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Abstract: Shadow removal for document images is an essential task for digitized document applica-
tions. Recent shadow removal models have been trained on pairs of shadow images and shadow-free
images. However, obtaining a large, diverse dataset for document shadow removal takes time and
effort. Thus, only small real datasets are available. Graphic renderers have been used to synthesize
shadows to create relatively large datasets. However, the limited number of unique documents and
the limited lighting environments adversely affect the network performance. This paper presents a
large-scale, diverse dataset called the Synthetic Document with Diverse Shadows (SynDocDS) dataset.
The SynDocDS comprises rendered images with diverse shadows augmented by a physics-based
illumination model, which can be utilized to obtain a more robust and high-performance deep
shadow removal network. In this paper, we further propose a Dual Shadow Fusion Network (DSFN).
Unlike natural images, document images often have constant background colors requiring a high
understanding of global color features for training a deep shadow removal network. The DSFN
has a high global color comprehension and understanding of shadow regions and merges shadow
attentions and features efficiently. We conduct experiments on three publicly available datasets, the
OSR, Kligler’s, and Jung’s datasets, to validate our proposed method’s effectiveness. In comparison
to training on existing synthetic datasets, our model training on the SynDocDS dataset achieves an
enhancement in the PSNR and SSIM, increasing them from 23.00 dB to 25.70 dB and 0.959 to 0.971
on average. In addition, the experiments demonstrated that our DSFN clearly outperformed other
networks across multiple metrics, including the PSNR, the SSIM, and its impact on OCR performance.

Keywords: shadow removal; document images; deep neural networks

1. Introduction

With the popularization of high-performance cameras in smartphones, many people
have started using phone cameras instead of scanners to digitize documents. Compared
to scanners, however, capturing documents with a camera often leads to problems such
as shadows, because light sources might be occluded by the camera or the user’s hand.
Even without occluders, uneven illumination is likely to occur. Removing shadows from
document images is an essential task because shadows and uneven illumination hinder
legibility for users and affect the performance of various computer vision tasks, such as
optical character recognition (OCR).

Most traditional document shadow removal methods use heuristics to explore doc-
ument image characteristics [1–5]. However, owing to limitations of the heuristics, these
approaches will often only work well for some document images but fail for others [6].
Deep learning-based methods have recently been applied to various computer vision
and document shadow removal tasks, demonstrating promising results. Many shadow
removal methods train on given sets of shadow images and shadow-free images to remove
shadows in an end-to-end manner [6–9]. Existing studies on shadow removal from a
single document have proposed real datasets containing pairs of shadow and shadow-free
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document images. However, small real datasets had been available due to the cost of
creating large datasets [1–3,5,6]. To combat this problem, comparatively large datasets are
created that have real-world document pairs with various samples under different lighting
conditions [10,11]. However, it is still difficult to produce data with a comprehensive
variety of characteristics in a real environment. Lin et al [6] also create a relatively large
dataset by synthesizing shadows to documents using a graphic renderer. Nonetheless,
the lighting environments, including various occluders and environment maps, are lim-
ited. The small number of unique documents also remains a limiting factor to the trained
network’s performance.

We address these issues by creating a synthetic dataset that alleviates the limitations
on the number and diversity of data, which allows the deep shadow removal network to
perform better and more robustly for various characteristics. This paper builds a large-scale,
diverse synthetic dataset rendered in various environments with abundant materials using a
graphic renderer, dubbed Synthetic Document with Diverse Shadows (SynDocDS). They are
further diversified based on our observations and the shadow synthesis pipeline [12], which
considers shadow characteristics to obtain more plausible data. Furthermore, in shadow
removal, it is crucial for the network to specifically learn the location of the shadows.
Moreover, inspired by Bako et al. [1], it can be assumed that document images often have
constant background colors; thus, the network for document shadow removal requires a
high understanding of global color features. This paper proposes a network that removes
shadows from a document image with high global color comprehension and learns shadow
regions. We call our proposed network the Dual Shadow Fusion Network (DSFN). Ex-
periments showed that the deep shadow removal networks trained only on the proposed
SynDocDS dataset performed well on real data, and performance improvements were seen
when the SynDocDS dataset was used for pre-training. Finally, we demonstrated that the
proposed DSFN yielded better results than other methods.

Our contributions are as follows:

• We propose the synthetic dataset called SynDocDS, a large-scale, diverse synthetic
document dataset comprising shadow images, shadow-free images, and shadow mat-
tes in various scenes. The dataset is diversified based on our observations regarding
the illumination model. The source code and datasets will be released.

• We show that (pre-)training on the SynDocDS dataset results in more effective and
robust networks than training on a limited real dataset.

• We propose a new network for shadow removal that fuses multiple features and
shadow attentions efficiently. Experimental results show that our network yields
better results than other networks.

Section 2 surveys the works related to shadow removal and shadow synthesis. Fol-
lowing that, Section 3 introduces our novel dataset. Section 4 details the architecture of the
proposed network for document shadow removal. In Section 5, the experimental results
are presented, and Section 6 discusses the results.

2. Related Work

In this section, firstly, we review the general shadow removal method for natural
images in Section 2.1. In addition, we survey the works related to document shadow
removal. Secondly, we go over existing works on shadow synthesis for creating shadow
removal datasets in Section 2.2.

2.1. Shadow Removal

Natural images. Some traditional methods use handcrafted features and achieved
shadow removal using physical models of illumination and color [13,14]. However, their
performance is limited. In recent years, several deep learning-based methods have been pro-
posed for shadow removal in natural images, achieving state-of-the-art performances. Deep
learning-based methods achieve the removal of shadows by learning complex mappings on
large datasets containing shadow images, shadow-free images, and shadow masks [15,16].
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STCGAN [7] trains to perform shadow detection and removal simultaneously by stacking
two conditional GANs. A directionally aware method has been proposed to obtain 2D
spatial context from four directions [8]. Moreover, the work by Fu et al. [17] adaptively
fuses multiple estimated overexposed images using a shadow-aware fusion network to gen-
erate shadow-free images. DHAN [9] incorporates spatial attention and learns the shadow
regions explicitly in a hierarchical layer aggregation style [18]. MaskshadowGAN [19] and
LG-ShadowNet [20] exploit GAN-based models to perform unsupervised shadow removal
by learning maps between shadow and unshadowed regions. Liu et al. [21] propose a
shadow generation model to construct pairs of pseudo-shadow and shadow-free images
for weakly supervised shadow removal. Methods that do not require paired teacher images
have also been introduced for shadow removal for natural images in recent years. How-
ever, un/self/weakly-supervised learning is generally not able to achieve a performance
superior to supervised learning with paired data [19–21].

Document images. Several methods specifically designed to remove shadows from
document images have been proposed. The water-filling method by Jung et al. [3] converts
the input image into a topographic surface and simulates an immersion process. How-
ever, it tends to apply a color shift, resulting in brighter colors compared to the original.
Kligler et al. [2] try to improve the quality of document images by representing an image
as a 3D point cloud and selecting pixels to be restored using the visibility detection method.
However, the results often contain shadow edges. Bako et al. [1] calculates the ratio of the
global background color to the local background color of each patch to obtain a shadow
map and adjusts the shadows of the input image according to the shadow map. Since these
methods detect the background area and interpolate the remainder, they fail if the document
contains a large area of figures and shadows. Lin et al. [6] are the first to propose a deep
learning method for document shadow removal, achieving promising results. Their method
uses the estimated background color and an attention map obtained by GradCAM [22].
Zhang et al. [10] propose a method for extracting a background image that accurately
depicts the background colors. They also propose a network that uses the predicted spa-
tially varying background as auxiliary information. Li et al. [11] design a shadow removal
network that can effectively learn low-frequency details and high-frequency boundaries
for high-resolution document images.

2.2. Shadow Synthesis

As mentioned in the previous section, many deep learning-based shadow removal
methods have been proposed in recent years. These methods learn based on a set of shadow
and shadow-free image pairs. These general supervised learning methods require a large set
of paired images. However, due to the considerable cost of creating such datasets, currently
available real image datasets for document shadow removal are small and are mainly in-
tended for evaluation purposes [1–3,5,6]. Table 1 summarizes the shadow removal datasets
for document images. Training on such limited data significantly affects the network’s
performance because the network cannot fully understand the scene [9]. Therefore, existing
studies have proposed training deep learning models by generating pseudo-images.

Table 1. Summary of document shadow removal datasets.

Dataset #pairs #documents Characteristics of Images Shadow Mask

Bako [1] 81 11 Light shadows, text only -
Kligler [2] 300 25 Dark shadow, complex content -
Jung [3] 87 87 Multicast shadows -
OSR [5] 237 26 Colored shadows, text only ✓

RDSRD [6] 540 25 Complex content/shadows ✓
RDD [10] 4916 <500 Complex content/shadows ✓
SD7K [11] 7620 350 Complex content/shadows ✓

SDSRD [6] 8309 970 Synthetic shadows, diverse
contents/shadows ✓

SynDocDS (ours) 50,000 † 1420 † Synthetic documents and shadows,
diverse textures/contents/shadows ✓

† It is possible to create as many images as the number of material combinations.
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Several methods exist to synthesize shadow images for shadow removal. Some of the
approaches directly render the shadow/shadow-free image pairs with a 3D renderer [23,24].
In the work by Sidrov [23], pairs are created in an urban landscape in a computer game.
In [24], shadows are projected on a plane with a texture of realistic images on the surface
using ray tracing in Maya [25]. The pipeline by Gryka et al. [24] is limited because the
settings only contain a single light source (in addition to the simulated sky and global
illumination) and a single occluder. Furthermore, the resulting rendering is not plausible
since the material information of the texture image is not accessible. Other methods for
synthesizing realistic shadows have recently been proposed using GANs. For example, the
Shadow Matting GAN (SMGAN) [9] synthesizes a shadow image by taking a shadow-free
image and a randomly sampled shadow mask. However, since the SMGAN learns from
existing datasets, the performance is severely limited when the training data are small
and biased. Thus, deep learning-based methods are still necessary and require training
data closer to the real world, whereas having paired data is desirable. SynShadow [12]
extends a physics-based illumination model inspired by [14,15] rather than rendering
shadows directly using a renderer. A shadow is synthesized into an arbitrary shadow-
free image using a shadow matte by randomizing the parameters of the shadow model.
SynShadow can produce infinite combinations of shadow mattes and shadow-free images
and generate hundreds of shadows with different intensities, even for the same pair.
However, the shadow mattes assume a flat plane, and the synthesized shadows may not
perfectly match the geometry of the background. In addition, the sampling distributions
of the parameters are determined only from observations of natural images (ISTD+ [7,15],
SRD [16]),which were taken outside. For images with significantly different characteristics
(e.g., an indoor environment), selecting appropriate parameter distributions becomes
necessary again.

In this way, synthetic images are often used to train deep neural networks for shadow
removal. Similarly, synthetic data have been proposed for document shadow removal.
DocIIW [26] provides a sizeable multi-illuminated document dataset, Doc3DShade [26],
that extends the public dataset Doc3D [27]. This study uses randomly distorted paper to
capture shadows under complex lighting conditions. Furthermore, using various types of
diffuse paper materials, such as magazines, newspapers, and printed documents, they con-
sidered the material properties of the shadows under complex lighting conditions that are
impossible with rendering engines. However, the shadows contained in the Doc3DShade
dataset are caused by geometric shapes, and their characteristics differ significantly from
shadows created when an occluder blocks primary light. Therefore, they are not applica-
ble for removing hard shadows caused by such conditions. In the work by Lin et al. [6],
a comparatively large dataset called the Synthetic Document Shadow Removal Dataset
(SDSRD) has been proposed, in which shadows are synthesized on captured images, mostly
from the PRImA Layout Analysis dataset [28], using Blender [29]. This allows us to use a
large variety of document images. However, the number of unique documents is limited
to about 1000, while the diversity of the generated images is minimal due to the limited
variety of occluders and environment maps used for rendering. In addition, as in [24],
the lack of information about materials and consideration of paper geometry limits the
network’s performance. In this paper, we observe document characteristics more closely
and propose a significantly more diverse and large-scale synthetic dataset for document
shadow removal.

3. Synthetic Documents with Diverse Shadows

For document shadow removal, we propose a new diverse dataset, SynDocDS. Exam-
ples are shown in Figure 1. The process of creating the SynDocDS dataset comprises two
steps: (i) image rendering and (ii) shadow augmentation. We describe both steps in detail
in this section.
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Figure 1. Example triplets from SynDocDS dataset. From top to bottom: shadow-free images, shadow
images, and shadow mattes.

3.1. Image Rendering

First, we describe the rendering settings. Synthetic document images are obtained
by creating documents from text and figures and rendering images with and without
shadows using path tracing [30] in rendering software, Blender (2.82a) [29], under diverse
conditions. In addition, only the shadow regions can be extracted using Blender’s function,
which is called Shadow Catcher, and we use these images as a shadow matte. Figure 2
shows an overview of the rendering settings. The details of each rendering setting are
described below, corresponding to the elements written in Figure 2.

Mesh Control

FiguresTexts

Document
Image

Synthesis

Light sources

Occluder
Normal map

Synthesized
document

Environment map

Paper 3D mesh
or

Simulated
Paper 3D mesh

Camera

Figure 2. Overview of rendering.
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Document image synthesis. First, text data and image data from the DDI-100
dataset [31] are combined to create document images. When compositing, the text and
images are positioned so they do not overlap. Note that although the text data in DDI-100
are provided as a binary image, it is possible to use standard text by adding positional
information. The textures of the synthesized document images are subsequently applied to
the document mesh.

Mesh control. To extend the background document images, we introduce random
geometric distortions to a paper mesh, applying pressure from around the edges to the
center of it by considering the physical properties. Detailed mesh properties are shown in
Table 2. Additionally, we use distorted paper meshes from Doc3D [27], the 3D dataset with
realistic paper for warping and renderings. Using a mesh of documents manipulated in
this way dramatically increases the diversity of the dataset. During rendering, the mesh is
randomly sampled, while the probability of plane and distorted mesh is set to equal.

Table 2. Property details of the document mesh.

Property Value

Mass 0.4
Friction 15

Stiffness
Tension 80

Compression 80
Shear 80

Bending 10

Damping
Tension 25

Compression 25
Shear 25

Bending 1

Normal map. Fine details, such as wrinkles on the paper’s surface, are represented
by applying a normal map to the document mesh. We use the randomly sampled sand,
and fabric normal maps from the SVBRDFs dataset [32].

Occluder. We adopt ShapeNet [33] for occluders, a publicly available 3D model
dataset. Then, we randomly sample a single 3D mesh from ShapeNet and use the geometric
information while rendering a single shadow document image.

Environment map. To enrich the background scene, we use SUN360 [34] and the
Laval Indoor HDR dataset [35], which provides environment maps in the form of panora-
mas. Although SUN360 [34] contains indoor/outdoor panoramas, the Laval Indoor HDR
dataset [35] only contains indoor panoramas. We randomly sample panoramas but ensure
the indoor and outdoor frequencies are the same.

Light sources. To increase the diversity of the dataset, the rendering is performed
with different combinations of the number/radius of lights and colors. The number of
lights ranges from 1 to 4. The lights are placed 2.2 m away from the paper and the radius
is randomly determined in the range of [0.01, 0.05]. The color of light is determined by
uniformly sampling the hue and saturation according to [0, 1] and [0, 0.3] from a range
normalized to 0–1, respectively. The values are fixed at 1.

Camera. The virtual paper is captured through the camera as shown in Figure 2.
The camera is positioned 1.5 m above the paper, and the lens principal point is set to be the
center of the paper. All occluder objects are also placed outside the camera view.

3.2. Enriching Shadow Images

To further diversify and enrich the rendered shadow images, the shadow images are
augmented following SynShadow [12], which considers shadow characteristics. In the
work by Shor et al. [14], following the image formation equation [36], and assuming that
the affine nature of the relationship between illuminated and shadowed intensities does
not change, the relation between Ilit and Idark at any pixel is formulated as follows:

Ilit
k = αk + γIdark

k , (1)
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where αk, k ∈ {0, 1, 2} represents the camera’s spectral response to the reflected direct
illumination in the RGB color channels and γ is the inverse of the ambient attenuation
factor. Both αk and γ are scalar values. Based on the above equation, a shadow synthesis
pipeline was proposed by Inoue and Yamazaki [12]. To compute a dark image Idark

ijk , where
all the pixels are shadowed and have the same attenuation property, from shadow-free
image Isf

ijk, the affine model in Equation (1) yields the following:

Idark
k =

1
γ

Isf
k − αk

γ
. (2)

In [12], αk and γ are converted to four parameters (l0, l1, l2, s1), which are written as
s1 = 1−αk

γ , lk = αk. Then, Equation (2) is explained as follows:

Idark
ijk =


s1

1 − l1
(Isf

ijk − lk) if Isf
ijk − lk ≥ 0,

0 if Isf
ijk − lk < 0,

(3)

where i and j are pixel indices. To obtain a plausible range of shadows, in [12], the set of pa-
rameters is determined based on the observation that (l0, l1, l2) are correlated. The relation
is often l0 > l1 > l2 due to the blueish ambient light from the sky in outdoor scenes. How-
ever, the observation is based on ISTD+ [7] and SRD [16] and is not optimal for synthetic
shadow document image generation. Therefore, we visualize the shadow attenuation of
each RGB channel, following [12,14], for an existing dataset of document images from the
validation set (these images are not used during testing), as shown in Figure 3. In contrast
to the observation in [12], we found that the magnitude relation between (l0, l1, l2) varies
depending on the characteristics of the image, even in the same dataset. For example, the in-
door environment is affected by various ambient light sources, unlike outdoor photography.
Since the distribution of each parameter is different, in this study, the parameter settings
are determined by considering real document image datasets as illustrated in Figure 3. We
introduce ∆l0 = l0 − l1, and ∆l2 = l2 − l1 and sample (l1, s1, ∆l0, ∆l2). Both l1 and s1 follow
a uniform distribution U (a, b). We employ (a, b) = (0.1, 0.125) and (a, b) = (0.1, 0.9) for
l1 and s1, respectively. Both ∆l0 and ∆l2 follow normal distribution N (µ, σ). We employ
(µ, σ) = (0, 0.03) for ∆l0 and ∆l2.
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Figure 3. Plots of the shadow attenuation for each of the three color channels in the document
images. The horizontal axis corresponds to the value of shadow images and the vertical axis to
the shadow-free images. Left to right, the examples are from the OSR [5], Kligler’s [2], and Jung’s
datasets [3], respectively.

Finally, the shadow image Is
k is obtained by alpha composing Isf

k and Idark
k using the

shadow matte M as the alpha factor:

Is
k = (1 − M)⊙ Isf

k + M ⊙ Idark
k . (4)
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As opposed to [12], we achieve more realistic shadow images as the composited
shadow fully matches the background geometry. We show examples in Figure 4. We use
this synthesis pipeline to extend the rendered shadow images. In this study, the number of
rendered images was extended by a factor of 10.

Original rendered 
shadow image

Augmented rendered shadow imagesCorresponding 
shadow matte

Figure 4. Examples of augmented rendered shadow images.

4. Method

This paper proposes the Dual Shadow Fusion Network (DSFN) to remove shad-
ows from a document image. In Figure 5, we illustrate the overall architecture of the
DSFN. To train our network, we use N triplets {Is, Isf, M}, each comprising a shadow
image Is, a shadow-free image Isf, and a shadow matte M. Given Is, the proposed net-
work learns the shadow-free image Isf with the help of the attention loss using M. The
DSFN actually outputs the predicted shadow-free image Isf′, and the shadow matte M′:
(Isf′, M′) = DSFN(Is). In this section, we detail the network structure of the proposed
DSFN in Section 4.1. Additionally, we describe the loss functions and training settings in
Section 4.2.
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4.1. Dual Shadow Fusion Network

For shadow removal, it is crucial for the network to specifically learn the location
of the shadows. In addition, document images, unlike ordinary images, often have
constant background colors, which requires networks to develop an understanding of
global color features. Our DSFN is mainly based on the Dual Hierarchical Aggregation
Network (DHAN) [9] for removing shadows from natural images. The DHAN [9] incor-
porates an attention module for spatial attentions and mixed layer features. The network
learns the shadow regions explicitly in a hierarchical layer aggregation style [18]. First, to ex-
tract rich representation, we used parts of the SegFormer architecture [37] as a backbone.
SegFormer comprises a novel hierarchical transformer encoder that outputs multiscale fea-
tures and a multilayer perceptron (MLP) decoder that aggregates information from different
layers. This achieves powerful representations combining local and global attention [37],
leading to a high understanding of global color [38]. The transformer encoder is pre-trained
on ImageNet-1k [39] as in [37]. Unlike the original SegFormer paper [37], the last MLP is
not used, and the feature map is resized to the same height and width as the input in the
upsample layer. The encoded features are then concatenated with the input image and
input to the 1 × 1 convolutional layer. In the next step, we encode multiscale features from
the transformer using several dilated convolutions. To learn the shadow regions more
specifically, we adopt a gating mechanism proposed in [40], which acts as the pixel atten-
tion module and nonlinear activation function, with dilated convolution called gDconv,
as shown in Figure 5. To aggregate features hierarchically and merge shadow attention and
features, we propose a Multifusion Block (MFB) that fuses the multiple feature maps from
different paths dynamically. Finally, we used a spatial pooling pyramid [41] after the last
MFB for feature mixing.

gDconv. Our gDConv is mainly based on a gating mechanism proposed in [40]
and used as stacked two layers. The n-th gDconvn

x2 layer is defined as follows:

gDConvn
×2(x) =

{
gDConv1(gDConv1(x)) if n = 0,

gDConv22n(gDConv22n−1(x)) otherwise.
(5)

Given feature maps x, the gDconvk normalizes them using InstanceNorm IN(·). Then,
we use a point-wise convolutional layer PWC(·) and depth-wise dilated convolutional
layer DWDC(·). The feature applied with the sigmoid function Sigmoid(·) is used as the
gating signal and is summed with the identity input x, which can be formulated as follows:

gDConvk(x) = PWC(Sigmoid(PWC(IN(x))) · DWDCk(PWC(IN(x)))) + x, (6)

where k represents the k-dilated convolution. These gating mechanisms act as the pixel at-
tention module, which is sometimes used for in-painting tasks to restore partially degraded
regions or for image restoration tasks to improve the capability of networks [42,43].

Multifusion Block. Our Multifusion Block (MFB) is a modified multipath version
of SK Fusion [40], a simplified SK module [44]. We show an overview of the MFB in
Figure 6. The MFB takes multiple feature maps {x0, x1, ..., xN} and then fuses them via
y = ∑N

i ai · xi = MFB({x0, x1, ..., xN}) with fusion weights ai. To obtain the fusion weights,
we use global average pooling GAP(·), MLP (Linear-ReLU-Linear) MLP(·), a softmax
function F (·), and a split operation:

{a0, a1, ..., aN} = Split(F (MLP(GAP(
N

∑
i

xi)))). (7)

This MLP plays the role of reducing and increasing dimensionality, similar to the
channel attention mechanism, which can re-weight each feature channel proposed in [45].
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Dual hierarchical aggregations. Our proposed network is constructed in a hierarchical
layer aggregation style based on [9,18] for spatial attentions and mixed layer features. Our
DSFN merges the features from gDConv using MFBs for attention. The features obtained
from each layer can be defined as follows:

x f use
n = MFB f use

n ({gDConvn
×2(xm

n ), gDConvn
×2(xs f

n )}), (8)

where n represents the n-th layer. The shadow attention and shadow-free features, xm and
xs f , are defined as follows:

xm
n =


MFBm

n ({gDConvn
×2(x̂)}) if n = 0,

MFBm
n ({xm

n−1, gDConvn
×2(x f use

n−1)}) if n = 1,

MFBm
n ({xm

n−2, xm
n−1, gDConvn

×2(x f use
n−1)}) otherwise,

(9)

xs f
n =


MFBs f

n ({gDConvn
×2(x̂)}) if n = 0,

MFBs f
n ({xs f

n−1, gDConvn
×2(x f use

n−1)}) if n = 1,

MFBs f
n ({xs f

n−2, xs f
n−1, gDConvn

×2(x f use
n−1)}) otherwise,

(10)

where x̂ is the encoded features obtained from the SegFormer encoder [37]:

x̂ = Conv1×1(Cat({SegFormerEnc(Is), Is})). (11)

Cat(·) means the feature concatenation. For each feature obtained from the last layer,
a spatial pooling pyramid (SPP) [41] is applied to fuse multilevel features:

Isf′ = Conv1×1(Sigmoid(SPP(xm
n ) · SPP(xs f

n )),

M′ = Conv1×1(Sigmoid(SPP(xm
n )).

(12)

The Sigmoid(·) layer is added only at the end of the shadow attention. There-
fore, our DSFN outputs the predicted shadow-free image Isf′, and the shadow matte
M′: (Isf′, M′) = DSFN(Is).

4.2. Loss Functions

The basic loss function is L1 loss, which is defined as the absolute error between the
ground truth Isf and the output Isf′.

Lr =
N

∑
i=1

∥ Isf − Isf′ ∥1 . (13)

Since the output from convolutional neural networks might leave artifacts around
the shadow edges, degrading the quality of shadow removal as mentioned in [9], we use
the adversarial loss [46]. The proposed network can be considered the generator, while
the discriminator D comprises five convolutional layers, a ReLU, and Batch Normaliza-
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tion following [6,7,9]. The ground truth Isf and the predicted shadow-free image Isf′ are
discriminated by patch. The generator outputs a realistic image to fool the discriminator,
and the discriminator is optimized to identify the generated image. The loss is as follows:

LcGAN = logD(Is, Isf) + log(1 − D(Is, Isf′)). (14)

Furthermore, we use the perceptual loss [47] to account for semantic measures and
low-level details in multiple contexts. This utilizes a convolutional neural network Φ
that has been pre-trained for image classification. In this research, Φ is a 19-layer VGG
network [48] pre-trained on the ImageNet dataset [39]. Let Φi(x) be the feature map
obtained from the i-th activation layer of the network when processing image x. We use
layers 1 to 5 and define the perceptual loss as follows:

Lp =
N

∑
i=1

∥ Φi(Isf)− Φi(Isf′) ∥1 . (15)

The L1 loss between the predicted shadow matte M′ and the ground truth shadow
matte M is used for learning the shadow regions, as the shadow matte M is a gray-scale
image with continuous values:

Ls =
N

∑
i=1

∥ M − M′ ∥1 . (16)

The final objective function is therefore as follows:

min
G

max
D

λ0LcGAN + λ1Lr + λ2Lp + λ3Ls. (17)

Based on this objective function, we use the Adam Optimizer (β1 = 0.5, β2 = 0.999).
The learning rate is set to 0.00001, and the parameters λ0, λ1, λ2, and λ3 are set to 2, 100, 20,
and 100, respectively.

5. Experiments
5.1. Dataset Details

To compare our method with existing work, we used three real datasets, optical
shadow removal (OSR) [5], Kligler’s [2], and Jung’s [3] datasets. Since these three datasets
have different characteristics, as shown in Table 1, they are suitable to evaluate the robust-
ness gains by learning on the proposed SynDocDS dataset. At this time, Bako’s dataset [1]
and RDSRD [6] are unfortunately not publicly available. Images were resized to 512 × 512.
As shown in Table 1, the OSR dataset [5] and Kligler’s dataset [2] have overlap in the
documents used as the background, so we divided them into a training set, a validation set,
and a test set so that they were not included in different sets. In addition, some datasets do
not contain shadow masks. Therefore, we created new shadow masks by applying Otsu’s
binarization method to the difference between shadow and shadow-free images.

Real document image datasets. The OSR dataset [5] comprises 237 triplets of shadow
images, shadow-free images, and shadow masks. Among them, 163 triplets were for
training, 28 for validation, and 46 for testing. Kligler’s dataset [2] contains 300 pairs of
shadow images and shadow-free images from four categories: handwritten documents,
printed documents, posters, and fonts. Among them, 192 triplets were for training, 59 for
validation, and 49 for testing. Jung’s dataset [3] contains 87 pairs of shadow images and
shadow-free images. To increase the testing set, we changed the original split by adding
10 pairs to the original testing set, resulting in 30 pairs for testing. Then, we randomly
divided the remaining 57 pairs into training and validation sets containing 50 and 7 pairs,
respectively.

SDSRD. As the SDSRD [6] is not publicly available with complete data, we rendered
a nearly equal number of images using the provided python script and Blender [29]. In the
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original paper, 8309 triplets comprising shadow-free images, shadow images, and shadow
mattes were generated, 7533 of which served as training data and the remaining 776 as test
data. Therefore, we generated 8018 triplets using the same background document images
as in [6], with 6995 as training data and the remaining 1025 as test data. These were split so
as not to contain the same background image.

SynDocDS dataset. Additionally, we used the proposed SynDocDS dataset for train-
ing. The SynDocDS dataset comprises triplets of a shadow image, a shadow-free image,
and a shadow matte. Although it is possible to create as many images as the number
of material combinations, 50,000 quadruplets were created in advance for experiments,
as noted by † in Table 1. Among them, 40,000 were for training, 5000 for validation,
and 5000 for testing.

5.2. Compared Methods and Evaluation Metrics

Models. We compared the proposed network to six state-of-the-art methods, including
three traditional methods by Bako et al. [1], Kligler et al. [2], and Jung et al. [3], along with
three basic deep learning-based methods, STCGAN-BE [6,7], BEDSR-Net [6], and DHAN [9],
which do not require particular input or mechanisms. Because the training codes of
STCGAN and BEDSR-Net are not publicly available, we re-implemented their models
according to their papers.

Evaluation metrics. To perform a quantitative comparison, we followed previous
shadow removal approaches [7,9] and evaluated the root mean square error (RMSE) in
the LAB color space. In addition, we reported the peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) to evaluate the quality of the shadow removal
results. Finally, to evaluate the improvement in readability, we compared the performance
of optical character recognition (OCR). These quantitative scores were reported as the
average score over three training sessions.

5.3. Visual Quality

Training on a synthetic dataset. Here, we trained a deep learning-based network
on the synthetic dataset, the SDSRD [6], and the proposed SynDocDS dataset. Then, we
evaluated each model on real image datasets. Note that all data from the training, validation,
and test sets were used for the evaluation, except for those used for the observation
of shadows in document images. As shown in Table 3, the networks trained on our
proposed SynDocDS dataset performed better than the SDSRD. Figure 7 illustrates the
qualitative results for each method. Even without using real data, deep learning-based
models removed shadows reliably. Furthermore, we found that the models trained on our
SynDocDS dataset were more robust and provided a higher quality, indicating sufficient
effectiveness in using deep learning models without real data. In addition, our DSFN gave
better results with different datasets than other methods quantitatively and qualitatively.

(f) ST-CGAN-BE (g) BEDSR-Net (h) DHAN (i) Ours(a) Input (b) GT

Trained on SynDocDS

(e) Jung(c) Bako (d) Kligler (j) ST-CGAN-BE (k) BEDSR-Net (l) DHAN (m) Ours

Trained on SDSRD

Figure 7. Qualitative comparison. From top to bottom, samples are from the OSR [5], Kligler’s [2],
and Jung’s [3] datasets, respectively.
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Table 3. Quantitative comparison. The arrows indicate whether a high score (↑) or low error
(↓) indicates better performance. The best and second-best results are marked in red and blue,
respectively. The best score in each training dataset is bold.

Training
Dataset Method Average OSR Dataset [5] Kliglers’s Dataset [2] Jung’s Dataset [3]

PSNR (↑) SSIM (↑) PSNR (↑) SSIM(↑) PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

- Original 15.72 0.9100 17.25 0.9326 14.73 0.8874 14.93 0.9211

-
Bako [1] 22.31 0.9494 20.57 0.9599 24.78 0.9443 18.54 0.9383

Kligler [2] 19.88 0.9184 18.17 0.9251 21.31 0.9179 19.62 0.9018
Jung [3] 15.74 0.9260 15.36 0.944 13.72 0.9053 23.76 0.9483

SDSRD [6]
STCGAN-BE [6,7] 21.94 0.9355 19.22 0.9302 24.27 0.9438 21.20 0.9212

BEDSRNet [6] 22.76 0.9459 19.24 0.9434 25.72 0.9524 22.14 0.9303
DHAN [9] 20.28 0.9512 17.48 0.9473 21.68 0.9552 23.10 0.9483

DSFN (Ours) 23.00 0.9590 19.74 0.9581 25.53 0.9630 23.16 0.9480

SynDocDS (Ours)
STCGAN-BE [6,7] 25.1 0.9637 23.41 0.9696 27.01 0.9617 23.13 0.9547

BEDSRNet [6] 25.69 0.9656 22.95 0.9696 28.50 0.9649 23.48 0.9571
DHAN [9] 25.51 0.9703 22.33 0.9734 29.21 0.9717 21.45 0.9572

DSFN (ours) 25.70 0.9708 22.50 0.9739 29.24 0.9723 22.20 0.9575

Training dataset comparison. We compared each network on three learning patterns
for deep learning-based methods to measure the effectiveness of the proposed SynDocDS
dataset. The learning patterns were (i) only trained on a real dataset, (ii) only trained on a
synthetic dataset, and (iii) pre-trained on a synthetic dataset and then fine-tuned on a real
dataset. The networks were then evaluated with the test set of real datasets for all learning
settings. As shown in Table 4, pre-training on the SynDocDS dataset significantly improved
the quality of the results when fine-tuning was performed even on a limited number of
real images.

Table 4. Quantitative comparison by changing the training dataset. The arrows indicate whether
a high score (↑) or low error (↓) indicates better performance. The best and second-best results are
marked in red and blue, respectively. The best score in each method is indicated by the green box .
The best score in each method is bold.

Method Training
Dataset

OSR Dataset [5] Kliglers’s Dataset [2] Jung’s Dataset [3]
RMSE (↓) PSNR (↑) SSIM (↑) RMSE (↓) PSNR (↑) SSIM(↑) RMSE (↓) PSNR (↑) SSIM (↑)

Original - 9.86 17.57 0.9249 11.61 14.76 0.9010 12.45 13.96 0.8813

BEDSRNet [6]

Real dataset 5.72 23.37 0.9251 3.64 27.77 0.9569 5.18 24.42 0.9144
SDSRD [6] 7.68 19.19 0.9055 4.72 24.58 0.9587 6.93 20.07 0.8880
SynDocDS 5.51 23.97 0.9520 3.73 28.31 0.9689 4.69 22.97 0.9332

SDSRD [6] + FT 5.04 23.76 0.9448 3.13 29.25 0.9687 4.16 24.06 0.9205
SynDocDS + FT 4.67 25.68 0.9648 2.73 30.05 0.9745 3.68 25.01 0.9330

DSFN (ours)

Real dataset 8.46 24.34 0.9676 3.69 25.85 0.9738 4.25 23.62 0.9303
SDSRD [6] 5.85 21.74 0.9546 3.65 26.75 0.9731 5.1 21.89 0.9213
SynDocDS 5.42 24.20 0.9705 2.51 30.57 0.9809 5.59 21.20 0.9317

SDSRD [6] + FT 5.66 25.38 0.9724 2.14 30.83 0.9799 3.71 24.82 0.9356
SynDocDS + FT 5.39 25.77 0.9728 1.97 32.02 0.9802 3.56 25.02 0.9361

5.4. Text Readability

To evaluate improvement in document readability, we compared OCR’s performance
on the output images from the networks trained on the proposed SynDocDS dataset. We
used images with detectable text in the OSR dataset [5], and images were center cropped to
512 × 512. First, we applied Tesseract [49], an open-source OCR tool, to recognize text in
the ground truth image and output images. Next, we evaluated the performance of OCR
by comparing the distances of text strings using the edit distance [50]. As shown in Table 5,
the proposed DSFN produced the best results.

Table 5. Average edit distances between the inputs and outputs. The down arrow (↓) indicates better
performance.

Method Original STCGAN-BE BEDSR-Net DHAN DSFN (Ours)

Edit distance (↓)
@OSR dataset [5] 172.26 28.52 28.20 26.64 25.14
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6. Discussion
6.1. Quantitative Score

It is noted that acknowledging that a simplistic comparison of scores does not provide
a comprehensive evaluation is essential. The ground truth image does not perfectly rep-
resent the input image without shadows due to slight pixel deviations and variations in
brightness and color caused by environmental factors during image capturing. These points
have also been discussed in Le et al. [15]. Therefore, pixel-level error calculations such as
RMSE and the PSNR may occur with qualitative superiority but quantitative inferiority.
However, the SSIM, which is close to our visual perception, is possibly a more appropri-
ate performance measure, and our network outperforms others on the SSIM. Relying on
quantitative comparisons only can lead to overfitting of the dataset and is not advisable,
specifically when the ground truth data are not flawless. Hence, a comprehensive evalu-
ation considering qualitative evaluation, quantitative evaluation, and OCR performance
that considers future applications is required. Our network consistently achieves superior
results, as shown in Table 5 and the qualitative results in this paper and Appendix A.

6.2. Dataset Diversity

As shown in Table 4, the network trained on our proposed dataset shows a competitive
or outperformed performance on most metrics as the network trained on real data, which is
the same domain as the test data. Although the three datasets used in the evaluation have
different characteristics, as shown in Table 1, we found that our proposed dataset is effective
for those datasets. Hence, our SynDocDS dataset is diverse and provides robustness to
deep shadow removal networks.

6.3. Limitations

As shown in Table 4, the network only trained on the SynDocDS dataset performed
better on the OSR [5] and Kligler [2] datasets, while it performed worse on the Jung
dataset [3] than the network trained on the real dataset in terms of the PSNR. There is a
domain gap between Jung’s data and our data, indicating room for improvement in our
dataset. Furthermore, our dataset has a large number of diverse samples, making the
network training convergence time-consuming. Effective data selection is required to make
our dataset productive for networks.

6.4. Future Works

The proposed synthetic dataset was shown to provide deep shadow removal networks
with robustness to document images with shadows in various environments. The data
creation pipeline demonstrated in this study can be applied to creating training datasets
in various tasks, such as OCR, Document Rectification, and Layout Recognition. In the
future, we would like to explore creating datasets adaptable to any task useful for such
document analysis.

7. Conclusions

This paper introduces a dataset for document shadow removal, SynDocDS, and a novel
shadow removal network, the DSFN. Simulating various environments through rendering
software allows us to obtain a large, diverse dataset for training deep learning models.
Furthermore, by observing the characteristics of the document images and augmenting the
shadow diversity through physics-based shadow synthesis, we can generate shadows with
various shadow attenuation characteristics that are more plausible as document images. We
showed that deep neural networks trained on the proposed SynDocDS dataset alone were
able to reliably remove shadows from real images and perform better than when training
on existing synthetic data. Furthermore, using the SynDocDS dataset for pre-training, we
obtained significantly better results with fine-tuning on a limited number of real images.
Finally, through extensive experiments, we demonstrated that the proposed DSFN clearly
outperforms other methods quantitatively and qualitatively.
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Appendix A

In this section, we show examples of synthetic datasets and results that could not
be included in the main body of this paper due to space constraints. Figure A1 shows
examples of the reproduced SDSRD [6] with codes provided as stated in Section 5 and our
Synthetic Document with Diverse Shadows (SynDocDS) dataset. Figure A2 shows other
qualitative results for each method corresponding to Figure 7 in the main paper. Further-
more, Figure A3 shows qualitative results corresponding to Table 4 in the main body of
this paper.

SDSRD

SynDocDS

Figure A1. Example triplets of synthetic datasets. The top and bottom triplet samples are from the
SDSRD [6] and SynDocDS dataset, respectively. From top to bottom: shadow-free images, shadow
images, and shadow mattes.

https://github.com/ym4t50/SynDoc4DSFN
https://github.com/ym4t50/SynDoc4DSFN


Sensors 2024, 24, 654 16 of 19

Input GT STCGAN-BE BEDSRNet DHAN DSFN (Ours)

Figure A2. Qualitative comparison of each model trained on SynDocDS dataset. Results in the top,
middle, and bottom three samples are from the OSR [5], Kligler’s [2], and Jung’s [3] datasets, respectively.
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Input GT @SynDocDS@Real dataset @SDSRD @SynDocDS
+FT

@SDSRD
+FT

Figure A3. Qualitative comparison of our Dual Shadow Fusion Network (DSFN) trained on different
datasets. The used training dataset is indicated by @. Results in the top, middle, and bottom three
samples are from the OSR [5], Kligler’s [2], and Jung’s [3] datasets, respectively.
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