level
classification through a model that accounts for the ordinal relationships between classes.
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Figure 9. Examples of expert–novice level classification results obtained using the PM and previous
method for the expert–novice soccer dataset.

Figure 10. Examples of expert–novice level classification results obtained using the PM and previous
method for the AQA dataset.

3.3. Visualization Results of Attention Nodes

This subsection shows the visualization results of the attention nodes and discusses the
effectiveness of the PM. Figures 11–13 show examples of the visualization of the attention
nodes for the PK, FK, and DS categories in the expert–novice soccer dataset. The frames
visualized were selected as the frames with the largest standard deviation between attention
nodes. Furthermore, Figure 14 shows an example of the visualization of the attention nodes
in the AQA dataset regarding the frames when the standard deviation of the attention
nodes is maximum. Figures 11–13 show that participants with lower expert–novice levels
are confirmed to shoot using only their legs.
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Figure 11. Examples of the visualization of attention nodes for penalty kick in the expert–novice
soccer dataset using the PM.

Figure 12. Examples of the visualization of attention nodes for free kick in the expert–novice soccer
dataset using the PM.

Figure 13. Examples of the visualization of attention nodes for direct shot in the expert–novice soccer
dataset using the PM.
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Figure 14. Examples of the visualization of attention nodes for the AQA dataset using the PM.

Specifically, the visualization results indicate that participants with lower expert–
novice levels have higher values in the nodes associated with the lower body. Conversely,
participants with higher expert–novice levels are observed to effectively use their upper
body when shooting. Figure 14 demonstrates that expert levels of expertise have higher
values of attention nodes in the head and shoulder.

Figures 15–18 focus on depicting the average values of attention nodes across all
frames for each sample, confirming an overview of the trends in the whole sample. A
comparison between attention nodes in Figures 11–14 and averaged attention nodes reveal
that in PK, FK, and DS categories, participants with lower expert–novice levels confirm
higher values in nodes associated with the lower body. Conversely, it can be confirmed that
participants with higher expert–novice levels exhibit higher values in nodes related to the
upper body. This result is consistent with the results confirmed by the visualization results
in frames with the highest standard deviation across both datasets. These results confirm
that the visualization outcomes of attention nodes in this experiment are independent of
the frame.
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Figure 15. Examples of the visualization of attention nodes for the PK (expert–novice soccer dataset)
using the PM. The attention nodes are averaged across all frames for each sample.

Figure 16. Examples of the visualization of attention nodes for the FK (expert–novice soccer dataset)
using the PM. The attention nodes are averaged across all frames for each sample.

Figure 17. Examples of the visualization of attention nodes for the DS (expert–novice soccer dataset)
using the PM. The attention nodes are averaged across all frames for each sample.
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Figure 18. Examples of the visualization of attention nodes in the AQA dataset using the PM. The
attention nodes are averaged across all frames for each sample.

Figures 19–22 depict the visualization of averaged attention nodes across all frames
for each action at expert–novice levels, allowing for a comparison of how attention nodes
between expert–novice levels. Despite the varying number of participants in each level,
the values of attention nodes for the PK, FK, DS, and the AQA dataset exhibit similar
trends to those confirmed in Figures 11–14 and Figures 15–18. In the expert–novice level
soccer dataset, participants with higher expert–novice levels show elevated values in nodes
associated with the upper body. In the AQA dataset, samples from expert participants show
high values in nodes related to the upper body and foot. These results are corroborated
by quantitative results from each dataset, confirming that the visualized attention nodes
contribute to the classification process.

These results suggest that the visualization approach proposed consistently captures
the importance of soccer-specific movements across different frame counts and samples,
highlighting their relevance to varying expert–novice levels. Moreover, it successfully
identifies the significance of movements specific to diving and swimming, demonstrating
their relevance to expert–novice levels.

Figure 19. Examples of the visualization of attention nodes for the PK (expert–novice soccer dataset)
using the PM. The attention nodes are averaged across all frames for each action by expert–novice levels.
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Figure 20. Examples of the visualization of attention nodes for the FK (expert–novice soccer dataset)
using the PM. The attention nodes are averaged across all frames for each action by expert–novice levels.

Figure 21. Examples of the visualization of attention nodes for the DS (expert–novice soccer dataset)
using the PM. The attention nodes are averaged across all frames for each action by expert–novice levels.

Figure 22. Examples of the visualization of attention nodes for AQA dataset using the PM. The attention
nodes are averaged across all frames for each action by expert–novice levels.

4. Conclusions

In this study, we proposed a method for classifying expert–novice levels using motion
data via a GCN that introduces a confidence-aware node-level attention mechanism. The
PM effectively solves the problem of using unimportant features in existing methods. In
particular, the PM calculates the probability of belonging to an actual expert–novice level
when specific attention nodes are excluded, and the calculated probabilities are regarded as
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a confidence measure. Consequently, our method can compare the attention value of each
node based on the confidence of the classification. This solves the attention mechanism
problem and enables accurate classification. Furthermore, because the expert–novice levels
have ordinalities, we construct a classification model that considers ordinalities, thereby
improving classification performance.

Because of the constraint in the PM, the number of frames in the input motion data
must be uniform, and downsampling is performed. However, there is a problem with
downsampling, which can result in the lack of important frames for accurate classification.
Therefore, constructing a model capable of handling motion data with different time lengths
remains a challenge for future work.
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