
Citation: Samokhvalov, A.V.;

Mironova, A.A.; Eremin, S.A.;

Zherdev, A.V.; Dzantiev, B.B.

Polycations as Aptamer-Binding

Modulators for Sensitive Fluorescence

Anisotropy Assay of Aflatoxin B1.

Sensors 2024, 24, 3230. https://

doi.org/10.3390/s24103230

Academic Editor: Jiangwei Tian

Received: 22 March 2024

Revised: 1 May 2024

Accepted: 15 May 2024

Published: 19 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Polycations as Aptamer-Binding Modulators for Sensitive
Fluorescence Anisotropy Assay of Aflatoxin B1
Alexey V. Samokhvalov 1, Alena A. Mironova 1, Sergei A. Eremin 2, Anatoly V. Zherdev 1 and Boris B. Dzantiev 1,*

1 A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences,
119071 Moscow, Russia; 03alexeysamohvalov09@gmail.com (A.V.S.);
mironova.alena2002@yandex.ru (A.A.M.); zherdev@inbi.ras.ru (A.V.Z.)

2 Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
saeremin@gmail.com

* Correspondence: dzantiev@inbi.ras.ru; Tel.: +7-495-954-31-42

Abstract: Fluorescence induced by the excitation of a fluorophore with plane-polarized light has
a different polarization depending on the size of the fluorophore-containing reagent and the rate
of its rotation. Based on this effect, many analytical systems have been implemented in which an
analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind
to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide
receptors, is complicated because binding a fluorophore to them causes a less significant change in
the polarization of emissions. This work proposes and characterizes the compounds of the reaction
medium that improve analyte binding and reduce the mobility of the aptamer–fluorophore complex,
providing a higher analytical signal and a lower detection limit. This study was conducted on
aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers
specific to AFB1 with the same binding site and different regions stabilizing their structures were
compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The
polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol,
were tested. It was found that they provide the desired reduction in the depolarization of emitted
light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1
detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly
used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling
almond samples according to the maximum permissible levels of their contamination by AFB1. The
proposed approach could be applied to improve other aptamer-based analytical systems.

Keywords: stem–loop aptamer; mycotoxin; fluorescein; fluorescence polarization; polyethylene
glycol; poly-L-lysine

1. Introduction

Fluorescence anisotropy (FA) is an efficient parameter to characterize intermolecular
interactions and to detect different compounds [1,2]. Excitation with plane-polarized light
and recording the degree of polarization of the emitted light allows for registering interac-
tions of fluorophore-containing reagents simply and rapidly. Figure 1 demonstrates these
possibilities. Since fluorophore or the fluorophore-containing complex rotates in solutions
chaotically due to Brownian motion, the polarization plane of the exciting light is not
preserved during emission [3]. By recording emission in planes parallel and perpendicular
to the excitation plane, it is possible to estimate the degree of depolarization. The more
mobile the fluorophore-containing complex is in the solution, the less the emitting light
retains the polarization of the exciting light (Figure 1, A1). If a small fluorophore binds to
a large compound, the rotation of the complex slows down, and the polarization of the
emitted light becomes high (Figure 1, B1). If some process prevents the fluorophore from

Sensors 2024, 24, 3230. https://doi.org/10.3390/s24103230 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103230
https://doi.org/10.3390/s24103230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3008-2839
https://orcid.org/0000-0003-4008-4918
https://doi.org/10.3390/s24103230
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103230?type=check_update&version=2


Sensors 2024, 24, 3230 2 of 19

binding to the receptor, the fluorophore remains in the solution as a small molecule, rotates
rapidly, and emits depolarized light.
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Figure 1. The influence of rotational motion on the anisotropy of fluorescence that is emitted after
excitation by plane-polarized light. A1, A2—cases of rapid rotation, B1, B2—cases of slow rotation.
Additional comments are given in the text.

To quantitatively describe the depolarization of emitted light in such systems, fluores-
cence anisotropy is calculated as follows:

FA = (I|| − I⊥)/(I|| + 2I⊥) (1)

where I|| is the intensity of the emitted light in the plane parallel (||) to the direction of
the polarized excitation, and I⊥ is the intensity of the emitted light in the perpendicular
plane (⊥) [3].

Note that fluorescence polarization (FP) is often used as alternate parameter character-
izing such systems.

FP = (I|| − I⊥)/(I|| + I⊥) (2)

However, the FA makes it easier to calculate the concentrations of the reacting
molecules and their complexes [3].

The above-mentioned features of fluorescence anisotropy induced by plane-polarized
light make the FA-based detection of various compounds of low molecular weights possible.
The implementation of the FA assay consists of mixing (i) a sample potentially containing
the target analyte with solutions of (ii) an analyte-specific receptor and (iii) the analyte
modified with a fluorophore (so-called tracer). The free tracer rotates rapidly (Figure 1,
A2), whereas its binding with the receptor slows down the rotation (Figure 1, B2). There-
fore, as the analyte concentration in the sample increases, the proportion of the tracer
bound to the receptor molecule decreases, and a lower value of fluorescence anisotropy is
registered [4–6].
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Many immunoanalytical systems based on this effect have been developed and suc-
cessfully used to detect different compounds [1,7]. The key advantages of these techniques
are homogeneous interactions in the solution, simple one-step implementation with real-
time modes of detection, and limited influence of sample matrixes due to the use of a ratio
between two registered intensities [3,8].

In recent years, aptamers have been used actively as alternative receptor molecules in
various analytical systems. Aptamers are single-stranded oligonucleotides that can bind
molecular targets with high affinity and selectively bind not inferior ones of antibodies [9,10].
Their advantages over antibodies are low-cost production via chemical synthesis, high
stability, and simple modification [11,12]. However, due to the smaller size (10–20 kDa vs.
150 kDa for IgG) and intramolecular structural flexibility [4,13], the aptamer–tracer reaction
leads to less changes in FA, limiting the possibilities of sensitive and accurate assays.

Therefore, along with traditional schemes identical to the competitive analysis using
antibodies [7], alternative approaches with the amplification of the registered FA signals
are actively developed [2,4]. The considered approaches include using labels that interact
with nucleobases [14], ligand-induced strand displacement [15], and aptamer modification
by proteins and nanoparticles as anchors slowing down their rotation [15,16]. However,
the experience with alternative approaches is limited, and the degree of their versatility
and effectiveness are unclear.

It is well known that a medium can influence the structure of oligonucleotides; this
effect is actively used in DNA condensation protocols [17,18] but was not earlier considered
in connection with FA-based assays. Such potential modulators of aptamer structures
and mobility are polycations (poly-L-lysine, etc.), nonionic polymers (polyethylene glycol,
etc.) [19–21], and divalent metal cations (Mg2+, Ca2+, Ba2+, Zn2+) [22,23]. Note that their
use should integrate the stabilization of the aptamer structure and slow down its rotation
while maintaining their analyte-binding properties.

Our study has been implemented using an interacting pair of aflatoxin B1 (AFB1)
and an anti-AFB1 aptamer. AFB1 is a fungal metabolite, widespread toxic contaminant of
foodstuffs with multiple hazardous effects on human health [24]. Among known AFB1-
binding aptamers, the untruncated stem–loop oligonucleotide 5′-GTT GGG CAC GTG
TTG TCT CTC TGT GTC TCG TGC CCT TCG CTA GGC CCA CA-3′ [25] was chosen as a
high-affine reactant with a row of structurally studied modifications. Thus, the 3D structure
of its 26-mer truncated variant in the complex with AFB1 was determined by NMR [26].
The previous developments of FA-based assays of AFB1 include immunoassays [27–29],
whereas, in the case of aptamers, only different complicated variants with aptamer labeling
were realized [14,15,30,31]. The competitive format of FA-based aptamer assay for AFB1
with analyte labeling has not previously been considered.

This study aimed to develop a novel strategy for increasing the sensitivity of FA
aptamer-based assays via the use of compounds capable of weak interactions with the
aptamer. We investigated the uses of poly-L-lysine (PLL), polyethylene glycol (PEG), and
Mg2+ ions. The assessment of efficiency for the developed assay included its use for AFB1
detection in almond samples and comparison with the existing analytical techniques.

2. Materials and Methods
2.1. Reagents and Sample Preparation

The AFB1 powder was obtained from Sigma-Aldrich (St. Louis, MO, USA), and its
standard solution for HPLC in acetonitrile (10 µg/mL) from Trilogy (Austin, TX, USA). The
DNA aptamers (see Table 1) and their 5′-biotinylated derivatives were custom-synthesized
and purified by Syntol (Moscow, Russia). Tris(hydroxymethyl)aminomethane, dimethyl
sulfoxide (DMSO, 99.9%), sodium acetate, poly-L-lysine (30–70 kDa), and polyethylene gly-
col (8 kDa) were from Sigma-Aldrich (USA); recombinant streptavidin was obtained from
IMTEK (Moscow, Russia); and magnesium acetate, methanol (MetOH) (99.8%), glycerol
(99.8%), and Tween-20 were from Honeywell (Charlotte, NC, USA). All chemicals were
analytical grade or chemical reagent grade.
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Table 1. The comparison of KD values of variants of stem–loop anti-AFB1 aptamer with different
lengths of the stem region.

Lines Short Indications Oligonucleotide Sequences Stem Length *** H-Bonds KD (nM)

1 Initial
(untruncated)

GTT GGG CAC GTG TTG TCT CTC TGT
GTC T * CG TGC

CCT TCG CTA GGC CCA CA **
7 20 173.1 ± 9.5

2 22 nt C GTG TTG TCT CTC TGT GTC TCG 2 6 2751 ± 443 ****

3 26 nt CAC GTG TTG TCT CTC TGT GTC TCG
TG 4 11 271.8 ± 51.1 ****

4 32 nt GGG CAC GTG TTG TCT CTC TGT GTC
TCG TGC CC 7 20 163.7 ± 19.0

5 38 nt GTT GGG CAC GTG TTG TCT CTC TGT
GTC TCG TGC CCA AC 10 27 123.0 ± 24.4

6 42 nt GG GTT GGG CAC GTG TTG TCT CTC
TGT GTC TCG TGC CCA ACC C 12 33 218.0 ± 13.2

7 46 nt
T TGG GTT GGG CAC GTG TTG TCT
CTC TGT GTC TCG TGC CCA ACC

CAA
14 37 147.5 ± 14.5

8 54 nt
T TGG TTG G GTT GGG CAC GTG TTG
TCT CTC TGT GTC TCG TGC CCA ACC

CAA CCA A
18 47 559.7 ± 45.3

* loop region—highlighted in gray, ** tail region—italicized and underscored, *** H-bonds between nucleobases in
stem region of aptamer, **** for these cases, the direct obtaining of saturation was unreachable; therefore, the KD
values were estimated, assuming that the FA value of completely bound AFB1-EDF is the same as for aptamer
32 nt.

A Simplicity Milli-Q® system from Millipore (Darmstadt, Germany) was used to
obtain ultrapure water for buffers and reagent solutions. Stock solutions of aptamers
were prepared by dissolving lyophilized DNA in deionized water that had been filtered
through a 0.22 µm membrane. A NanoDrop2000 microvolume spectrophotometer (Thermo
Scientific, Waltham, MA, USA) was used to measure the concentrations of aptamers by
optical density at 260 nm.

All fluorescence anisotropy (FA) measurements were performed in black non-binding
96-well microplates from Thermo Scientific NUNCTM (Roskilde, Denmark), using a CLAR-
IOstar multimode plate reader (BMG Labtech, Ortenberg, Germany). The excitation filter
was 490 ± 10 nm, the dichroic mirror was 504 nm, and the emission filter was 520 ± 10 nm.

2.2. Synthesis of the Fluorescein-Labeled Derivative of Aflatoxin B1 (AFB1-EDF)

Aflatoxin B1-1-(O-carboxymethyl)oxime was synthesized from AFB1 and carboxymethoxy-
lamine as described previously [28]. Fluoresceinthiocarbamylethylenediamine (EDF) was
synthesized by isothiocyanate coupling FITC with one of the primary amine groups
of ethylenediamine. The carbodiimide protocol [28] with modifications was used for
the synthesis of AFB1, labeled with fluoresceinthiocarbamylethylenediamine via a car-
boxymethoxylamine linker (AFB1-EDF). In total, 3.6 mg of AFB1 oxime was dissolved
in 0.2 mL of dimethylformamide, which contained 3 mg of N-hydroxysuccinimide and
5 mg of N′-dicyclohexylcarbodiimide, and, after stirring, was incubated overnight at room
temperature. Then, 0.8 mg of EDF was added. The mixture was incubated in the dark for
24 h; then, a small portion (about 10 µL) was purified by thin-layer chromatography with
the chloroform: methanol eluent (4:1 v/v). The stock AFB1-EDF solution was prepared by
dissolving the main band (Rf = 0.7) in methanol and was stored at 4 ◦C.
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2.3. The Characterization of the Interactions between Aptamer Variants and AFB1-EDF Using
Fluorescence Anisotropy

A series of 3-fold consecutive dilutions of anti-AFB1 aptamers from 20 to 0.0006 µM
were prepared in a 96-well microplate. To each well that contains 50 µL of an aptamer,
10 nM of AFB1-EDF was added to the final volume of 100 µL in tris buffer (TB—20 mM Tris-
Acetate, 100 mM NaAcetate, and 20 mM MgAcetate2, pH 8.4). Wells that contain TB instead
of aptamer were used as negative controls. The microplate was gently shaken for two min
at 25 ◦C, after which the fluorescence intensity in reference fluorescence units (RFU) and
FA values in milliunits were measured. The data were analyzed using CLARIOstar MARS
software v4.00 R2. The ∆FA values were calculated as the difference between FA values of
AFB1-EDF with and without aptamer.

2.4. The Determination of Dissociating Constants Using Fluorescence Anisotropy Measurements

The dissociation constant (KD) of aptamer interactions with AFB1-EDF was calculated
as described in [32]. Briefly, the dependencies of FA from aptamer concentration were
approximated by a four-parameter sigmoid fitting with the use of Origin 8.1 software
(Origin Lab, Northampton, MA, USA).

Y = Y0 +
Ymax − Y0

1 + (x/x0)
p (3)

where X is the concentration of the aptamer; Y is the FA; Ymax is the FA for an infinitely
high concentration of the aptamer (upper asymptote); Y0 is the FA for an infinitely low
concentration of the aptamer (lower asymptote) in milliunits of anisotropy; X0 is the
concentration of the aptamer at the inflection point (the point of 50% binding); and p is the
slope of the curve at the inflection point.

Then, the part of the bound labeled ligand (Fbound) was calculated using the following
equation:

Fbound =
Yi − Y0

Q(Ymax − Yi) + Yi − Y0
(4)

where Q is a correction factor calculated as the proportion between fluorescence intensities
of the bound and unbound label.

To obtain the dissociation constants of the AFB1-EDF interaction with aptamers the
experiments were carried out at AFB1-EDF concentration smaller by an order of magnitude
than KD’s [AFB1-EDF*]/KD < 0.1. Under this condition, the KD is equal to the aptamer
concentration at the point of 50% binding in the half-logarithmic coordinates of Fbound from
the aptamer concentration.

2.5. The Characterization of Influence of Different Medium Compounds or Co-Solvents on the
Fluorescence Anisotropy

Consecutive dilutions of medium compounds, co-solvents, and their mixtures were
prepared in deionized water in a 96-well microplate. Then, to 50 µL of each dilution, equal
volumes of aptamer 38 nt and AFB1-EDF in 2× solution of studied buffer were added,
providing their final concentrations of 100 and 5 nM, respectively. To measure the FA of
unbound AFB1-EDF, the aptamer solution was replaced with the same volume of 2× buffer.
The final volume in each well was 100 µL. Then, the microplate was gently shaken for
2 min, and the fluorescence and anisotropy of fluorescence were measured.

The following compounds were investigated in TB:

(1) The 5-fold dilutions from 10 to 0.08 µM of poly-L-lysine, 30 kDa;
(2) The 5-fold dilutions from 8750 to 70 µM of polyethylene glycol, 8 kDa;
(3) The 3-fold dilutions of MgAcetate2 from 1 M to 37 mM in a magnesium-free TB.

The following co-solvents in the range of concentration from 50 to 1.8% (v/v) were
studied: (1) DMSO; (2) glycerol; and (3) MetOH.

The following buffer variants in magnesium-free TB were studied:
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#1—1 M MgAcetate2 and 0.4 µM PLL;
#2—1 M MgAcetate2 and 70 µM PEG;
#3—1 M MgAcetate2, 0.4 µM PLL, and 70 µM PEG;
#4—0.3 M MgAcetate2 and 0.4 µM PLL;
#5—0.3 M MgAcetate2 and 70 µM PEG;
#6—0.3 M MgAcetate2, 0.4 µM PLL, and 70 µM PEG.

2.6. The FA-Based Detection of Aflatoxin B1

Competitive interactions between AFB1 and AFB1-EDF for binding to the aptamer
were carried out in TB and buffer variant #6 with 0.1% Tween20. The ten successive 3-fold
dilutions of AFB1 were prepared in deionized water containing 6% (v/v) MetOH. Then,
to 50 µL of each dilution, the equal volumes of aptamer 38 nt and AFB1-EDF in the 2-fold
buffer were added to a final concentration of 100 (in TB) or 25 nM (in buffer #6) and 5 nM,
respectively. Wells containing AFB1-EDF mixed with deionized water and buffer or with
deionized water and aptamer were used as positive and negative controls, respectively. The
linear range of the fitting curve in half-logarithmic coordinates was calculated in accordance
with [33]. The limit of detection was calculated as the concentration corresponding to the
triple standard deviation from the mean value of the blank sample.

2.7. Sample Preparation

Almond flour was bought from a local convenience store. To evaluate AFB1 recovery,
spiked samples of almond flour with known AFB1 concentration were prepared. Almond
flour was extracted using a mixture of methanol and water at a ratio of 70:30 [34]. The
resulting mixture was centrifuged for 30 min at 6500× g using AmiconUltra-15 centrifugal
filter units (Millipore, Burlington, MA, USA) with molecular weight cut-off 3 kDa. The
AFB1 measurements were carried out in 10-fold diluted extracts.

Eight almond samples were tested in the V.M. Gorbatov Federal Research Center for
Food Systems of the Russian Academy of Sciences (Moscow, Russia). The extraction of
AFB1 from 10 g of each almond flour sample was carried out using 20 mL of methanol:
water mixture (70:30 v/v). The AFB1 content was measured by HPLC-MS/MS as described
in [35].

3. Results and Discussion
3.1. The Scheme of the Proposed Fluorescence Anisotropy Assay for Aflatoxin B1 Using
Polycation Modulators

The proposed assay technique is very simple in implementation and consists only
of mixing the necessary reagents, their incubation, and the following FA measurements
directly in the reaction mixture without any separating or enhancing stages. Figure 2
illustrates the assay principle.

The reaction media containing buffer compounds, polycations, and magnesium salt
was prepared. Stock solutions of the aptamer specific to AFB1 and the tracer (AFB1-
fluorophore conjugate) were added to the reaction media (step I). Samples to be tested
(including AFB1-negative and AFB1-positive ones) were added to the wells of the black
microplate for fluorescent measurements (step II). Then, the prepared solutions labeled
AFB1 and aptamer were added to the samples (step III). Incubation at room temperature
provides the possibility for competitive interaction with the aptamer (step IV.A/IV.B). The
content of AFB1 in the sample determines the proportion of free and bound states of the
tracer and, in this way, the anisotropy of the emitted light (step V.A/V.B). The more AFB1
in the sample, the fewer tracers bind to the aptamer and the lower the FA value.

Note that based on the theory of fluorescence polarization, the FA values are deter-
mined by factors such as the half-life time of excited fluorophore, coefficient of rotational
diffusion, size and shape of the rotating compounds, temperature, and viscosity of the
solvent [3,4]. Therefore, the modulation of these factors could influence the parameters of
FA-based assays.
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Figure 2. Flow chart of the proposed polycation-mediated fluorescence anisotropy assay. (I). Prepara-
tion of aptamer solution and AFB1-fluorophore conjugate solution. (II). Addition of samples without
or with AFB1 to microplate wells. (III). Addition of the solutions prepared at the step 1 to the wells.
(IV). Incubation of the reaction mixture ((A)—the case with AFB1 in the sample, (B)—the case without
AFB1 in the sample). (V). Registration of FA in the reaction mixture ((A)—the case with AFB1 in the
sample, (B)—the case without AFB1 in the sample).

3.2. The Influence of the Length of the Aptamer Stem Region on the Binding of Labeled AFB1

We characterized the influences of pH and salt composition on the dissociation con-
stant of the complex between the untruncated aptamer and AFB1-EDF using FA mea-
surements, as shown in Figures S1 and S2. The chosen buffer is consistent with previous
studies [14,26,31] and consists of 20 mM Tris-Acetate, 100 mM NaAcetate, and 20 mM
MgAcetate2, pH 8.4 (TB).

3.3. The Influence of the Length of the Aptamer Stem Region on the Binding of Labeled AFB1

Seven truncated variants of the aptamer with stem lengths ranging from 4 to 18 and
an initial aptamer were compared by their interaction with AFB1-EDF. The values of total
fluorescence and FA dependences on anti-AFB1 aptamer concentrations were measured.
The FA data were processed and presented as the difference between the maximum FA
value when the label was completely bound to the aptamer and the minimum FA in the
absence of an aptamer (∆FA = FAaptamer-AFB1-EDF − FAAFB1-EDF) to compare curves for
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different aptamers. Then, the fraction of bound AFB1-EDF was calculated from FA data
and used to calculate KD of AFB1-EDF complex with aptamers, as elucidated in Section 2.5.
All data are summarized in Figure 3 and Table 1.
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the percentage of bound fraction (C) of AFB1-EDF on the concentration of (orange) initial aptamer;
(black) aptamer 22 nt; (dash, red) aptamer 26 nt; (blue) aptamer 32 nt; (magenda) aptamer 38 nt;
(dash, olive) aptamer 42 nt; (dash, purple) aptamer 46 nt; (dash, violet) aptamer 54 nt (n = 3).

As we can see, the increase in the length of the stem region (see lines from 2 to 7 in
Table 1) of the aptamer is accompanied by an increase in label fluorescence (up to 1.6-fold
for the 46 nt variant with stem consisting of 14 nucleotide base pairs (bp)), as shown in
Figure 3A. The exception is the 54 nt variant. In the case of FA, as can be seen in Figure 3B,
a broad optimum is observed in the range of lengths of stem region between 4 and 14 bp
(see lines from 3 to 7 in Table 1). In the studied conditions, the variant with a stem of 2 bp
(line 2) retains AFB1-binding activity, although with a significantly worse KD value (by
order of magnitude) than the initial aptamer. The increase in the length of the stem seems
to be limited by the self-annealing of the stem–loop aptamer [36]. We hypothesized that
this factor caused the low values of fluorescence and FA that we obtained for the aptamer
54 nt in TB.

To date, several truncated variants of the aptamer have been proposed for application
in assays. The 26-nucleotide variant has a minimal length that provides the affinity of



Sensors 2024, 24, 3230 9 of 19

aptamer. Below this length, the reduction in binding abilities is observed [14,25,26,37].
The 3D structure of the 26-nucleotide variant was previously determined [26] and showed
that AFB1 binds in the 18-nucleotide-long loop region. The stem region does not directly
interact with AFB1 but is necessary for stabilizing the loop.

Based on these data, we decided to provide an additional stabilization of the loop
by the elongation of the stem region, as well as to compare the obtained variants with
previously proposed 26 nt, of which its parameters are presented in line 3 in Table 1.
The given three aptamer variants with an elongated stem region of 10 to 14 bp (duplex
consisting of from 11 up to 37 hydrogen bonds), lines 5–7 in Table 1, showed dissociation
constants and FA values for the complex that were close to those of the initial aptamer and
minimal aptamer. The aptamer variant 38 nt was chosen for further study.

3.4. The Influence of Polymers and Cations on Fluorescence Anisotropy of Fluorescein-Labeled
AFB1 in Free and Bound State

We implemented several strategies to change the FA response during aptamer 38nt–AFB1
complexation. The first strategy involves modifying the state of a DNA-based aptamer
using compounds that weakly interact with the DNA, like polycations and some neutral
polymers. The idea of polycationic additions is based on a decrease in the repulsion be-
tween DNA segments that led to the compacting of a DNA structure [38]. Also, a decrease
in repulsion between a DNA and a fluorescein is occurring, restricting the segmental and lo-
cal motion of the label [4]. This effect was associated with the depolarization of fluorescein
fluorescence in oligonucleotide complexes [4]. The increase in fluorescein FA in its covalent
complexes with oligonucleotides is observed after the addition of poly-L-lysine [20] and
divalent cations [22]. Also, several studies indicate that Mg2+ (in concentrations up to
0.1 M) plays a crucial role in the affinity of AFB1 binding by the aptamer [14,25]. It is
known that PEG is commonly used with polycations for DNA condensation [17,19,39] and
stabilization [40] and can weakly interact with it [19]. However, its applicability in increas-
ing the ∆FA during aptamer–ligand complexation has not been previously demonstrated.
We chose these compounds for further investigation. The concentration of aptamer 38 nt at
100 nM, close to the IC50 value obtained in Section 3.2, was chosen for the complexation
of AFB1-EDF with the aptamer. The obtained data on the FA of AFB1-EDF at the free and
bound states and ∆FA at various concentrations of Mg2+, PLL, and PEG are presented in
Figure 4.

Figure 4A shows that, in the presence of Mg2+, the FA steadily increases for the AFB1-
EDF complex with the aptamer 38 nt. The stem–loop aptamer maintains its ligand-binding
ability up to a magnesium cation concentration of 1 M, and the total ∆FA increase as
compared with the initial buffer is 16 milliunits of anisotropy (or 38%). In the case of PLL,
the FA of the complex reaches a maximum of 2 µM. The maximum ∆FA of 10 milliunits
(or 18%) was achieved at 0.4 mM PLL. The results demonstrate that PLL and magnesium
increase the FA response of the fluorescein label that is complexed non-covalently with
the aptamer. On the other hand, the increase in FA of free AFB1-EDF in the presence of
PLL or at magnesium concentrations above 300 mM indicates the presence of AFB1-EDF
interaction with high concentrations of polycations. In the case of PEG, only a little increase
in FA of both the bound and free state of AFB1-EDF was observed, leading to a maximum
∆FA gain of 7 milliunits (or 9%) at a concentration of 70 µM.
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38 nt and the ∆FA in: (A) – 20 mM Tris-Acetate, 100 mM NaAcetate, ph 8.4, with different MgAcetate2
concentrations and TB with different PLL (B) and PEG (C) concentrations (n = 3).

3.5. The Influence of Different Co-Solvents on Fluorescence Anisotropy of Fluorescein-Labeled
AFB1 in the Free and Bound State

The addition of different co-solvents was investigated next. DMSO is known for its
ability to reduce the persistence length of DNA and can distort DNA duplexes [41,42] by
forming both the strong hydrophobic interactions [42] and hydrogen bonds [43] between
DNA and DMSO moieties. Glycerol is known for its high viscosity and the ability to
preserve the DNA duplex structure [41]. MetOH can induce DNA condensation in the
presence of divalent metal cations [44] and is commonly used as an extractant to prepare
food extracts. The obtained data on the FA of AFB1-EDF at free and bound states and ∆FA
at various concentrations of DMSO, glycerol, and methanol are shown in Figure 5.
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Figure 5. The FA (A) and the ∆FA (B) of AFB1-EDF in the absence and in the presence of 100 nM of
the aptamer 38 nt in TB, contain different % (v/v) of organic solvents (n = 3).

The data show that DMSO interferes with the aptamer–AFB1-EDF interaction in con-
centrations above 10% (v/v), as indicated by the anisotropy measurements. An increased
FA in the free AFB1-EDF state and a decreased FA in its bound state have been observed.
Glycerol and methanol show little effect on FA at concentrations below 16.5% v/v. At 50%
(v/v), all three co-solvents studied led to a decrease in ∆FA between the bound and free
states of AFB1-EDF. Thus, none of the studied co-solvents have shown the desired effect,
except methanol to a certain degree. However, a small amount of it is already present in
real samples as an extractant.

3.6. The Influence of the Aptamer Complexation with Streptavidin on Fluorescence Anisotropy

The second strategy was based on the increase in the aptamer size by its inclusion in
the complex with streptavidin (anchor) via biotin attached to 5′-end. In the case of the solid
sphere model, the FA is directly proportional to the size of the fluorescent molecule [3].
Similar dependencies, as in the previous experiments of FA and ∆FA, were obtained, as
shown in Figure S3. In this case, the attachment of 65 kDa streptavidin to the end of the
aptamer 38 nt stem region did not have any effect on the FA of AFB1-EDF. This implies
the independence of the AFB1-EDF motion from the stem region of the stem–loop aptamer
and restricts the application of this strategy previously confirmed for the anti-ochratoxin A
aptamer forming an antiparallel G-quadruplex [16]. Note that the strategy was efficient, as
shown in the systems based on a similar anti-AFB1 aptamer when the label is introduced
in the aptamer, and the anchor is introduced in the complementary strand [15,30].

3.7. The Cooperative Influence of Polycations and PEG on the Difference in FA between the Bound
and Free States of Labeled AFB1

To check more complicated effects on the FA of the bound and free AFB1-EDF, we
have studied the mixtures of magnesium, PLL, and PEG. Based on the results obtained
in Section 3.3, the concentrations of PLL and PEG were selected as 0.4 and 70 µM, respec-
tively. The concentrations of magnesium of 1 M and 0.3 M have been chosen for further
investigation. Therefore, six buffer mixtures were prepared, and the FA of AFB1-EDF and
its complex with the aptamer 38 nt were determined, as well as the FA difference between
them. The results are shown in Figure 6.
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Figure 6. The fluorescence anisotropy of AFB1-EDF in the absence and presence of 100 nM of the
aptamer 38 nt and ∆FA in TB and buffers based on 20 mM Tris-acetate, 100 NaAcetate, pH 8.4 with
addition of #1—1 M MgAcetate2, 0.4 µM PLL; #2—1 M MgAcetate2, 70 µM PEG; #3—1 M MgAcetate2,
70 µM PEG, 0.4 µM PLL; #4—0.3 M MgAcetate2, 0.4 µM PLL; #5—0.3 M MgAcetate2, 70 µM PEG;
#6—0.3 M MgAcetate2, 70 µM PEG, 0.4 µM PLL (n = 3).

The mixing of the chosen compounds led to the achievement of a 2-fold increase in the
FA difference between the bound and free state of the label in cases of buffer variants #2 and
#6, which contain 1 M Mg2+ and 70 µM PEG, or 0.3 M Mg2+ and 0.4 µM PLL, and 70 µM
PEG, respectively. The results indicate that the concentrations of PLL and magnesium
separately and in the mixture should not exceed a certain level, above which they change
the FA of the labeled AFB1, as shown in Figure 6 for buffers #1 and 4. Interestingly, the PEG
addition prevents the interactions of the polycations with free AFB1-EDF. The combination
of PEG with magnesium and PLL shows a cooperative effect for the modulation of ∆FA.
Therefore, their mixtures can be used to increase the sensitivity of the competitive system.
Buffers #2 and #6, shows the largest ∆FA values between the free and bound state of
AFB1-EDF and were selected for further experiment.

3.8. The Characterization of FA of the Bound and Free State of AFB1-EDF at Different
Concentrations of the Aptamer in the Selected Media

The next step was the assessment of FA dependencies of AFB1-EDF from aptamer
38 nt concentration in buffer variants #2 and #6 in comparison with TB. The FA and ∆FA
dependencies are shown in Figure 7.

The complexation of AFB1-EDF with the aptamer 38 nt showed a better FA response
in all designed media than in TB, see Figure 7A. The ∆FA values for the saturation of
aptamer concentration when all AFB1-EDF is present in the bound state are greater by up
to 40% in both the #2 and #6 medium compared to those in TB, see Figure 7B. Also, the
∆FA significantly increases at low concentrations of the aptamer. The obtaining increase
allows the achievement of the same FA value with a lower concentration of the aptamer
and shifts the parameters of competitive interaction to detect lower concentrations of
AFB1. Additionally, the anisotropy values were investigated in these buffers containing
0.1% Tween20, see #2T and #6T in Figure 7. Tween20 is commonly used for reducing
unspecific interactions [45]. As can be seen in Figure 7, the addition of Tween20 to medium
#2 containing 1 M of magnesium led to a decrease in ∆FA. It indicated the occurrence of
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some interference during complexation, which was not observed under lower magnesium
concentrations, see buffer #6. The buffer #6T was chosen for further approbation. To
compare the FA competitive system in TB and medium #6T, the aptamer concentrations of
100 and 25 nM, providing the same ∆FA signal (about 45 units), were chosen, respectively.
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Figure 7. The fluorescence anisotropy (A) and fluorescence anisotropy changes (B) in AFB1-EDF
under complexation with the aptamer 38 nt in TB and buffers: #2; #2T—same with 0.1% Tween20; #6;
and #6T—same with 0.1% Tween20 (n = 3).

3.9. The Comparison of FA-Based Aptamer Assays of AFB1 in TB and Buffer #6

The dependence of the FA of AFB1-EDF on the AFB1 concentration in TB and buffer#6T
after they reached the equilibrium conditions was obtained, as shown in Figure 8A, and
then processed to Fbound values, as shown in Figure 8B.
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Figure 8. The dependencies of the fluorescence anisotropy (A) and percentage of bound (B) AFB1-EDF
on the concentration of AFB1 in buffer (1) TB and (2) buffer #6T (n = 3).

The linearity was within a concentration range of 4.0 ± 0.4–137.8 ± 8.0 ng/mL
with an IC50 value of 23.4 ± 1 ng/mL in the buffer #6T. The linearity and IC50 values
were 15.0 ± 3.4–117.4 ± 11.2 ng/mL and 41.6 ± 3.3 ng/mL in TB, respectively. The assay
time was 30 and 15 min, respectively. The limit of detection (LOD) was 0.72 ± 0.3 and
9.7 ± 1.6 ng/mL in the #6T and TB, respectively. Using the mixture of cations (Mg2+ and
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PLL) and PEG instead of a simple buffer containing mono-and divalent cations allows the
achievement of a 12-fold increase in sensitivity. The achieved LOD makes the developed
system a promising tool for detecting AFB1 at the MRL level in nuts [46].

3.10. Detection of AFB1 in Food Samples

Nuts, such as almonds and pistachios, are susceptible to the presence of AFB1 [47], and
the European Commission has established certain limits for the amount of AFB1 residues
that are considered permissible in these products. In order to assess the recovery of AFB1, a
series of spiked samples was prepared and then diluted with buffer #6T. The final dilution
after mixing with analytical reagents was 10-fold. The concentration of methanol after
dilution was 7% v/v. The resulting calibration curve in buffer #6T was used for sample
analysis. As shown in Table 2, after a 60 min incubation, the recovery of AFB1 from
almonds samples treated with 10, 30, 75, 100, and 200 µg/kg of AFB1 was within the
range of 112–123%. The LOD and recovery values for the proposed FA-based competitive
aptamer assay meet the EU criteria: the MRL of AFB1 is equal to 8–12 µg/kg in nuts [48].

Table 2. The recovery’s of AFB1 obtained using the proposed FA aptamer assay. The concentration
values for spiked samples are indicated (n = 3).

Sample Added (µg/kg) Found (µg/kg) Recovery (%)

Almond flour

200 242.1 ± 50.5 121.0
100 121.2 ± 33.5 121.1
75 91.6 ± 20.1 122.1
30 33.8 ± 15.8 112.7
10 12.3 ± 4.6 123.3

The proposed technique was compared with HPLC-MS/MS in testing almond sam-
ples. The samples were 10-fold diluted, and the unified methanol content in the tested
samples and the calibrating solutions was 14%. The results obtained by the two techniques
demonstrate good accordance (see Table 3).

Table 3. Determination of AFB1 in almond samples by HPLC-MS/MS and the developed fluorescence
anisotropy aptamer assay (n = 3).

Sample Found AFB1 (µg/kg),
HPLC-MS/MS Technique

Found AFB1 (µg/kg),
FA-Based Assay

Recovery for
FA-Based Assay (%)

1 376.3 ±12.6 416.1 ± 24.9 110.6 ± 6.0
2 282.2 ± 9.6 302.2 ± 9.1 107.1 ± 3.0
3 188.2 ± 4.5 212.9 ± 26.7 113.2 ± 12,5
4 112.9 ± 0.7 118.6 ± 19.3 105.0 ± 16.3
5 89.4 ± 0.3 75.0 ± 10.2 83.9 ± 13.7
6 37.8 ± 2.2 39.7 ± 10.4 105.1 ± 26.2
7 not detected <LOD -
8 not detected <LOD -

3.11. Comparison of the Developed FA Aptamer Assay with Other Methods

To date, several FA aptamer assays have been proposed for the detection of AFB1 based
on the following: energy transfer effects during fluorescein-labeled aptamer absorption
on graphene oxide [49], local effects of tetramethylrhodamine dye attached to a DNA
molecule [14], ligand-induced strand displacement [15,30,50], and the combination of the
ligand-induced stand displacement and the use of tetramethylrhodamine dye [31]. The use
of polymerase chain reaction amplification and anchor-based methods makes the assay
process more complex. However, it allows for the attainment of picomolar sensitivity. The
analytical characteristics of the developed FA aptamer assays and those of the previously
proposed homogeneous FA assays for the detection of AFB1 are compared and summarized
in Table 4.
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Table 4. Comparison of the analytical performance of fluorescence anisotropy systems for
AFB1 detection.

Methods Complexity
Linear

(L)/Dynamic (D)
Range (ng/mL)

LOD (ng/mL) Tested Samples Reference

Immunoassays

Competition between
native ligand and

labeled ligand

One-step - 5

Popcorn, corn,
sorghum, peanut

paste, peanut
butter

[51]

One-step (L) 16.25–33.49 13.12 - [28]

One-step (L) 3–84 1 beer [27]

One-step (L) 92.76–252.32 20 tea leaves [29]

One-step (L) 8.6–63.7 1 leaves of medicinal
plants [52]

Aptamer assays

Polycation-assisted
competitive aptamer
assay with labeled
ligand

One-step (L) 4.0 ± 0.4–137.8
± 8.0 0.72 ± 0.3 Almond flour This work

Competitive aptamer
assay with labeled
ligand

One-step (L) 15.0 ±
3.4–117.4 ± 11.2 9.7 ± 1.6 Almond flour This work

Protein-encoded
aptamer
nanomachines and
isothermal exponential
amplification

Multi-step - 0.000078 - [50]

Direct labeling with
guanine sensitive
tetramethylrhodamine
label

One-step (D) 0.62–312.27 0.62 Serum; urine, wine,
beer [14]

Ligand-induced strand
displacement with
streptavidin anchor

Multi-step (D) 0.08–39 0.019 White [15]

Physical absorption of
fluorescein-labeled
aptamer on graphene
oxide

Multi-step (L) 0.015–1.56 0.015 Rice [49]

Direct labeling with
guanine sensitive
tetramethylrhodamine
label enhanced by
strand displacement of
guanine-rich ssDNA

One-step (D) 0.04–9.74 0.039 Grape juice, milk,
tap water [31]

Ligand-induced strand
displacement with IgG
anchor

Multi-step (D) 0.008–31.2 0.008 Grape juice, white
wine, tap water [30]

The described medium-assisted FA assay allows for a simple one-step detection
of AFB1 in complex samples with comparable sensitivity to previously proposed sys-
tems. In terms of sensitivity, we are only inferior to complex multi-step approaches,
making it a promising alternative for high-throughput measurements. The proposed
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novel approach indicates the perspective of the uses of more complex media, which con-
tains positively charged and neutral polymers and high divalent ion concentrations for
aptamer-based assays.

Considering the perspectives of the proposed approach and the further tasks required
of its elaboration, the following limitations should be taken into consideration. First of
all, as the proposed assay is a homogeneous one, the measurements are implemented
directly in a reaction mixture without separation of its components. So, some matrix
compounds may exhibit the absorption or emission of light in the same spectral regions as
the fluorescein label. This situation does not arise often when testing food products, but
it occurs, for example, for red wines [53]. The application of the proposed approach for
such systems will require either an additional preprocessing of the samples to eliminate the
interfering component(s) or change fluorescein to another fluorophore. The second factor is
the structural differences in various aptamers, which could require different concentrations
of stabilizing reagents, and the gain in the detection limit may vary. However, the choice of
concentrations of the reaction media components is an integral part of the optimization
for any aptamer-based analysis. For our systems, the choice will be only extended to
additional reagents.

The possibility to implement the proposed assay as a “mix and detect” procedure,
i.e., without any additional manipulations with the reaction mixture before the measure-
ments determines its perspectives for onsite real-time use. The additional adaptation
for this purpose will be a change in the used FA detection to available autonomous de-
vices such as portable FA detectors or units for recording FA using serial communication
devices [54,55].

Prospective tasks for further application of the proposed polycation-based enhancing
approach is testing its combinations with other tools increasing anisotropy fluorescence
of the bound tracer (such as the immobilization of the aptamer on additional anchoring
carriers [4,16]) to possibly lower the detection limit further.

4. Conclusions

The aptamer-based fluorescence anisotropy assay proposed in this study realizes, for
the first time, the application of polycations (poly-L-lysine and polyethylene glycol) and
high concentrations of magnesium cations to modulate the rotation of the formed aptamer–
tracer complexes and enhance fluorescence anisotropy signals in the competitive aptamer-
based assay. This work adds a new tool for lowering the detection limit of the aptamer-
based fluorescence anisotropy assay that differs from earlier considered modulators and
can be implemented in a one-step technique. The application of this approach resulted in a
12-fold increased sensitivity of the AFB1 detection, reaching the levels of practical interest
for screening control of agricultural products contamination.

Supplementary Materials: The following supporting information can be downloaded at: https:
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the change in fluorescence anisotropy (B), and the percentage of the bound fraction (C) of AFB1-
EDF on the concentration of the untruncated stem–loop aptamer in different buffers: 1—20 mM
Tris-Acetate, 100 mM Na Acetate, 10 mM MgAcetate2, 10 mM CaCl2, pH 8.4; 2—20 mM Tris- Acetate,
100 mM NaAcetate, pH 8.4; 3—20 mM Tris-Acetate, 20 mM MgAcetate2, pH 8.4; 4—20 mM Tris-
Acetate, 100 mM NaAcetate, 20 mM MgAcetate2, pH 8.4 (n = 3); Table S1: The comparison of
dissociation constants of the anti-AFB1 loop-stem aptamer in different buffer compositions; Figure S2:
The dependencies of fluorescence (A), fluorescence anisotropy (B), and the percentage of bound
fraction (C) of AFB1-EDF on the concentration of initial aptamer at different pH (n = 3); Table S2:
The comparison of dissociation constants of the initial anti-AFB1 loop-stem aptamer at different
pH; Figure S3: The dependencies of fluorescence (A) and change in fluorescence anisotropy (B) of
AFB1-EDF in the presence of aptamer 38 nt (1) and its conjugates with streptavidin at ratio 2:1 (2) and
1:2 (3) (n = 3).
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