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Abstract: Inspections of concrete bridges across the United States represent a significant commitment
of resources, given their biannual mandate for many structures. With a notable number of aging
bridges, there is an imperative need to enhance the efficiency of these inspections. This study
harnessed the power of computer vision to streamline the inspection process. Our experiment
examined the efficacy of a state-of-the-art Visual Transformer (ViT) model combined with distinct
image enhancement detector algorithms. We benchmarked against a deep learning Convolutional
Neural Network (CNN) model. These models were applied to over 20,000 high-quality images
from the Concrete Images for Classification dataset. Traditional crack detection methods often fall
short due to their heavy reliance on time and resources. This research pioneers bridge inspection by
integrating ViT with diverse image enhancement detectors, significantly improving concrete crack
detection accuracy. Notably, a custom-built CNN achieves over 99% accuracy with substantially lower
training time than ViT, making it an efficient solution for enhancing safety and resource conservation
in infrastructure management. These advancements enhance safety by enabling reliable detection and
timely maintenance, but they also align with Industry 4.0 objectives, automating manual inspections,
reducing costs, and advancing technological integration in public infrastructure management.

Keywords: maintenance; inspection; concrete crack detection; big data; waste reduction; machine
learning; Industry 4.0; computer-based vision

1. Introduction

Industry 4.0 (I4.0) brings a multitude of technological advancements like Artificial
Intelligence (AI), robotics, drones, and computer vision, each with a unique contribution
towards improving crack detection. Through computer vision and Machine Learning (ML)
algorithms, AI sifts through vast historical and real-time datasets to identify potential
cracks early on, paving the way for timely preventative maintenance. Drones, outfitted
with high-resolution cameras, offer the advantage of remote inspections and real-time
monitoring of large concrete structures, significantly cutting down on manual inspection
needs while bolstering safety measures. Computer vision emerges as a cornerstone for
automated crack detection, scrutinizing images and video feeds to spot anomalies such as
cracks with precision. Beyond their standalone capabilities, integrating these technologies
creates a collaborative ecosystem conducive to data fusion. This integrated setup accelerates
real-time decision-making and facilitates prompt corrective actions upon crack detection.
This blend of AI and I4.0 technological innovations elevates the accuracy and efficiency of
concrete crack detection. It heralds a proactive approach towards Inspection 4.0.

In addition to drawing on this integration, the paper compares multiple computer
vision models to benchmark them against each other on a single dataset. Comparing
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different computer vision models on a single dataset is a practice of substantial significance,
offering a fair and consistent platform for performance evaluation. This approach ensures
unbiased comparisons and generates comparable performance metrics, which are crucial in
assessing the robustness of different algorithms in handling challenges like noise, occlusion,
and variations in lighting and scale. Identifying the strengths and weaknesses of each
model becomes feasible, which is instrumental in selecting the suitable model for a par-
ticular application. Moreover, it aids in establishing standardized benchmarks, crucial for
gauging progress over time and against the state-of-the-art, thereby fostering a competitive
environment for algorithm improvement. Insights into the generalization capabilities of
different models across varying data conditions within the same dataset are gleaned, which
is pivotal for real-world applications.

Additionally, this comparison provides a vantage point to optimize computational
resources, as different models may have varying computational and memory requirements.
This comparison practice on a standard dataset validates findings and advances the field
by promoting transparency and reproducibility in research. Furthermore, it sheds light on
the importance of different features for the task at hand, thus aiding in feature engineering
and model refinement.

According to the American Society of Civil Engineering (ASCE), one in every nine
bridges is subjected to collapse at any given moment in the United States. Federal guide-
lines require inspections every year. Currently, there are more than 600,000 bridges across
the United States. This routine process consumes time, money, labor, and materials. Un-
derstanding the steps taken to ensure the completion of the process is essential for process
improvement [1,2].

Different strategies were devised for scheduling inspections of fracture-prone bridges,
as described in multiple studies [3–5]. Also, Madanat et al. [6] designed and developed
digital tools for decision-making that aid in selecting appropriate corrective actions and
allocating resources for bridge maintenance, thereby enabling quicker scanning of more
bridges [7]. Recently, the bridge inspection process has begun incorporating I4.0 tech-
nologies [8], including drones [9,10] photogrammetry [11–13], virtual reality [12,14], and
database management systems. A significant innovation has been the implementation of
time-dependent reliability analysis, which leverages historical data from visual inspections
to predict future structural performance [15,16]. Table 1 shows a summary of improvements
suggested or applied to each category. Figure 1 shows the bridge inspection process’s Value
Stream Mapping (VSM). The details of the inspection process were collected by Clarke-
Sather et al. [2].

Table 1. Areas of Improvement in the Bridge Inspection Process [2].

Area Improvement

Changes to inspection
interval determination

A scoring system for determining inspection intervals for fractured-critical bridges was proposed by
Parr et al. [3]. In addition, a probabilistic framework to create risk-based inspection intervals was
built using the event-tree model and presented by Orcesi and Frangopol [4]. Also, Washer et al. [5]
proposed deriving inspection intervals from a risk-based approach instead of a time interval using an
expert panel to assess and predict the condition and failure of bridge elements.

Utilizing decision-making
tools

Creating technology-based decision support programs in selecting appropriate remedial activities
and allocating resources for bridge maintenance programs [6]. Thus, more bridges can be scanned [7].

Deployment of technology Recently, the bridge inspection process started to deploy Industry 4.0 technologies [8], such as
drones [9,10], photogrammetry [11–13], virtual reality [12,14], and database management systems.

Reliability

Establishing a time-dependent reliability analysis that can predict future structural performance
using information collected from past visual inspections [15]. The American Association of State
Highway and Transportation Officials (AASHTO) has addressed the standardization of bridge
inspections. The AASHTO released the Manual for Bridge Element Inspection (MBEI) in 2013 and
updated it in 2019. It guides bridge element-level assessment with definitions for the condition and
number of elements. It codifies possible responses to element conditions [16].
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Civil Engineers 2020.

Bridge inspections are crucial for several reasons, including ensuring public safety,
maintaining structural integrity, identifying repair and maintenance needs, prolonging the
bridge’s lifespan, and facilitating efficient resource allocation [17–20]. Regular inspections
help identify and address potential issues before they become critical, ensuring the safety
of all bridge users, prolonging the lifespan, and enabling efficient resource allocation
for maintenance and repairs [21]. Table 2 summarizes some key reasons why concrete
inspection in the structure of a bridge is important.

Table 2. The importance of bridge inspections.

Area Key Reason

Public safety [17]
Regular bridge inspections help identify potential safety hazards or structural issues that could lead
to accidents or collapse. Ensuring the safety of all bridge users, including pedestrians, cyclists, and
motorists, is a top priority.

Structural integrity [18]
Inspections allow engineers to assess the bridge’s structural condition and detect any signs of
deterioration, corrosion, or damage. Early detection of structural issues can prevent catastrophic
failures and allow for timely repairs.

Maintenance and
repair [19]

Bridge inspections help identify areas that require maintenance or repairs, allowing authorities to
address problems before they become critical. Regular maintenance can help avoid costly and
time-consuming repairs or replacements.

Lifespan extension [20]
Through regular inspections and proper maintenance, the overall lifespan of a bridge can be
prolonged. This helps maximize the return on investment for public infrastructure projects and
ensures that bridges continue to serve their intended purpose for an extended period.

Resource allocation [21]
By conducting routine bridge inspections, authorities can prioritize maintenance and repair projects
based on the severity of the issues identified. This facilitates the efficient allocation of resources to the
most critical areas, ensuring that funds are used effectively to maintain and improve infrastructure.

Regulatory
compliance [22]

In many countries, government regulations mandate bridge inspections to ensure all bridges meet
safety and structural standards. Regular inspections help to ensure compliance with these
regulations and reduce the risk of legal and financial penalties.

Environmental factors [23]
Inspections can help identify the impact of environmental factors, such as erosion, flooding, or
temperature fluctuations, on the bridge’s structural integrity. This information can be used to plan for
future maintenance or improvements to mitigate the effects of these factors.
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This paper begins with an Introduction, presenting the importance of crack detection,
manual detection limitations, and AI’s role in inspection. It then covers Structural Health
Monitoring (SHM) and AI in SHM. Next, it discusses Section 2 Inspection 4.0, followed by
the Section 3 Dataset. The Section 4 follows, detailing the algorithms used. Then, Section 5
analyze the findings, followed by Section 6. Finally, the Section 7 wraps up the study.

1.1. Structural Health Monitoring Systems

The SHM system is a critical practice dedicated to continually assessing the integrity
of civilian infrastructure. The primary objective of SHM is to monitor a structure’s current
health status compared to its baseline state, identify any deviations or damages, and
develop appropriate maintenance strategies to address these issues [22]. This section will
explore the various methods available for evaluating structural health, employing various
tools [23]. Damage detection within SHM typically involves identifying changes that alter
the physical properties of a structure, thereby compromising its integrity. Such damage
often manifests as cracks, considered significant indicators of potential structural failure.

SHM can include tilt sensors, optical displacement sensors, and wireless platforms
designed to monitor structural health and environmental conditions. Combined with AI
algorithms, these sensors help reduce costs, minimize maintenance, and enhance safety
by providing real-time data and alerts. Tilt sensors measure the inclination, or angle, of
an object with respect to gravity. They are crucial for monitoring structural movements
and deformations, especially in buildings, bridges, and other infrastructure, ensuring that
deviations from the norm are detected early. The optical displacement sensors track the
distance changes between a sensor and a target object using light, typically lasers. They
are highly accurate and used for monitoring the minute movements in structures, which
can indicate stress, potential failure, or a need for maintenance. These sensors and other
platforms integrate into a network that can communicate data wirelessly, facilitating real-
time monitoring of structural health and environmental conditions. This setup allows
continuous surveillance without the need for physical data retrieval, improving safety and
efficiency [24].

Recent technological advancements have revolutionized the SHM field by integrat-
ing data-centric technologies to enhance the safety of civil infrastructure. The last two
decades have seen SHM evolve significantly, driven by intelligent, mobile sensor systems.
Concurrently, smartphones have emerged as pivotal tools in SHM by facilitating inno-
vative applications through intelligent, distributed, and participatory sensor networks.
This section elaborates on the role of smartphones in SHM. It explores how public par-
ticipation can be incorporated into SHM frameworks. Unlike traditional methods, these
modern approaches sometimes suffer from variable control over sensor operations, such as
timing and placement [25,26]. These variances, termed citizen-induced uncertainties, are
addressed by proposing multisensory solutions centered around smartphones, enabling
real-time updating of civil infrastructure models, such as bridges, using data collected from
the public.

Understanding and addressing these flaws is crucial for ensuring the safety and
longevity of critical infrastructure, including roads, subway systems, bridges, buildings,
dams, tunnels, and landmarks. This section aims to clarify how SHM systems can effectively
identify and mitigate these risks to maintain structural health and safety.

1.1.1. Cracks

Regarding imagery, cracks represent abrupt shifts in pixel brightness. Cracks manifest
as slender, dark streaks on a solid surface, indicating where the material has divided
without separating. Various factors can lead to the emergence of cracks on a concrete
surface: fluctuations in material dimensions, foundational movements, early drying, undue
weight, water-induced stress, uneven mixtures, expanding soil, inadequate soil support,
wear over time, settling, and other activities. Concrete expands and matures with moisture
or temperature shifts, like many building materials. Additionally, the weight it bears,
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whether from its mass or other loads or its foundational support, can cause it to bend or
deflect. If there are not adequate measures to allow for these natural movements, this can
result in cracks in the concrete. In Figure 2, various types of cracks are depicted, including
those caused by plastic shrinkage, improper jointing, continuous external restraint, absence
of isolation joints, freeze–thaw cycles, crazing (also known as craze cracks), and settlement-
related cracking. While some cracks are easily discernible as imperfections, others can
evolve into significant hazards, even if they are initially minor. The intricate background
patterns can obscure inevitable cracks, making them hard to detect. Cracks exhibit varying
widths: hairline cracks, measuring 0.1 mm across, are noticeable against simple backdrops
but can be tricky to spot under changing lighting. Fine cracks span up to 1 mm, while cracks
with widths up to 5 mm are typically not deemed harmful and can be mended. Conversely,
cracks exceeding a 5 mm width can lead to substantial harm and might necessitate extensive
repairs or even replacements [27].
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Figure 2. Classification of concrete cracks.

Cracks emerging during the initial stages of the concrete setting are not a significant
concern, as they do not compromise the structure’s durability, stability, or lifespan. How-
ever, if left unrepaired, they can pose a considerable risk during the structure’s life span.
In addition, cracks that develop later on pose a more substantial threat to the structural
safety and longevity of the concrete structures [27]. Examples include those resulting from
freeze–thaw cycles or settling. Such defects can lead to the degradation of the concrete
structure. Most often, these flaws arise from suboptimal design and building techniques,
such as damaged joint placement, lacking necessary isolation and building joints, poor
groundwork or soil preparation, over-watering the concrete mix or using overly fluid
mixtures, mishandling of concrete finishing, and insufficient or incorrect curing methods.
While it is not feasible to entirely prevent concrete from cracking, adopting sound con-
struction methods can significantly reduce the likelihood of such issues. Regarding final
appearance, these cracks can be classified into the four main types shown in Figure 3.

1.1.2. Manual Crack Detection

Identifying cracks involves pinpointing or discerning signs of cracks in structures
through expert human intervention or technological means. The endeavor to spot telltale
signs, such as cracks, on structures like roads, subway systems, bridges, buildings, dams,
landmarks, and more relies on an amalgamation of techniques. Cracks often serve as early
warnings, signifying structural deterioration. Spotting these cracks is pivotal for upkeep
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and demands meticulous oversight. Regular evaluations are imperative to assess structural
health, with timely crack identification potentially averting more severe issues. This is vital
for ensuring public safety and protecting the structure’s longevity. Two primary approaches
to crack identification exist: a manual, hands-on assessment and an automated assessment.
The hands-on approach, reliant on human intervention, necessitates expertise. Equipped
with the right tools, professionals meticulously examine structures while adhering to safety
norms. However, this method can be expensive, labor-intensive, and time-consuming,
if not sometimes hazardous. Furthermore, since it lacks a visual recording component,
it demands comprehensive record-keeping, and judgments about crack severity can be
challenging. Hands-on assessments can be protracted for expansive infrastructure, given
the extensive areas that need coverage [28].
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1.2. Artificial Intelligence in Structural Health Monitoring Systems
1.2.1. Artificial Intelligence

AI, pioneered by John McCarthy in 1955, encompasses subfields like ML, Deep Learn-
ing (DL), and Neural Networks (NN). ML focuses on algorithms that learn from data to
enhance performance, utilizing statistical methods [29]. DL, a branch of ML, involves
Convolutional Neural Networks (CNN) that mimic the human brain to process complex
data efficiently, often outperforming traditional ML techniques [30]. These technologies are
applied in various areas, such as object detection, video action classification, and 3D model-
ing [31]. A concise overview of these interconnections is shown in Figure 4, emphasizing
the relevance of these AI components to the broader scope of our study.

1.2.2. Crack Attributes

Attributes, or features, are essential data points that define an object and assist sys-
tems in recognizing and classifying it. In image processing, morphological operations
like erosion and dilation help analyze and enhance the differentiation of pixels, which is
particularly useful in identifying crack characteristics. Machine learning utilizes designated
attributes to extract details from images. At the same time, neural networks automatically
process attribute data through multiple layers, each refining the extraction of characteris-
tics like edges, patterns, and brightness, ultimately distinguishing between cracked and
uncracked pixels.
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1.2.3. Crack Detection Using Statistical Methods

Image processing techniques for crack detection involve several key steps, including
image pre-processing, segmentation, feature extraction, and crack identification. These
methods utilize edge detection to identify abrupt pixel intensity transitions and segmenta-
tion to isolate objects. Various strategies, including morphological operations, statistical
methods, and pattern matching, help classify cracks. Techniques also leverage contrast dif-
ferences between crack pixels and their surroundings, applying mathematical morphology
and curvature evaluations to enhance crack visibility and segmentation [32–43].

Ensuring structural integrity requires cost-effective, automated crack detection meth-
ods. However, image processing for crack detection is complex and influenced by environ-
mental factors such as shadows, lighting conditions, and background noise [44–51]. Crack
detection accuracy is also affected by the camera’s positioning and resolution. Various
challenges hinder the effectiveness of contrast and intensity-based algorithms, including
image orientation, lack of depth data, variability in thresholds and outcomes, and the
manual identification of crack endpoints [52,53].

1.2.4. Crack Detection Using Machine Learning Methods

ML has incredibly advanced crack detection, using methods like graph-cut segmen-
tation to identify crack features [54]. Techniques such as Deep Belief Networks (DBN)
differentiate and classify cracks based on geometric characteristics and color texture at-
tributes [55–61]. However, these methods can struggle with obscure cracks and complex
non-linear regression tasks. ML techniques generally require extensive structured labeling
and often do not perform as well as deep learning methods, which better interpret nuanced
features [62,63].

1.2.5. Crack Detection Using Deep Learning Methods

Over the last decade, DL models, particularly CNNs, have gained prominence in
computer vision due to technological advances in processing and storage [64,65]. CNNs
are crucial for tasks like image classification and recognition, utilizing a feed-forward
topology [66–69]. Additionally, Long Short-Term Memory (LSTM) networks, a type of
Recurrent Neural Network (RNN), excel in sequence prediction by maintaining data across
processing stages [70–73], often integrating with CNNs for enhanced object recognition.

Fully Convolutional Neural Networks (FCNs) are notable for their absence of fully
connected layers, enhancing efficiency in image processing tasks such as fake fingerprint
detection by offering high accuracy, faster processing, and reduced memory needs [74,75].
Region Proposed Networks (RPNs), including models like Faster R-CNN, are applied in
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object detection in diverse areas such as extracting information from receipts, recognizing
handwritten text, and even identifying mathematical expressions in documents [76–78].
Figure 5 shows the basic architecture used in CNN.
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In CNNs, initial layers detect basic patterns like edges, intermediate layers discern
shapes and colors, and advanced layers capture detailed object features. After these layers
extract data, it feeds into a fully connected neural network for classification or segmentation
layers for more detailed analysis. CNNs, a deep forward-propagating neural network, are
versatile across various data types and are used for classifying, localizing, or segmenting
image cracks. See Figure 6 for output illustrations. Our paper employed crack detection
through classification output.
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Deep Convolutional Neural Networks (DCNNs) are effective for understanding com-
plex correlations between inputs and outputs, aiding in data classification and segmentation.
They are instrumental in crack identification, where they process high-resolution images
that require significant computational resources. Visual Transformer (ViT) models, a recent
advancement in DL, excel in tasks like image classification and object detection, offering
robust performance and enhanced privacy features in image processing applications.

2. Inspection 4.0

Automation and Information Technology (IT) integration have reshaped the functions
of managers, engineers, and operators, resulting in workplaces that rely more on knowl-
edge [79]. As a result, deeper integration of automation and IT has become crucial [79].
Data science transforms vast amounts of data into actionable insights, enhancing trans-
parency and product quality [80,81]. Utilizing sensors for quality control and applying
sophisticated analytics to the data collected from these sensors has proven advantageous in
optimization endeavors [82]. Furthermore, the application of ML algorithms, like Artifi-
cial Neural Networks (ANN), has been instrumental in optimizing a range of operations,
encompassing logistics, supply chains, production, and marketing [83].
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I4.0 technologies have enabled real-time monitoring and enhancements in processes [84–86].
Businesses and government entities aim to gain a competitive advantage by optimizing
output while minimizing expenses. Enhancing productivity and quality is vital for this
objective. Integrating I4.0 technologies is pivotal in achieving these goals [87] and paving
the way for operational excellence [88–90]. Figure 6 illustrates the correlation between data
and decision-making processes.

Integrating automation and IT has profoundly transformed managerial, engineering,
and operational roles, making workplaces increasingly reliant on sophisticated data analysis
and decision-making processes [79]. This deepened integration is pivotal in leveraging data
science to convert vast data volumes into actionable insights, enhancing transparency, and
improving product quality [80,81]. The application of sensors for quality control, coupled
with advanced analytics applied to sensor data, supports significant optimization efforts
across various sectors [82].

Incorporating ML algorithms such as ANN optimizes a range of operations, including
logistics, supply chains, production, and marketing [83]. Real-time monitoring and process
enhancements facilitated by Industry 4.0 technologies allow businesses and government
entities to enhance productivity and quality, which is crucial for maintaining a competitive
edge and minimizing expenses [84–86]. Integrating these technologies is pivotal in achiev-
ing operational excellence and continually optimizing output while minimizing expenses,
as they pave the way for more innovative, more efficient operational processes [87–90].
Figure 7 illustrates the correlation between data and decision-making processes.
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Our research aims to showcase how integrating computer vision technologies can
revolutionize concrete structures’ traditional manual inspection processes, significantly
reducing time and labor. This includes evaluating the fidelity and efficiency of well-known
algorithms by benchmarking them against a custom-built CNN for detecting cracks in
concrete. The potential of robotic drones in scanning bridges and transmitting images to
remote servers for analysis further exemplifies the efficiency of modern inspection methods,
thus minimizing resource wastage and improving the inspection process [91]. Table 3
shows some aspects of technology applications in the process of concrete inspection in
bridges and their effects.
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Table 3. List of I4.0 technologies and their effects on the concrete inspection process in bridges.

Technologies Effect

Computer vision technology

Computer-based vision technology can be used to automate the process of detecting defects,
cracks, or other signs of damage in concrete structures. Advanced image processing algorithms
can analyze high-resolution images captured by cameras, drones, or other devices to identify
areas of concern. Computer vision technology can be used to inspect hard-to-reach or hazardous
areas of the bridge, reducing the need for inspectors to work in dangerous conditions. This
improves safety for inspection teams and allows for more thorough inspections in regions that
might otherwise be challenging to access.

Data-driven decision making

Integrating computer vision technology into the inspection workflow allows teams to rapidly and
precisely collect and interpret vast amounts of data. Such an approach, centered on data,
enhances decision-making in areas like maintenance, repair, and the distribution of resources,
leading to more effective bridge management. The data collected by robotics, drones, and remote
sensing technologies can be analyzed using advanced software and machine learning algorithms
to detect patterns, trends, and anomalies. This helps inspectors make data-driven decisions and
prioritize maintenance activities based on the severity of the issues identified.

Real-time monitoring
By integrating computer vision technology with IoT devices, it is possible to establish a real-time
monitoring system for bridge structures. This can provide early warnings of potential structural
issues, allowing authorities to take proactive measures to maintain safety and structural integrity.

Robotics

Robotic systems can access hard-to-reach or hazardous areas of the bridge, reducing the need for
manual inspections in these locations. Robotics equipped with sensors, cameras, and advanced
imaging technologies can collect high-resolution images and data for detailed analysis. Some
robots can also perform tasks such as cleaning or applying sealants to cracks, improving
maintenance efficiency.

Drones

Unmanned Aerial Vehicles (UAVs), or drones, can inspect the bridge, capturing high-resolution
images and videos from various angles. Drones allow inspectors to quickly assess the overall
condition of the bridge, identify defects or damage, and access difficult-to-reach areas with
minimal risk to personnel. Additionally, drones can be equipped with advanced sensors, such as
Light Detection and Ranging (LiDAR), to collect more detailed structural data.

Remote sensing

Remote sensing technologies, such as LiDAR and Ground-Penetrating Radar (GPR), can gather
detailed information about the bridge’s structural components, including detecting internal
defects, corrosion, and other issues not visible to the naked eye. Consequently, these technologies
offer a more detailed insight into the bridge’s status, facilitating improved decisions regarding
maintenance, repairs, and the distribution of resources.

Integrating these advanced technologies enhances the concrete bridge inspection
process, ensuring efficient, accurate, and safe inspections. Additionally, these technologies
provide detailed, data-driven insights into the bridge’s condition, optimizing maintenance
activities and ensuring long-term structural integrity. This integration exemplifies the
application of I4.0 technologies in transforming traditional inspection processes into a
more advanced, data-driven approach. Figure 8 demonstrates how these technologies
collectively contribute to the modern inspection paradigm, aligned with the principles
of I4.0.

This approach improves efficiency, reduces costs, ensures safety, and enables more
effective decision-making based on comprehensive data analysis. The integration of Ar-
tificial Intelligence of Things (AIoT), Augmented Reality (AR), Virtual Reality (VR), and
digital twins into this framework represents a significant advancement in utilizing big
data and automation to support complex decision-making processes in infrastructure
management [92–94].
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3. Dataset

The dataset’s quality and volume significantly impact the performance of DL models.
To ensure optimal results, the network requires an extensive collection of images. The
dataset titled Concrete Crack Images for Classification [95,96] contains concrete images with
cracks. The dataset is categorized into negative (normal) and positive (cracked) images for
image classification. There are 20,000 images in each category, amounting to 40,000 images,
each with 227 × 227 pixel dimensions. These high-resolution images display variations
in surface texture and lighting conditions. A division of 80/20 was applied for training
and testing, respectively. An illustration of the images present in the dataset is shown in
Figure 9.
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Figure 9. Negative (normal) and positive crack images.

Algorithms for classifying images typically perform better in detection tasks when
they can access more images. To augment the dataset, new images were created by al-
tering spatial characteristics, including horizontal and vertical flips, rotations, changes
in image brightness, and shifts in both horizontal and vertical directions, and adjusting
the magnification of existing images. DL models, with their numerous hidden neurons,
depend on both the diversity and the volume [97] of the dataset utilized in training to attain
high efficiency in intricate tasks [98,99]. Furthermore, data augmentation is beneficial for
simulating real-world applications, as it allows capturing images from various angles and
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perspectives, occasionally even in inverted forms, under different conditions and using
varying camera specifications.

4. Methodology

To more effectively showcase the advantages and limitations of computer-based vision.
Four different ViT models were selected and benchmarked with a custom-built CNN model
for this dataset. Figure 9 shows the inspection system. The camera is usually attached to a
UAV, such as a drone. The UAV is being controlled remotely, and the camera takes pictures
that are transmitted to the server for crack detection. In some cases, a climbing robot can
do the inspection autonomously and send the images taken by the camera to the server for
inspection. In all cases, Figure 10 below represents a simple system illustration.
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The paper utilized the Python programming language via the Python 3.11 program-
ming software. Python is widely used in image classification due to its rich ecosystem
of libraries. These libraries offer comprehensive tools and frameworks that simplify the
process of building, training, and testing image classification models. Python’s readability
and simplicity enable rapid prototyping and experimentation with different architectures.
Python also supports data manipulation and augmentation through libraries like NumPy
and OpenCV, which are crucial for pre-processing images for classification. The final results
of each coded algorithm can be measured in different ways. In our case, we relied on the
confusion matrix values at the end of the testing phase and the loss and accuracy values
per epoch during the training and validation phases.

4.1. Custom-Built CNN

A custom-built CNN model tailored (see Figure 11 for an approximate illustration)
for classifying colored concrete images into “images with crack” and “images without
crack” integrates several components. The model often commences with an input layer
designed to receive concrete image data. Given the colored nature of the images, the
input dimensions typically account for the height, width, and three color channels (red,
green, and blue). Following this, several convolutional layers are introduced. These layers
employ filters (or kernels) to slide over the input image, detecting features by computing
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dot products and generating feature maps. The convolutional layers are frequently paired
with activation functions like the Rectified Linear Unit (ReLU) to introduce non-linearity,
enabling the model to learn intricate patterns. Pooling or subsampling layers intersperse
between convolutional layers, predominantly to reduce dimensionality, focus on dominant
features, and enhance computational efficiency. Max-pooling is a favored technique, where
the maximum value from a group of importance in the feature map is chosen, effectively
condensing the data [100,101].
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Deep CNN models usually integrate several convolutional and pooling layers in
sequence, with each successive layer aiming to recognize more complex features. After
these layers, the network integrates one or more fully connected (dense) layers, which
interpret the recognized features and make decisions based on them. Before reaching the
final classification, dropout layers might be interspersed within the fully connected layers
to prevent overfitting by randomly deactivating a fraction of neurons during training [102].
Concluding the model is the output layer, which, in this case, typically consists of two
neurons corresponding to the two classes: “images with crack” and “images without
crack.” A softmax activation function is utilized here to output the probabilities for each
class. The class with the higher probability determines the final classification. Training
the model necessitates a loss function, like categorical cross-entropy for this two-class
problem, and an optimizer like Adam or SGD (Stochastic Gradient Descent) to adjust
weights based on the loss gradient. During the training phase, the model iteratively refines
its weights by comparing its predictions to the true labels, aiming to minimize the loss and
improve accuracy. The model’s effectiveness is gauged using a validation dataset, ensuring
it generalizes well to unseen data. Figure 12 shows the performance of CNN during the
training and validation process.

4.2. Visual Transformer (ViT)

ViTs are considered a significant advancement in computer vision, applying principles
of transformer architecture, initially designed for Natural Language Processing (NLP) tasks,
to image analysis. This approach departs from the CNNs that have traditionally dominated
this domain. ViT demonstrates that transformers can achieve remarkable performance
on image recognition tasks, challenging the supremacy of CNNs in computer vision and
thus representing a novel approach to image classification [103,104]. The core idea behind
ViT is to treat an image as a sequence of patches, akin to how a sentence is viewed as a
sequence of words in NLP [105]. This methodology enables the application of transformer
models directly to patches of images, allowing the model to capture complex dependencies
and relationships between different parts of an image. Each image is divided into fixed-
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size patches, flattened, and linearly embedded. A positional encoding is added to each
patch embedding.
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The deployed ViT model in this paper consists of a sophisticated NN architecture
that uses the ViT-B_16 configuration. The ViT-B_16 architecture represents a sizable but
computationally manageable model intended for use cases where significant expressive
power is needed without the full extent of resources required by the most significant
transformer models. The combination of self-attention and the patch-based approach
allows the ViT to learn from the local patch-level features and the global image-wide
relationships, which is particularly powerful for diverse and complex image datasets.

At its core, the ViT-B_16 architecture divides an input image into fixed-size patches.
In the case of the ‘B_16’ variant, this size is typically 16 × 16 pixels. These patches are
treated similarly to tokens (like words in NLP) and are linearly embedded into a higher-
dimensional space. The ‘B’ in the ‘ViT-B_16’ nomenclature typically stands for ‘Base’ and
indicates a particular scale of the model regarding layer depth and complexity. Each
embedded patch is then prepended with a learnable embedding analogous to the NLP
transformers’ Classification and Sequence (CLS) token. The CLS token is a unique token
used in the BERT (Bidirectional Encoder Representations from Transformers) architecture to
represent the entire input sentence. It is added to the beginning of each input sentence and
is used as the aggregate sequence representation for classification tasks. The final state cor-
responding to the CLS token is input for additional layers that make predictions. These CLS
tokens will eventually hold the representation used for classification purposes. Positional
embeddings are also added to retain the order information, which would otherwise be lost,
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as the transformer architecture does not inherently process sequential data. Once prepared,
the sequence of patch embeddings is passed through a series of transformer encoder layers.
These layers comprise multi-head self-attention mechanisms that allow the model to weigh
the importance of different patches relative to one another. This distinctive feature of
self-attention enables the model to capture global dependencies within the image. The
encoder layers also contain Multilayer Perceptrons (MLPs), with each component followed
by normalization steps and residual connections. In the ViT-B_16 model, the dimensionality
of the MLPs’ hidden layers and the number of attention heads are more extensive than
those found in more minor variants like ViT-Tiny or ViT-Small. The ‘Base’ variant balances
the ‘Large’ models with even more parameters and the smaller ones that may not capture
as many complex features but are faster to train. Following the transformer encoders,
the representation corresponding to the CLS token embedding is passed through a final
classification head, typically a superficial linear layer, to produce the output probabilities
for each class. This final layer is often customized, as seen in the provided code, to match
the specific number of classes in the classification task at hand.

In adapting the model to the specific requirements of the concrete crack classification
task, the original classifier head of the ViT, which determines the final output predictions, is
replaced. The new classifier head is a linear layer that is sized according to the number of
classes found within the training directory. This change is pivotal as it tailors the model’s
output to the classification problem, allowing the model to differentiate between various types
of concrete cracks. Figure 13 summarizes the ViT architecture built for concrete crack detection.
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4.2.1. ViT with Canny Edge Detector Enhancement

The Canny edge detector is a multi-stage algorithm aiming to detect a wide range
of image edges while suppressing noise. The algorithm consists of five main steps. The
detector begins by applying a Gaussian blur to smooth the image, effectively reducing
noise and creating a more coherent foundation for edge detection. Next, the intensity gra-
dient of the image is computed using Sobel filters, which highlight areas of high contrast.
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Non-maximum suppression is applied to thin the edges, selecting only the pixels with the
maximum gradient magnitude in the edge direction. This is followed by double threshold-
ing, which categorizes pixels as strong, weak, or non-edges based on two threshold values.
Finally, edges are tracked by hysteresis, where weak edges not connected to firm edges are
suppressed, resulting in a refined and accurate detection of edges. This final step ensures
that only meaningful edges are retained while irrelevant ones are eliminated. Figure 14
shows an illustration of the capabilities of this detector, while Figure 15 shows a flowchart
of the steps being implemented in this process. Figure 16 shows the performance of ViT
with a Canny edge detector during the training and validation process.
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4.2.2. ViT with Texture Detector Enhancement

This image enhancement process begins with grayscale conversion, where the image
is converted to a single channel. This simplifies the image, making it ideal for tasks like
texture analysis. Next, the grayscale image undergoes histogram equalization, which
adjusts the contrast by spreading out the most frequent intensity values. This is followed by
CDF (Cumulative Distribution Function) normalization, where the histogram is computed
and normalized to map pixel intensities to new values, further enhancing contrast.

After histogram equalization, the single-channel image is duplicated to create a three-
channel image, a necessary step for compatibility with subsequent processes that expect
a three-channel format. Finally, the enhanced image is converted back to a PIL (Python
Imaging Library) image from its NumPy array representation, ensuring compatibility with
further processing or visualization. This final step is crucial for the image to be usable
for subsequent tasks. Figure 17 shows an illustration of the capabilities of this detector.
In contrast, Figure 18 shows a flowchart of the steps being implemented in this process.
Figure 19 shows the performance of ViT with a texture detector during the training and
validation process.

4.2.3. ViT with Gaussian Blur Detector Enhancement

This image enhancement technique uses a Gaussian filter to smooth out an image,
reducing noise and enhancing edges. The filter applies a mathematical formula to each
pixel, averaging its value with neighboring pixels based on a Gaussian distribution. This
reduces high-frequency noise, preserves low-frequency features and edges, and creates a
more coherent and natural-looking image. By adjusting the radius of the Gaussian filter, the
amount of blurring can be controlled, allowing for a balance between noise reduction and
edge preservation. The resulting image is often more visually appealing and more accessible
to analyze or process. Figure 20 shows an illustration of the capabilities of this detector.



Sensors 2024, 24, 3247 18 of 32Sensors 2024, 24, x FOR PEER REVIEW 20 of 36 
 

 

 
Figure 17. Left to right: images with cracks vs. images without cracks, and top to bottom: original 
images vs. enhanced images. 

 
Figure 18. The implemented texture detector algorithm. 

Figure 17. Left to right: images with cracks vs. images without cracks, and top to bottom: original
images vs. enhanced images.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 36 
 

 

 
Figure 17. Left to right: images with cracks vs. images without cracks, and top to bottom: original 
images vs. enhanced images. 

 
Figure 18. The implemented texture detector algorithm. Figure 18. The implemented texture detector algorithm.



Sensors 2024, 24, 3247 19 of 32Sensors 2024, 24, x FOR PEER REVIEW 21 of 36 
 

 

 
Figure 19. The performance of ViT with a texture detector during the training and validation pro-
cess. 

4.2.3. ViT with Gaussian Blur Detector Enhancement 
This image enhancement technique uses a Gaussian filter to smooth out an image, 

reducing noise and enhancing edges. The filter applies a mathematical formula to each 
pixel, averaging its value with neighboring pixels based on a Gaussian distribution. This 
reduces high-frequency noise, preserves low-frequency features and edges, and creates a 
more coherent and natural-looking image. By adjusting the radius of the Gaussian filter, 
the amount of blurring can be controlled, allowing for a balance between noise reduction 
and edge preservation. The resulting image is often more visually appealing and more 
accessible to analyze or process. Figure 20 shows an illustration of the capabilities of this 
detector. 

In contrast, Figure 21 shows a flowchart of the steps being implemented in this pro-
cess. Figure 22 shows the performance of ViT with a Gaussian blur detector during the 
training and validation process. Finally, the Gaussian blur detector can be summarized as 
follows: 
- Image Capture: Feeding the image that will be processed. 
- Apply Gaussian Blur: Utilize a Gaussian function to blur the image. This step in-

volves setting the radius, or standard deviation, which determines the extent of the 
blur. This process smooths the image by averaging the pixels with a weighted mean, 
where the Gaussian function determines the weights. The critical parameter in this 
function is the standard deviation (σ), which controls the extent of the blurring. A 
larger σ results in more blurring as it increases the kernel size, effectively averaging 
over a larger area around each pixel. This technique helps reduce image noise and 
detail, which is particularly useful for pre-processing in image-processing tasks. 

- Detection of Edges: Apply edge detection algorithms (like Sobel or Canny) to the 
blurred image to identify areas where sharp color transitions occur, indicating po-
tential details or boundaries. 

- Enhancement Decision: Analyze the detected edges to decide if further enhancement 
is necessary. This could involve sharpening the image or applying additional filters 
to enhance clarity. 

Figure 19. The performance of ViT with a texture detector during the training and validation process.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 36 
 

 

- Final Adjustment: Make final adjustments to the image contrast, brightness, or other 
attributes to ensure optimal visibility of essential features. 

 
Figure 20. Left to right: images with cracks vs. images without cracks, and top to bottom: original 
images vs. enhanced images. 

 
Figure 21. The implemented Gaussian blur detector algorithm. 

Figure 20. Left to right: images with cracks vs. images without cracks, and top to bottom: original
images vs. enhanced images.



Sensors 2024, 24, 3247 20 of 32

In contrast, Figure 21 shows a flowchart of the steps being implemented in this process.
Figure 22 shows the performance of ViT with a Gaussian blur detector during the training
and validation process. Finally, the Gaussian blur detector can be summarized as follows:

- Image Capture: Feeding the image that will be processed.
- Apply Gaussian Blur: Utilize a Gaussian function to blur the image. This step involves

setting the radius, or standard deviation, which determines the extent of the blur. This
process smooths the image by averaging the pixels with a weighted mean, where the
Gaussian function determines the weights. The critical parameter in this function is
the standard deviation (σ), which controls the extent of the blurring. A larger σ results
in more blurring as it increases the kernel size, effectively averaging over a larger
area around each pixel. This technique helps reduce image noise and detail, which is
particularly useful for pre-processing in image-processing tasks.

- Detection of Edges: Apply edge detection algorithms (like Sobel or Canny) to the
blurred image to identify areas where sharp color transitions occur, indicating potential
details or boundaries.

- Enhancement Decision: Analyze the detected edges to decide if further enhancement
is necessary. This could involve sharpening the image or applying additional filters to
enhance clarity.

- Final Adjustment: Make final adjustments to the image contrast, brightness, or other
attributes to ensure optimal visibility of essential features.

4.2.4. ViT with Local Binary Patterns (LBP) Detector Enhancement

LBP is a powerful method used for texture classification. It compares each pixel with its
surrounding neighbors. It encodes this relation into a binary number, effectively capturing
the local texture information. After computing the LBP, it is converted into an 8-bit unsigned
integer format (uint8), ensuring compatibility with other image processing functions and
avoiding issues with data types that can arise during mathematical operations on images.
The key to enhancing the original image is to blend it with the textured information obtained
from the LBP. This blending is controlled by a parameter, which defines how strongly the
texture features should influence the final image. The result is an image that retains its original
content but has an emphasized texture pattern, which can be crucial for task recognition or
feature detection. Figure 23 shows an illustration of the capabilities of this detector. In contrast,
Figure 24 shows a flowchart of the steps being implemented in this process. Figure 25 shows
the performance of ViT with LBP during the training and validation process.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 36 
 

 

- Final Adjustment: Make final adjustments to the image contrast, brightness, or other 
attributes to ensure optimal visibility of essential features. 

 
Figure 20. Left to right: images with cracks vs. images without cracks, and top to bottom: original 
images vs. enhanced images. 

 
Figure 21. The implemented Gaussian blur detector algorithm. Figure 21. The implemented Gaussian blur detector algorithm.



Sensors 2024, 24, 3247 21 of 32
Sensors 2024, 24, x FOR PEER REVIEW 23 of 36 
 

 

 
Figure 22. The performance of ViT with a Gaussian blue detector during the training and validation 
process. 

4.2.4. ViT with Local Binary Patterns (LBP) Detector Enhancement 
LBP is a powerful method used for texture classification. It compares each pixel with 

its surrounding neighbors. It encodes this relation into a binary number, effectively cap-
turing the local texture information. After computing the LBP, it is converted into an 8-bit 
unsigned integer format (uint8), ensuring compatibility with other image processing func-
tions and avoiding issues with data types that can arise during mathematical operations 
on images. The key to enhancing the original image is to blend it with the textured infor-
mation obtained from the LBP. This blending is controlled by a parameter, which defines 
how strongly the texture features should influence the final image. The result is an image 
that retains its original content but has an emphasized texture pattern, which can be cru-
cial for task recognition or feature detection. Figure 23 shows an illustration of the capa-
bilities of this detector. In contrast, Figure 24 shows a flowchart of the steps being imple-
mented in this process. Figure 25 shows the performance of ViT with LBP during the train-
ing and validation process. 

Figure 22. The performance of ViT with a Gaussian blue detector during the training and validation
process.

Sensors 2024, 24, x FOR PEER REVIEW 24 of 36 
 

 

 
Figure 23. Left to right: images with cracks vs. images without cracks, and top to bottom: original 
images vs. enhanced images. 

 
Figure 24. The implemented LBP detector algorithm. 

Figure 23. Left to right: images with cracks vs. images without cracks, and top to bottom: original
images vs. enhanced images.



Sensors 2024, 24, 3247 22 of 32

Sensors 2024, 24, x FOR PEER REVIEW 24 of 36 
 

 

 
Figure 23. Left to right: images with cracks vs. images without cracks, and top to bottom: original 
images vs. enhanced images. 

 
Figure 24. The implemented LBP detector algorithm. Figure 24. The implemented LBP detector algorithm.

Sensors 2024, 24, x FOR PEER REVIEW 25 of 36 
 

 

 
Figure 25. The performance of ViT with LBP during the training and validation process. 

5. Results and Discussion 
The effectiveness of the image processing algorithm is often determined by the com-

ponents of its confusion matrix, which consists of True Positive (TP), False Positive (FP), 
False Negative (FN), and True Negative (TN). The confusion matrix for each of the five 
models is depicted in Table 4. 

Table 4. Values of the confusion matrix for each model for both positive and negative classes. 

Custom CNN     
 FP FN TP TN 

Negative 71 6 3994 3929 
Positive 6 71 3929 3994 

ViT with a Canny Detector     
 FP FN TP TN 

Negative 5 8 3992 3995 
Positive 8 5 3995 3992 

ViT with a Texture Detector     
 FP FN TP TN 

Negative 8 8 3992 3992 
Positive 8 8 3992 3992 

ViT with a Gaussian Detector     
 FP FN TP TN 

Negative 5 3 3997 3995 
Positive 3 5 3995 3997 

ViT with an LBP Detector     
 FP FN TP TN 

Negative 6 3 3997 3994 
Positive 3 6 3994 3997 

Table 4 presents the confusion matrix values for different models, evaluating perfor-
mance for both the positive and negative classes. Each model, including a custom CNN, 

Figure 25. The performance of ViT with LBP during the training and validation process.

5. Results and Discussion

The effectiveness of the image processing algorithm is often determined by the compo-
nents of its confusion matrix, which consists of True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN). The confusion matrix for each of the five models is
depicted in Table 4.

Table 4 presents the confusion matrix values for different models, evaluating perfor-
mance for both the positive and negative classes. Each model, including a custom CNN,
ViT with Canny, texture, Gaussian, and LBP detectors, is assessed by FP, FN, TP, and TN
metrics. The custom CNN shows a balanced detection capability across both classes. At
the same time, the ViT variations display varied effectiveness, with the Gaussian Detector
and LBP Detector showing notable precision in correctly identifying TPs and TNs. Several
conclusions regarding the models can be drawn from Table 4, including:

- Custom CNN: This model has a higher count of FP and FN in the negative class than
the positive, indicating it may slightly favor the positive class in classification accuracy.

- ViT with Canny Detector: This shows a more balanced performance but slightly better
accuracy in detecting the positive class, as indicated by lower FP and FN.
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- ViT with Texture Detector: This model displays identical performance across both
classes, with equal numbers for all metrics, suggesting a balanced but potentially less
discriminative ability.

- ViT with Gaussian Detector: It exhibits high accuracy, particularly in identifying
the positive class with very low FP and FN, highlighting its effectiveness in precise
classifications.

- ViT with LBP Detector: Similar to the Gaussian model, it shows high accuracy and a
low misclassification rate, particularly in the positive class.

Table 4. Values of the confusion matrix for each model for both positive and negative classes.

Custom CNN

FP FN TP TN

Negative 71 6 3994 3929

Positive 6 71 3929 3994

ViT with a Canny Detector

FP FN TP TN

Negative 5 8 3992 3995

Positive 8 5 3995 3992

ViT with a Texture Detector

FP FN TP TN

Negative 8 8 3992 3992

Positive 8 8 3992 3992

ViT with a Gaussian Detector

FP FN TP TN

Negative 5 3 3997 3995

Positive 3 5 3995 3997

ViT with an LBP Detector

FP FN TP TN

Negative 6 3 3997 3994

Positive 3 6 3994 3997

In classification models, accuracy (TP + TN/TP + TN + FP + FN) is a crucial metric
representing the proportion of correct predictions. This is particularly vital in applications
like concrete crack detection for bridges, where it influences maintenance decisions and safety
measures. Precision (TP/TP + FP), another key metric, measures the ratio of TP to all positive
predictions, which is crucial for optimizing resources and minimizing unnecessary actions.
Recall, or sensitivity (TP/TP + FN), ensures that actual defects are identified, enhancing
safety and preventive maintenance. The F-measure combines precision and recall to provide
a balanced performance assessment (2 × precision × recall/precision + recall). Specificity
(TN/TN + FP), or the TN rate, helps avoid misidentifying healthy structures as damaged,
optimizing maintenance efforts and resource allocation. G-means integrate sensitivity with
specificity and precision with recall, providing a holistic evaluation of a model’s performance,
which is especially important in imbalanced datasets. These metrics collectively ensure crack
detection systems’ effectiveness, efficiency, and reliability in bridge maintenance. Table 5
summarizes the benefits of using each performance metric in concrete crack detection. In
Table 6, the average values for accuracy, precision, sensitivity, specificity, G-mean1, G-mean2,
and F1 scores across both classes of concrete images are presented for all employed models.
Moreover, Table 7 displays the number of epochs required to train each model to attain the
minimum loss and maximum accuracy and the corresponding time taken.
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Table 5. Performance metrics used in concrete crack detection.

Accuracy Precision Recall F-Measure Specificity G-Mean1 G-Mean2

Safety x x x
Cost reduction x x

Efficiency x x
Longevity x

Resource allocation x x
Minimizing false alarms x x

Maintenance x x x
Increase reliability x x x x x x

More balanced assessment x x x
Robustness to imbalanced data x x x

Optimization x x

Table 6. Average values for accuracy, precision, sensitivity, specificity, G-mean1, G-mean2, and
F1 scores.

Model Accuracy Precision Sensitivity F1-Score Specificity G-Mean2 G-Mean1

Custom CNN 99.04% 99.05% 99.04% 99.038% 99.04% 99.03% 99.05%

ViT with

Canny Detector 99.83% 99.87% 99.80% 99.84% 99.87% 99.84% 99.84%

Texture Detector 99.80% 99.80% 99.80% 99.80% 99.80% 99.80% 99.80%

Gaussian Detector 99.90% 99.87% 99.92% 99.90% 99.87% 99.90% 99.90%

LBP Detector 99.89% 99.85% 99.92% 99.89% 99.85% 99.89% 99.89%

Table 7. Number of epochs and time taken for each model.

Model Epochs Average Time Per Epoch (s) Total Time (s)

Custom CNN 9 190 1710
ViT with Canny 50 144.68 7234
ViT with Texture 50 139.72 6986

ViT with Gaussian 50 149 7450
Vit with LBP 50 312.18 15,609

Examination of Table 6 reveals nearly identical performance measurements across
various image classification models, a phenomenon possibly linked to factors like dataset
characteristics and performance saturation. Furthermore, the table reveals that ViT mod-
els combined with image enhancement algorithms outperformed the CNN model. The
dataset’s features, such as size, complexity, and noise levels, could have influenced the
performance of the CNN model. The ViT with Gaussian detector algorithm has achieved
the best results out of all models on all the metrics of performance measurements. The
primary objective of this paper was to assess the accuracy and efficiency of various DL
image-processing algorithms for detecting cracks in concrete. Most models demonstrated
exceptionally high-performance metrics, averaging around 99.8%. High-sensitivity tests
yield positive results for detecting damaged concrete in diagnostic and inspection scenarios.

In contrast, high-specificity tests yield negative results for normal concrete. Conse-
quently, it is crucial to consider sensitivity and specificity to understand any inspection test
comprehensively. The G-mean functions provide a balanced metric, considering sensitivity
and specificity as well as sensitivity and precision. All the examined models consistently
exhibited G-mean values of at least 99.1%, affirming their suitability for early detection of
concrete cracks. Furthermore, the results can be summarized below as follows:

- CNN: This model displays robust overall metrics, indicating a well-balanced approach
to accurately classifying and rejecting images. It is slightly lower in performance than
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some ViT models, likely due to its simpler or less specialized architecture. CNNs may
lack specific optimizations that specialized detectors incorporate, leading to slightly
lower performance metrics than more tailored solutions.

- ViT with Canny Detector: The Canny edge detector enhances feature definition by
focusing on edges, which is crucial for image classification tasks. This sharpens the
model’s ability to discern distinct features, improving precision and specificity by
reducing false positives. It has exceptionally high scores in precision and specificity,
reaching 100%, suggesting this model excels at minimizing false positives, likely due
to the Canny detector’s edge-detection capabilities enhancing the model’s ability to
discern features more sharply.

- ViT with Texture Detector: This model likely uses texture-based features for classifica-
tion, providing a uniform approach across different metrics. However, it might not
excel without additional context or detail refinement from other specialized detectors.
The uniformity across all metrics suggests that this model is highly consistent.

- ViT with Gaussian Detector: Incorporating Gaussian blur helps in smoothing out
noise and variations within the images, enhancing the TP rate (sensitivity). This
process might improve the model’s identification of relevant features by minimizing
background noise interference. Leading in the F-measure ensures that this model is
particularly effective in identifying TP.

- ViT with LBP Detector: Local Binary Patterns are effective for texture classification,
which can enhance sensitivity. However, the method might also introduce noise in the
form of false positives if the texture patterns are not distinct enough between classes,
slightly reducing precision and specificity.

The variations in performance can be attributed to how each model and its associated
techniques handle image features differently, their sensitivity to image alterations, and their
inherent design geared towards optimizing specific aspects of image classification. Each
detector’s unique approach to processing visual information results in these observable
differences in performance metrics.

An epoch in the context of ML, particularly in training NN, denotes a complete
iteration through the dataset during the training phase. In other words, an epoch is
completed when the model has processed every sample in the training dataset once.
During an epoch, the neural network’s weights are adjusted to minimize the error or
loss function as it learns from the dataset. The training process usually comprises multiple
epochs to ensure effective learning of the underlying patterns and relationships in the data.
The number of epochs is a hyperparameter, allowing adjustment based on the specific
problem and the desired model performance. Based on the values recorded in Table 7, it
becomes clear that although the CNN model had the lowest performance, it also had the
shortest running time without compromising so much of its performance. Various image
classification models’ training times and efficiencies reflect the complexities inherent to
their specific computational processes. With only nine epochs, the Custom CNN showed
the quickest training cycle despite a high average time per epoch, completing its training in
1710 s. This contrasted with the ViT models, which required 50 epochs each. The ViT with
Canny and the ViT with Texture models had relatively lower per-epoch times, leading to
total times of 7234 s and 6986 s, respectively, indicating efficiency in processing.

Meanwhile, the ViT with Gaussian exhibited a moderate epoch duration but an overall
longer training time due to the computational demands of Gaussian blurring. The most
time-intensive model, the ViT with LBP, had significantly longer epoch times, culminating in
a total training time of 15,609 s, reflecting the high computational load required for detailed
texture analysis through LBP. Each model’s training duration underscores the trade-offs
between computational complexity and processing efficiency in handling different aspects
of image analysis.
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6. Limitations and Future Works

In discussing the limitations of image classification algorithms for detecting concrete
cracks, it is crucial to consider several key factors affecting their performance and applica-
bility. The quality of input data is paramount, as poor lighting, low resolution, or noisy
images can significantly hinder the algorithm’s ability to detect cracks accurately. Concrete
cracks vary in forms like spalling, delamination, and cracking, each with distinct character-
istics, often requiring multiple or fine-tuned models for effective detection. Environmental
changes such as lighting, shadows, and weather conditions can also alter crack appearances,
complicating consistent performance. Additionally, concrete surfaces’ heterogeneous and
textured nature can make it difficult to distinguish actual cracks from natural variations.

Dataset imbalances, where the data may predominantly consist of images of healthy
concrete, can lead to biased models that underperform in detecting actual cracks. Overfit-
ting presents another challenge, as algorithms overly trained on specific datasets may not
generalize well to new, unseen data. The high computational demands of advanced image
classification models, especially those based on deep learning, may not be practical for
real-time or on-site applications where quick decision-making is essential. Moreover, many
deep learning algorithms operate as “black boxes” with limited interpretability, which can
be problematic in critical infrastructure applications.

Cybersecurity is a vital consideration, as using digital systems, IoT devices, and cloud
services in infrastructure monitoring exposes these systems to potential cyber threats,
risking the safety and integrity of the infrastructure [106]. Addressing these limitations
requires enhancing data quality, diversifying training datasets, developing robust models
against environmental variations, and securing digital infrastructures to improve the
reliability and effectiveness of image classification systems in concrete crack detection.

The specific methods used in this study, such as ViT combined with image enhance-
ment detectors like Canny, texture, Gaussian, and LBP, exhibit inherent limitations. While
these models show high accuracy on the dataset, their ability to generalize to new, unseen
datasets or real-world scenarios with varying conditions may be limited. Additionally,
the computational intensity required for processing and the potential for overfitting pose
significant challenges. These issues underscore the need for further research to enhance the
robustness and applicability of these algorithms in diverse and practical settings.

7. Conclusions

One in every nine bridges is expected to collapse across the United States. Therefore,
AI-based applications using machine vision can be designed to assist in detecting damaged
concrete in bridge structures. This paper showed how computer vision inspection via ViTs,
alongside diverse image enhancement detectors like Canny, texture, Gaussian, and LBP,
significantly improved concrete crack detection. These technological integrations refine
the precision of crack detection and establish a new benchmark by comparing multiple
state-of-the-art computer vision models on a consistent dataset, ensuring a comprehensive
evaluation of their performance. While ViT models demonstrate nearly perfect accuracy,
the deployed CNN model stands out for its remarkable performance by requiring signifi-
cantly less training time than the ViTs while delivering comparable results, showcasing its
efficiency in enhancing safety through reliable detection and timely maintenance.

Additionally, this approach aligns with I4.0 objectives by automating and optimiz-
ing the resource-intensive process of manual inspections, reducing operational costs, and
facilitating more efficient maintenance schedules. The paper also detailed performance
metrics nearing 100% utilizing ViT combined with diverse image enhancement detectors,
showcasing the prowess of computer vision in bridge inspection. This underscores the
transformative potential of advanced computer vision techniques, particularly the efficiency
of custom CNNs, in enhancing concrete inspection processes and setting a new standard
for precision and reliability in infrastructure maintenance. Future research should prioritize
leveraging the efficiency and accuracy of custom CNNs to address remaining challenges in
automated crack detection, integrating image classification with non-destructive evalua-
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tion methods for enhanced accuracy, and enabling real-time crack monitoring for prompt
maintenance. Advanced cybersecurity is also needed to protect digital infrastructure man-
agement systems, improve data quality and imaging for more precise crack detection, and
apply transfer learning to adapt algorithms to specific domains. Additionally, integrating
drones and robotics for efficient inspections and developing explainable AI for transparent
crack detection processes are pivotal.

A future direction for research might include the experimental testing of crack detec-
tion. Initially, a comprehensive dataset of images or videos showcasing various surface
cracks is collected under different environmental conditions to ensure diversity. These
images are then pre-processed to enhance visual quality, utilizing noise reduction and
contrast enhancement techniques. The selected computer vision algorithms, like edge
detection or deep learning models (e.g., CNNs), are applied to detect and categorize cracks.
Performance is assessed by comparing the algorithm’s results with manually annotated
ground truth data using metrics like precision and recall. Finally, the system is tested in
real-world settings to evaluate its practical effectiveness and robustness. It is followed by
iterative adjustments based on feedback to enhance its accuracy and adaptability. Finally,
assessing crack depth remains a critical area lacking a dedicated DL solution. Table 8 shows
some areas where future research direction might be needed.

Table 8. Future research directions.

Direction Areas

Developing new
algorithms

Researchers can focus on designing more sophisticated algorithms tailored explicitly for concrete
fault detection, incorporating domain-specific knowledge and expertise. Concentrating on the depth
of the neural model plays a pivotal role in enhancing efficiency while conserving computational
resources while identifying cracks. Other methods, such as attention gates, can be integrated with
CNN to increase pixel-level accuracy, which requires attention as well.

Integration with other
non-destructive inspection
methods

Creating a multi-modal system by combining image classification algorithms with other
non-destructive evaluation techniques, such as ground-penetrating radar, ultrasonic testing, or
infrared thermography, can improve the fault detection process and overall accuracy.

Real-time monitoring and
fault detection

Develop systems capable of real-time monitoring and fault detection, enabling prompt identification
and repair of defects, thus extending the service life of bridges and reducing maintenance costs.

Enhancing cybersecurity
As digital systems become more integrated into infrastructure management, ensuring the security
and privacy of these systems will be crucial. Future research could focus on developing advanced
cybersecurity measures to protect against threats and vulnerabilities.

Improving data quality

Investigate methods to enhance the quality of images used for fault detection, such as advanced
image preprocessing techniques, image enhancement, or higher-resolution imaging sensors.
Furthermore, there is a need for a uniform dataset to assess network designs and associated
operations. The skewed nature of unbalanced datasets can compromise network efficiency,
necessitating effective strategies to address these challenges.

Transfer learning and
domain adaptation

Study the application of transfer learning and domain adaptation techniques to improve the
performance of image classification algorithms when applied to concrete fault detection in bridges,
especially in cases where labeled data is scarce.

Explainable AI

Develop more transparent and interpretable image classification algorithms, enabling engineers and
decision-makers to better understand the underlying reasons for fault detection results and build
trust in the system. Furthermore, the complex parameterization of DL models demands significant
memory and rapid computational capabilities, making their practical deployment a subject of
ongoing investigation.

Integration of Industry 5.0

Investigate the potential of further integrating collaborative robots, advanced NLP engines (ChatGPT,
for example), Digital Triplet, and AIoT and their effect on maintaining infrastructures and their
impact on the overall sustainability of infrastructures, considering aspects such as resource
consumption, environmental impact, and long-term maintenance costs.

Crack depth Assessing the depth of a crack can provide insights into its seriousness, yet there is not a recognized
DL method specifically designed for this purpose.
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