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Abstract: Brain–computer interface (BCI) systems include signal acquisition, preprocessing, feature
extraction, classification, and an application phase. In fNIRS‑BCI systems, deep learning (DL) algo‑
rithms play a crucial role in enhancing accuracy. Unlike traditionalmachine learning (ML) classifiers,
DL algorithms eliminate the need for manual feature extraction. DL neural networks automatically
extract hidden patterns/features within a dataset to classify the data. In this study, a hand‑gripping
(closing and opening) two‑class motor activity dataset from twenty healthy participants is acquired,
and an integrated contextual gate network (ICGN) algorithm (proposed) is applied to that dataset to
enhance the classification accuracy. The proposed algorithm extracts the features from the filtered
data and generates the patterns based on the information from the previous cells within the network.
Accordingly, classification is performed based on the similar generated patterns within the dataset.
The accuracy of the proposed algorithm is compared with the long short‑term memory (LSTM) and
bidirectional long short‑term memory (Bi‑LSTM). The proposed ICGN algorithm yielded a classifi‑
cation accuracy of 91.23 ± 1.60%, which is significantly (p < 0.025) higher than the 84.89 ± 3.91 and
88.82 ± 1.96 achieved by LSTM and Bi‑LSTM, respectively. An open access, three‑class (right‑ and
left‑hand finger tapping and dominant foot tapping) dataset of 30 subjects is used to validate the
proposed algorithm. The results show that ICGN can be efficiently used for the classification of two‑
and three‑class problems in fNIRS‑based BCI applications.

Keywords: brain–computer interfacing (BCI); functional near‑infrared spectroscopy (fNIRS); long
short‑termmemory (LSTM); bidirectional long short‑termmemory (Bi‑LSTM); integrated contextual
gate network (ICGN); deep learning (DL)

1. Introduction
Brain–computer interface (BCI) technology provides direct communication between

the user’s brain and actuation devices. Initially, the intention to use BCI technology was to
design assistive devices for biomedical applications and to restore the movement ability of
paralyzed and severely handicapped individuals to gain motor functionality [1]. In recent
times, future predictions for BCI have motivated researchers to decode the motor activi‑
ties of non‑paralyzed individuals to control the systems without any use of physical man‑
power [2]. BCI systems acquire signals, i.e., perception, and communicate with the phys‑
ical environment, i.e., control external devices such as the exoskeleton or wheelchair [3].
The challenging factors in BCI are acquiring signals with high quality, and preprocessing
and classifying them to generate commands for the control of external devices [1]. To
know the motor intentions of humans to control Internet of Medical Things technology,
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external rehabilitation, and prosthetic devices, researchers need to know how and from
where motor signals can be acquired.

Until now, to record the motor activity of humans, modalities such as electroencephalogra‑
phy (EEG) [4–8], functional magnetic resonance imaging (fMRI) [9,10], positron emission tomog‑
raphy (PET), and functional near‑infrared spectroscopy (fNIRS) [10–13] have been introduced,
along with their decoding algorithms. EEG is designed to acquire a complex set of signals from
the brain based on the potential difference created by neuronal signal conduction in the brain.
fMRI uses the magnetic resonance imaging technique and fNIRS uses the near‑infrared tech‑
nique to acquire brain signals. Over the last two decades, fNIRS has become a well‑known neu‑
roimaging modality to capture cortical tissue’s hemodynamic response, with high spatial resolu‑
tion [14,15]. Comparing EEG and fMRI, fNIRS is less sensitive to motion artifacts and captures
brain activity signals with less complexity. Still, fNIRS faces challenges in experimental setups
due to deviations in statistical results [16,17].

The current trend in fNIRS‑based BCI applications is to improve signal quality by process‑
ing the acquired brain signals. For this purpose, extracting the features from fNIRS signals man‑
ually or by applying the available feature extraction techniques, such as z‑score [18], non‑linear
feature extraction [19], and statistical features [20], requires a deep knowledge of the investi‑
gated neuro‑physiological phenomenon to extract these features. Also, the computational cost
increases in feature extraction for classification through machine learning (ML) classifiers (sup‑
port vector machine (SVM), k‑nearest neighbor (KNN), linear discriminant analysis (LDA), de‑
cision tree, etc.). Recently, new approaches have been introduced in deep learning (DL) algo‑
rithms [20,21], substituting manual feature extraction and then classification using ML. The DL
algorithmovercomes these challenges in feature extraction and selection for a specific activity and
provides promising dedication for data preprocessing, real‑time feature extraction, and classifi‑
cation to generate control commands for BCI applications [22,23]. DL algorithms effectively learn
latent correlations and can extract more discriminative features from filtered datasets with higher
computational speed. For feature extraction from the filtered fNIRS dataset, recurrent neural net‑
work (RNN) algorithms can capture desired patterns and temporal features from time series data
over a long period [24]. RNNalgorithms like long short‑termmemory (LSTM), bidirectional long
short‑term memory (Bi‑LSTM), and gated recurrent units (GRU) are used for feature extraction
and the classification of complex sequential tasks. However, a vanishing gradient during back‑
propagation limits LSTM’s capacity to learn and retain information over extended periods. The
vanishing gradient problem impacts LSTM’s performance in long‑term dependency tasks [25].
The available methods to cope with the vanishing gradient problem are the careful initialization
of weights [26] and gradient clipping that sets a threshold for the gradients during training [27].

The weight initialization choice depends on network depth, activation functions, and spe‑
cific task requirements and is assigned on a random basis [26]. Gradient clipping involves a
set threshold, beyond which gradients are scaled during backpropagation, where the threshold
values depend upon model architectures, data distribution, and datasets [28]. GRU performs
comparably or even outperforms LSTMs; however, in more challenging and complex scenarios
with intrinsic dependencies, the simplicity of GRU becomes a limitation [29].

This study proposes an integrated contextual gate network (ICGN) as a DL algorithm. The
suggested algorithm contains cells that integrate input data, previous cell state, and previous hid‑
den state to generate the gating outputs and cell state. ICGN cell consists of gatemechanisms that
regulate the flow of information, similar to the LSTM input: forget and output gates. In ICGN,
the memory cell is proposed, which is regulated by the cell’s internal state and outputs from all
three gates. ICGN implies a neural network architecture where input data, previous cell state,
and previous hidden state are all crucial in determining the gating outputs and internal cell state,
ultimately contributing to the final cell state computation.

2. Materials andMethods
This study involves data collection from the motor cortex during the hand‑gripping motor

activity. Acquired data are preprocessed to remove artifacts and enhance raw data quality and
the proposed ICGNmodel is applied for classification.
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2.1. Participants
The fNIRS‑based hemodynamic dataset was collected in the fNIRS neurorobotics research

lab at Air University, Islamabad. Data collectionwas approved by the Institutional Review Board
of Air University, Islamabad, Pakistan (approval number: AU/EA/2022/02/011). The experimen‑
tal data collection follows guidelines provided by the most recent version of the Declaration of
Helsinki, and informed consent was obtained from all the participants. A total of twenty right‑
handed participants (10 male and 10 female) were recruited for the experimental study. The par‑
ticipants’ ages fall within a range of 20 ± 5 years. All participants were rigorously screened to
ensure the absence of any neurological conditions. Additionally, they refrained from consuming
caffeine for a minimum of four hours leading up to the data collection phase of the experiment.

2.2. Experimental Paradigm/Protocol
The experimental paradigm for data acquisition is depicted in Figure 1. The experiment

started with a 30 s initial rest followed by ten trials of 10 s activity and 20 s rest and ended with
an additional 30 s rest. The total duration of the experiment for each participant is 360 s.
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Figure 1. A paradigm for experimental data collection. The total duration per subject is 360 s, with
30 s initial and 30 s end rest intervals separated by 10 trials of 10 s activities and 20 s rest intervals.

2.3. Experimental Setup
A continuous‑wave imaging system (NIRSport2 data acquisition system by NIRx medical

technologies (Germany) was used to acquire fNIRS data. Eight emitters and eight detectors were
positioned over the motor cortex with a separation of 3 cm [30] according to the 10–20 standard
system as shown in Figure 2. Twenty channelswere created by the arrangement of optodes (emit‑
ter and detectors pair) on the expectedmotor cortex region.
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Figure 2. The optodes are positioned on themotor cortex according to the 10–20 international system.
Red and blue circles denote emitters and detectors, respectively. Green lines represent channels
alongwith numbers. A configuration of eight emitters and eight detectors spaced 3 cm apart resulted
in twenty channels in total.

2.4. Signal Acquisition and Processing
NIRSport2 is an fNIRS data acquisition system, which is equipped with two wavelengths:

760 and 850 nm. For experimental data collection, the sampling frequency was set to 10.1725
Hz. Modified Beer‑Lambert law (MBLL) was used to calculate hemodynamic response function
where the light intensity sensed by optodes on the scalp surface was converted into a change in
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oxyhemoglobin (∆HbO) and deoxyhemoglobin (∆HbR) concentrations using Equation (1) by
MBLL [31].

[
∆HbO(t)
∆HbR(t)

]
=

[
εHbO(λ1) εHbR(λ1)
εHbO(λ2) εHbR(λ2)

]−1[
∆A(t; λ1)
∆A(t; λ2)

]
l× d

(1)

where
â ∆HbO(t), ∆HbR(t) are the concentration changes in [µM];
â εHbO(λ), εHbR(λ) are the extinction coefficients of HbO andHbR in

[
µM−1cm−1

]
;

â A(t; λ), A(t; λ2) are the absorbancemeasured at time t using twodifferentwavelengthsλ1
and λ2;

â l = distance between source and detector (3 cm);
â d = differential path length factor.

A band‑pass filter with a passband of 0.01–0.2 Hz was used to eliminate motion artifacts
and instrumental and physiological noises. The filtered signal was transformed into ∆HbO and
∆HbR concentrations for each subject using Equation (1). The ∆HbO concentration for each sub‑
ject consists of a total of 3661 samples (360 s of data). This includes 610 samples (baseline samples)
from both the initial and final 30 s of rest, 1017 samples from 100 s of activity across 10 trials, and
2034 samples from 200 s of rest across 10 trials. The topographical maps plotted using average
activity values (1017 samples) and average rest values (2034 samples) are represented in Figures
3a and 3b, respectively. Figure 3 was plotted using Satori software (version 2.0, NIRx Medical
Technologies), where activity and rest values are represented in the form of change in the concen‑
tration of oxyhemoglobin (∆HbO)measured in µM.
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Figure 3. Top view of the topographical map for the hand‑gripping activity and rest, where F, B, L,
and R are front, back, left, and right sides, respectively. The activity and rest values are represented
as changes in the concentration of oxyhemoglobin (µM). (a) Rest and (b) Activity.

Once the data were converted into the ∆HbO and ∆HbR concentrations, the data were la‑
beled. To label the data, the paradigm in Figure 1 was used, where the initial and final rest (base‑
line samples) were excluded. Rest during 10 trials of activity performance was labeled as class
1, and activity trials were labeled as class 2; then, after labeling, the data were split into an 80%
training set, a 10% validation set, and a 10% testing dataset, where an equal number of samples
from class 1 and 2 were picked randomly. In this way, data samples for training, testing, and
validation were picked from each trial of activity and rest. These training, testing, and validation
datasets were then used to train, validate, and test the classification algorithms discussed in the
next section as input values (xt). A two‑tailed t‑test was conducted to compare the means of the
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activity and rest classes. The results show a statistically significant difference between the data
classes, with a p‑value of 0.001 and a t‑value of 3.695.

2.5. Signal Classification
In BCI applications, features are sometimes manually extracted from datasets to use ML

classifiers for classification. In this study, DL algorithms are selected for the classification, which
extract features based on patterns within datasets. In the following explanation, LSTM, Bi‑LSTM,
and the proposed ICGN algorithms are discussed.

2.5.1. LSTM
LSTM is an RNN algorithm and introduces gate mechanisms: forget gate, input gate, and

output gate, given in Equations (2)–(4). These are used to filter irrelevant information [32]. The
sigmoid function for activating these gates assigns 0 and 1 values. In the forget gate, 0 value is to
discard the features from the network and 1 signifies that the network should store feature value
to update the cell state. The input gate determines and computes new values to update the cell
state and the output gate determines which cell states and inputs to the current unit are relevant
to the output. The LSTM cell gates depend on the current input value (xt), the past hidden state
(ht − 1), and biased values (bf, bi, and bo) [33]. Equation (5) presents the candidate cell state
(Çt́) containing new information and passes it to the cell state, depending on the current input
value (xt) and past hidden state (ht − 1). The activation function for the candidate cell state is
tanh, so new information about the cell state is between −1 and 1. If the Çt́ value is negative,
new information is subtracted from the cell state when its positive information is added to the
cell state at time t. In Equation (6), Ct represents the cell state, and it is the product of the output
from the forget gate and the previous cell state which sums up with the product of the output
from the input gate and candidate cell state. The cell state represents thememory of the complete
LSTM network and brings information about the entire sequence. Equation (7) represents the
LSTM hidden state, which depends upon a product of the output gate values and the tangent
hyperbolic of cell state [34]. The LSTM cell is shown in Figure 4.

Ft = σ (wxfxt +whfht−1+ bf) (2)

It = σ (wxixt +whiht−1 + bi) (3)

Ot = σ (wxoxt +whoht−1 + bo) (4)

Çt́ = tanh (wxfxt +whfht−1 + bf) (5)

Ct = Ftx × Ct−1+ Itx × Çt́ (6)

Ht =Ot tanh (Ct) (7)

where

It, Ft, and Ot = output from the input, forget, and output gates;
σ = sigmoid activation function;
tanh = hyperbolic tangent activation function;
wxi, wxf, and wxo = weight functions of input forget, and output gates;
xt = input values at time t;
ht−1 = previous cell hidden state;
Ct−1 = previous cell state;
Çt́ = internal cell state;
bi, bf, and bo = biased values of the input, forget, and output gates;
Ct = memory cell;
Ht = hidden state.
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Figure 4. Illustration of the LSTM cell architecture, showcasing its internal mechanisms for captur‑
ing and retaining sequential information, including the input, forget, and output gates, as well as the
cell state, hidden state, and various activation functions. Pink color circles represent sigmoid func‑
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represent multiplication sign and dashed lines boxes represent gates.

2.5.2. ICGN
To cope with the long‑term dependencies and vanishing gradient limitation in LSTM, an

ICGN cell, along with an algorithm, is proposed. In the ICGN cell, three gates and an internal
cell state similar to those in LSTM are introduced. Input, forget, and output gates are sigmoid
activation functions of the current input values, previous hidden state, previous cell state, and
biased values presented in Equations (8)–(10), respectively. The internal cell state is a hyperbolic
tangent activation function of the current input values, previous hidden state, and previous cell
state presented in Equation (11). Thememory cell introduced in the ICGN cell given in Equation
(12) depends on the internal cell state and output from the input, forget, and output gates. The
hidden state of the ICGN cell given in Equation (13) is a product of output gate information and
the hyperbolic tangent activation function of the memory cell of ICGN.

It = σ(wxi(xt +whiht−1 +wcict−1 + bi) (8)

Ft = σ(wxfxt +whfht−1 +wcfct−1 + bf) (9)

Ot = σ(wxoxt +whoht−1 +wcfct−1 + bo) (10)

Çt́ = tanh(wfxxt +whfht−1 +wcfct−1 + bf) (11)

Ct = Ft × Ḉt + It × Ḉt +Ot × Ḉt (12)

Ht =Ot tanh (Ct) (13)

The ICGN cell is shown in Figure 5.
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represent addition and dashed lines boxes represent gates.

2.5.3. Bi‑LSTM
The bidirectional nature of the Bi‑LSTM allows it to process the input sequence both in the

forward and backward directions. Bi‑LSTM is adept at capturing contextual information from
past as well as future time steps and effectively captures dependencies in sequential data. The Bi‑
LSTM algorithm contains 128 units in the first Bi‑LSTM layer. Following this, a dropout layer of
0.1 is added. Finally, twodense layers areused: in thefirstdense layer there are 64unitswithRelU
activation function, and in the second dense layer, 2 units and the sigmoid activation function are
used. The architecture of the Bi‑LSTM is given in Figure 6.
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3. Results
In this study, three DL classification algorithms (LSTM, Proposed ICGN, and

Bi‑LSTM) are trained and tested on two classes (activity and rest) of hand‑gripping fNIRS data
from twenty subjects. Validation of the proposed algorithm is performed on three classes (right‑
and left‑hand finger tapping, and dominant foot tapping) from open access datasets [35]. Each
subject’s data (in both the two‑class and three‑class datasets) is split into training, testing, and
validation sets separately, with 80% of the data used for training, 10% for validation, and 10% for
testing. This process is performed individually for each subject. In this section, the two‑class and
three‑class dataset results are presented to compare the proposed DL algorithm with the LSTM
and Bi‑LSTM algorithms.

Two‑Class Dataset Results
The training and testing accuracies presented in Figure 7 illustrate the performance of the

LSTM, proposed ICGN, and Bi‑LSTMalgorithms over successive training iterations. Notably, the
proposed ICGN model demonstrates early convergence in both training and testing accuracies
compared to LSTM and Bi‑LSTM, indicating efficient learning within fewer training iterations.
This type of behavior highlights howwell the proposed ICGNcell and algorithm capture intricate
patterns and relationships in the data without overfitting.
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Figure 7. This figure illustrates the algorithms’ training and testing accuracies and represents the
performance of (a) LSTM’s performance during training and testing, (b) proposed ICGN algorithm’s
performance during training and testing, and (c) Bi‑LSTM’s performance during training and testing
with the 2‑class hand‑gripping fNIRS data (HbO).

Employing the confusion matrix in Figure 8 emphasizes evaluating the precision and in‑
accuracy patterns of the LSTM, proposed ICGN, and Bi‑LSTM algorithms. Specifically, the al‑
gorithm’s capacity to accurately categorize positive and negative predictions is summarized in
the confusion matrix. The significantly greater counts of true positives (TPs), 151 samples, and
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true negatives (TNs), 150 samples, indicate the better efficacy of the proposed ICGN algorithm.
These results imply that in comparison to LSTM and Bi‑LSTM, the proposed ICGN algorithm
might provide improved classification accuracy and consistency throughout a wide variety of
classification tasks.

The classification accuracy performances of the LSTM, proposed ICGN, and Bi‑LSTM al‑
gorithms over a range of subjects are given in Table 1. The average classification accuracy of
each algorithm is shown together with the deviation values from the average accuracy values.
Notably, for all subjects, the proposed ICGN algorithm consistently performs better in classifica‑
tion accuracy than the LSTM and Bi‑LSTM algorithms. It also shows reduced deviation values
from the average accuracy, which suggests more constant and reliable performance across many
subjects. These results demonstrate the better accuracy, with minimum variance, that the pro‑
posed ICGN algorithm obtains during training, which makes it a strong and dependable option
for classification tasks for fNIRS‑based BCI applications.

Table 1. Subject‑wise classification accuracies by using LSTM, ICGN, and Bi‑LSTM algorithms for
the classification of 2‑class hand‑gripping HBO‑fNIRS data.

Subject‑Wise Classification Accuracies

Subjects LSTM (%) ICGN (%) Bi‑LSTM (%)

Sub 1 77.75 91.21 85.31
Sub 2 84.13 91.82 88.69
Sub 3 83.03 90.63 89.46
Sub 4 80.52 86.04 86.59
Sub 5 88.95 92.00 90.45
Sub 6 85.90 91.89 91.43
Sub 7 86.15 93.27 88.71
Sub 8 83.72 90.91 88.67
Sub 9 87.58 92.00 89.97
Sub 10 90.43 91.70 91.51
Sub 11 84.39 90.28 89.56
Sub 12 86.01 90.89 88.57
Sub 13 87.77 90.63 90.54
Sub 14 82.25 93.97 87.50
Sub 15 76.27 91.15 86.26
Sub 16 90.43 91.42 91.27
Sub 17 87.59 92.33 86.72
Sub 18 80.58 89.73 85.92
Sub 19 87.64 90.89 88.36
Sub 20 86.68 92.81 91.34

Average 84.89± 3.91 91.23± 1.60 88.82± 1.96

An analysis of the classification accuracy performances of LSTM, the proposed ICGN, and Bi‑
LSTM is depicted in Figure 9. The bar graph presents a comparative examination of the accuracy
values attained by these algorithms. Notably,with a significantly high accuracy rate of 91.23± 1.60%,
the ICGN algorithm continuously outperformed the LSTM and Bi‑LSTM classifiers. These results
emphasize howwell the proposed ICGN can capture complicated patterns in the fNIRS data.

The computational cost of themodels is assessed in terms of training and testing time, as shown
in Figures 10 and 11, respectively. Training time refers to the time required for themodel to train on
each subject’s dataset, which includes input data processing, weight optimization, and model con‑
vergence. In contrast, testing time indicates the time it takes for the model to make predictions on a
single sample of data for each subject, revealing the inference time required for the model to process
unknown data. These computational cost analyses shed light on the efficiency and scalability of the
proposed model in real‑world applications, where time limitations may impact model deployment
and usability.
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Figure 8. This figure illustrates the confusion matrices representing the performance of (a) LSTM al‑
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4. Validation of ProposedMethod on Three‑ClassOpenAccessDataset
The validation of the proposed ICGN algorithm is assessed through the open access fNIRS

dataset [35]. This dataset consists of recordings from thirty subjects engaged in motor tasks, includ‑
ing left0 and right‑hand finger tapping and dominant foot tapping. Each task consists of 25 trials,
providing a comprehensive basis for the performance evaluation of the proposed ICGN algorithm
across various motor tasks and subjects. The average classification accuracy yielded by using the
ICGN to classify the ∆HbO signal of this dataset is 92.37 ± 7.17%. In comparison, LSTM and Bi‑
LSTM yield average classification accuracies of 86.20 ± 6.21% and 88.07 ± 5.90%, respectively. The
results achieved using the ICGN algorithm have significantly (p‑value < 0.025) better performance as
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compared to the results of the LSTM and Bi‑LSTM for three‑class fNIRS‑based BCI problems. The
following gives these results in detail.

In Figures 12 and 13, the performances of the LSTM, BiLSTM, and ICGN deep learning al‑
gorithms are presented in the form of training and testing accuracies and losses, respectively. In a
three‑class classification problem, the complexity increases, potentially resulting in higher losses due
to the added difficulty of distinguishing between multiple classes, but comparatively, for 100 itera‑
tions (the model iterates through the entire training dataset 100 times during the training process),
losses decreased to 0.25 in the proposed ICGN algorithm.
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Figure 13. This figure illustrates the algorithms’ losses and represents the performance of (a) LSTM,
(b) proposed ICGN, and (c) Bi‑LSTM algorithms trained with 3‑class open access fNIRS data (HbO).

The LSTM, ICGN, and Bi‑LSTM algorithms’ ability to correctly classify the instances of a sub‑
ject is presented in Figure 14. To test the trainedmodels, six samples fromeach classwere used (these
samples were excluded during the model training). Figure 14b presents the ICGN algorithm’s test
results for subject 23 only, where, in the first row of the confusion matrices, the algorithm correctly
predicted five instances of the first class, incorrectly predicted one instance as the second class, and
made no errors in predicting instances of the third class. In the second row, the model correctly pre‑
dicted six instances of the second class andmade no errors in predicting instances of the other classes.
In the third row, the model correctly predicted six instances of the third class andmade no errors in
predicting instances of the other classes.

The average classification accuracy performances of the proposed ICGN, LSTM, and Bi‑LSTM
for thirty subjects is presented in Figure 15. The comparative accuracy values attained by the ICGN,
LSTM, and Bi‑LSTM algorithms are 92.37± 7.17%, 86.20± 6.21, and 88.07± 5.9, respectively. These
results emphasize the better performance of the proposed ICGN algorithm.
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for 3‑class.

The computational times for training and testing theLSTM,proposed ICGN, andBi‑LSTMwith
the three‑classopenaccessdataset areplotted inFigures16and17, respectively. To test a single subject
using the ICGNalgorithm, only 0.0125 s is required,which is considerably less than the time required
by both the LSTMand Bi‑LSTM algorithms.
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for 3‑class data.

5. Statistical Analysis
An ANOVA test was conducted to assess the statistical significance of the proposed algorithm

compared to LSTM and BiLSTM in terms of accuracy for the two‑class and three‑class datasets. The
results of the ANOVA test for the two‑class dataset are as follows: F‑statistic: 28.731; p‑value:
2.346 × 10−9. Additionally, the post hoc Tukey HSD test was performed to determine specific dif‑
ferences between the groups, presented in Table 2.
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Table 2. ANOVA test results for the 2‑class dataset.

Group 1 Group 2 Mean Difference p‑adj Reject Null Hypothesis

BiLSTM LSTM −3.953 0.0001 True
BiLSTM Proposed ICGN algo. 2.437 0.0159 True

LSTM Proposed
ICGN algo. 6.39 <0.001 True

The results of the ANOVA test for the three‑class dataset are as follows: F‑statistic: 17.885;
p‑value: 3.115× 10−7. The post hoc TukeyHSD test results are presented in Table 3.

Table 3. ANOVA test results for the 3‑class dataset.

Group 1 Group 2 Mean Difference p‑adj Reject Null Hypothesis

BiLSTM LSTM −1.85 0.0034 True
BiLSTM Proposed ICGN algo. 4.28 0.0284 True

LSTM Proposed
ICGN algo. 6.15 <0.001 True

These results in Tables 2 and 3 indicate significant differences in accuracy between all pairs of
groups: BiLSTM vs. LSTM, BiLSTM vs. proposed ICGN algo., and LSTM vs. proposed ICGN algo.
(p< 0.05). Therefore, the null hypothesis that there is no difference in accuracy between the groups is
rejected in all cases.

6. Discussion
In this study, theauthorsproposedanewdeep learningalgorithm, ICGN, to increase fNIRS‑BCI

performance, specifically in terms of classification accuracy and computational cost. In the literature,
the latest studies have also focused on improving the classification accuracies of fNIRS‑BCI systems
by deep learning classification techniques [33,36,37]. Precision, consistency, and less computational
power consumption in fNIRS‑based BCI could lead to several useful applications in neurorobotics,
neuroergonomics, and rehabilitation.

In the past, bundles of studies have been performed to improve the accuracy of fNIRS‑based
BCI applications. Huma Hamid et al. [38] presented a study to compare the ML classifiers (SVM,
K‑NN, and LDA) with DL (CNN, LSTM, and Bi‑LSTM) algorithms to perform the classification of
two classes of walk and rest tasks and reported better performance for DL algorithms. A similar
study presented by Mahmudul Haque Milu et al. [39] applied ML (support vector machine (SVM)
and linear discriminant analysis (LDA)) and compared it with CNN; they reported that CNN per‑
formed well in automatic feature extraction as compared to ML. The conventional LSTM algorithm
classifies signals based on the input, forget, and output gate mechanism. Previous cell information
in the network is incorporated only for a short period, which makes it suitable only for simple pat‑
tern signals. Previous cell information in the LSTM network is forgotten after a few cells, which
decreases LSTM’s capability to remember and use previous information to predict future patterns
in the dataset. Due to this drawback in LSTM, the concept of decision fusion, which combines DL
algorithm outputs, is applied for precise and accurate classification prediction and has obtained im‑
proved performance [33] with increased computational cost. Previous studies using LSTM in com‑
binationwith CNN and other DL neural networks [40,41], where CNN and LSTM are combined to
extract the features from complex brain patterns for more precise classification, obtained enhanced
performance of fusion of DL models at the cost of increased processing and computational time.
Fernandez Rojas et al. [42] present a hybrid CNN‑LSTM model with an accuracy of 91.2 ± 11.7,
compared to 86.4 ± 16.8 and 88.4 ± 21.1 for the CNN and LSTMmodels, respectively. Md. Hasin
Raihan Rabbani and SheikhMd. Rabiul Islam [33] introduced a CNN–LSTM–GRUmodel for EEG
and fNIRS fusion with 96% classification accuracy. They also observed an increase in computational
cost with the combined model of deep learning algorithms. The temporal convolutional network
(TCN) model [43] achieved 85.63% (HbO) and 86.21% (HbR) accuracy in the MI task, and 96.84%
(HbO) and 94.83% (HbR) accuracy in theMA task.
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In the present study, a deep learning algorithm, ICGN, is proposed to reduce the computational
cost with the concept of a decision‑fused DL model. The performance improvement in the ICGN
algorithm is due to the focus on the previous cell information in the DL neural network. The ICGN
algorithm is the DL neural network in which the current cell in a layer works on information from
the previous cells’ hidden state, cell state, and current input values. Alongwith the forget, input, and
output gates, an internal cell state is created, which combines the decisions from all three gates and
generates anoutput fromthe ICGNcell for thenext cell in the ICGNneural network. Due toprevious
cell dependency in the proposed ICGNneural network, complex fNIRS activity patterns/features are
more accurately extracted for the classification of the complex tasks as compared to LSTM.

Furthermore, information from the internal cell state of the proposed ICGN cells is summed up
with the information from all three gates and current input values to generate the current cell state
and hidden state. In this way, each cell in the network keeps information over a long period dur‑
ing feature extraction and pattern generation, which plays a vital role in enhancing the classification
accuracy of fNIRS‑based BCI applications. The ICGN algorithm achieves improved classification ac‑
curacy for fNIRS signals by employing an enhanced feature extraction method and leveraging the
inter‑dependency among network cells, resulting in a noticeable reduction in computational and
processing costs. However, the performance of the model is affected by the different values of the
parameters selected for the ICGN algorithm; when considering the number of neurons in the ICGN
layer, it is detected that increasing the number from 64 to 128 generally leads to a decrease in av‑
erage accuracy across different learning rates, dropout rates, and loss functions. This suggests that
a more complex model does not necessarily translate to improved performance and may even re‑
sult in overfitting. Secondly, the dropout rate plays an important role in model performance. For
instance, with 64 neurons and a dropout rate of 0.1, the average accuracy ranges from 50.23% to
85.84% for different learning rates and loss functions. However, when the dropout rate is increased
to 0.2, there is a notable improvement in average accuracy,with values ranging from55.71% to 94.3%.
This indicates that regularization techniques such as dropout can effectively prevent overfitting and
enhance model generalization. Thirdly, the choice of learning rate and loss function significantly
impacts model convergence and performance. Lower learning rates (0.001) generally yield higher
average accuracies compared to learning rates (0.010), regardless of the dropout rate and number of
neurons. Additionally, the choice between the categorical_crossentropy and mean_squared_error
loss functions also influences model performance, with categorical_crossentropy generally outper‑
forming mean_squared_error across different hyperparameter settings. Lastly, the batch size ap‑
pears to have a minor effect on model performance. While there are slight fluctuations in average
accuracy between batch sizes of 32 and 64, the differences are not as evident as those observed with
other hyperparameters.

The proposed ICGN algorithm is used for two classes of hand‑gripping motor activity classifi‑
cation and validation of the ICGN is performed by using it for three classes of motor activity classi‑
fication. The results have shown enhanced classification performance and reduced computational
cost as compared to prior DL algorithms and combinedDL algorithm concepts. The performance of
the proposed ICGN algorithm is comparedwith excessively used DL algorithms such as LSTM and
Bi‑LSTM for the classification of the fNIRS signals. The classification accuracy for the two‑class mo‑
tor activity problems is enhanced from 84.89 ± 3.91 to 91.23 ± 1.60 when comparing the proposed
ICGNwith LSTMand 88.82± 1.96 to 91.23± 1.60when comparedwith Bi‑LSTM. The results of the
algorithms are endorsed by statistical ANOVA tests, which show the significance of the proposed
ICGNover LSTMandBi‑LSTM.TheANOVAtest results indicate that there is a significant difference
in the accuracies obtained using the proposed ICGN, LSTM, and Bi‑LSTM algorithms for the two‑
class and three‑class datasets. The ICGN algorithm can be used for the classification of sequential
datasets and command generation for fNIRS‑BCI applications, including robotic hand controlling,
prosthetics and rehabilitation for amputees, andmedical robot controlling applications.

It is important to note the limitations of this study and provide directions for further research.
Even though the dataset utilized in thisworkwasmore significant than that of previous fNIRS‑based
aging studies, it was still too small for deep learning applications. Another limitation of this study is
the use of the ICGN network cells within the bidirectional mechanism, like Bi‑LSTM. The proposed
mechanism in the ICGN neural network could be implemented in the forward and backward direc‑
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tions for better performance. Furthermore, in the future, the ICGN algorithm could be used for the
application of other neuroimagingmodality datasets.

7. Conclusions
This study is designed to improve the classification accuracy for an fNIRS‑based BCI system

using a DL‑based ICGN algorithm. The ICGN algorithm uses contextual knowledge and gated pro‑
cesses to optimize classification. It works by efficiently filtering and ranking relevant information to
enhance performance. Its capacity to learn complex patterns is improved by this integration, which
makes it effective in a range of applications that call for precise classification. The average classifica‑
tion accuracy achieved by using the proposed ICGN algorithm is 91.23± 1.60, which is significantly
(p< 0.025) higher than the LSTM and Bi‑LSTM algorithms. The result shows improved performance
for the proposed algorithm over traditional DL algorithms (LSTM and Bi‑LSTM), signifying a major
advancement in improving the classification accuracy of contemporary fNIRS‑BCI system.
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