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Abstract: The phase recovery module is dedicated to acquiring phase distribution information within
imaging systems, enabling the monitoring and adjustment of a system’s performance. Traditional
phase inversion techniques exhibit limitations, such as the speed of the sensor and complexity of
the system. Therefore, we propose an indirect phase retrieval approach based on a diffraction
neural network. By utilizing non-source diffraction through multiple layers of diffraction units, this
approach reconstructs coefficients based on Zernike polynomials from incident beams with distorted
phases, thereby indirectly synthesizing interference phases. Through network training and simulation
testing, we validate the effectiveness of this approach, showcasing the trained network’s capacity for
single-order phase recognition and multi-order composite phase inversion. We conduct an analysis
of the network’s generalization and evaluate the impact of the network depth on the restoration
accuracy. The test results reveal an average root mean square error of 0.086λ for phase inversion.
This research provides new insights and methodologies for the development of the phase recovery
component in adaptive optics systems.

Keywords: phase recovery; diffractive deep neural network; Zernike polynomial

1. Introduction

Distortion phase recovery, as a measurement technique based on optical principles,
is utilized for quantitatively describing the phase and amplitude distribution of optical
waves during their propagation. It can identify and correct distortions within the system
through comparisons with the actual wavefront, thereby enhancing imaging quality and
performance. Distortion phase recovery can be applied in a wide range of fields, such as
atmospheric optics, laser device manufacturing, and optical communication. Moreover, it
plays a crucial role in supporting the development of adaptive optical systems.

Because determining the system’s aberration function properly and quickly is essential
to the function of adaptive optics systems, numerous techniques have been devised to
accomplish this. In more traditional methods, the aberration function can be directly
measured using wavefront sensors like the Shack–Hartmann wavefront sensor [1,2], the
curvature wavefront sensor [3], and the shearing interferometer [4] multi-order diffractive
optical element [5–7]. These wavefront sensors that rely on complex specialized optical
hardware devices have the advantages of high precision and good stability. However, they
also suffer from drawbacks such as high hardware costs, high computational complexity,
and limited scalability. Since the 1990s, artificial neural networks (ANNs) and deep learning
have been applied to determine the Zernike coefficients representing a given wavefront [8].
This is because they are capable of learning complex relationships without the need for
specific physical rule programming [9,10]. As research has progressed, methods have
been developed to directly reconstruct wavefront phases from intensity images using deep
learning [11]. Utilizing ANNs, whether directly or indirectly for phase recovery, allows
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the desired features to be inferred directly from the data, enabling a higher degree of
adaptability. However, it is important to acknowledge that traditional neural networks for
phase reconstruction come with significant computational costs and memory usage, and
their processing speed is slightly inferior to hardware wavefront sensors.

Optical Neural Networks (ONNs) constructed using optical matrices have emerged as
a promising alternative for next-generation neural computing [12]. By leveraging the speed
of light and massive parallelism of optical signals within a medium, optical networks offer
potential solutions to the challenges faced by electronic counterparts, such as computational
power and energy consumption. In 2018, Lin et al. introduced an all-optical deep learning
framework composed of multiple layers of diffractive surfaces that formed the structure of
a deep learning network, referred to as the Diffractive Deep Neural Network (DDNN) [13].
DDNNs can be created via element-wise multiplication by utilizing the interaction between
light and matter, where ‘pixels’ on the diffractive surface are similar to ‘neurons’ on network
layers; these neurons are then coupled via optical diffraction principles. Diffractive Deep
Neural Networks (DDNNs) possess tremendous flexibility [14,15], scalability [16], and
significant advantages in terms of their processing power and performance. Subsequently,
researchers thoroughly investigated and verified the generalization abilities of DDNNs,
using them in a variety of fields, such as scattering imaging [17], gesture classification [18],
and orbital angular momentum spectrum measurements [19].

DDNNs have demonstrated promising achievements in the retrieval and correction of
optical interference phases. In 2022, Zhao et al. proposed an adaptive optical compensation
scheme based on a DDNN to restore the distortions induced by oceanic turbulence on
vortex beams [20]. A comparative analysis with wavefront recovery schemes based on
CNN and GS algorithms was conducted, revealing that the DDNN achieved the highest
improvement in mode purity for compensated vortex beams. Subsequently, the team
introduced a Hybrid Optoelectronic Deep Neural Network (HOEDNN), where the DDNN
is trained to establish mapping between the distorted orbital angular momentum (OAM) in-
tensity patterns, and the intensity distribution without oceanic turbulence interference [21].
A CNN is then employed to recognize the output of the DDNN. In addition, in 2023, Elena
Goi et al. introduced a compact multi-layer diffraction neural network module imprinted
on an imaging sensor [22]. This module first focuses the input light through a lens, then
reconstructs the Zernike-based pupil phase distribution from the point spread function.
By integrating CMOS sensors with diffraction elements, they achieved direct pupil phase
recovery based on the superposition of the first 14 orders of Zernike polynomials. Further-
more, in the field of real-time wavefront correction systems, Cui et al. trained the DDNN
as a wavefront corrector, validated its correction effect in scenarios such as off-axis and
binary stars, and positioned it between the imaging lens and the image plane to improve
the wavefront correction frequency [23].

Existing research predominantly emphasizes end-to-end direct processing methods,
yet in the application of optical systems with relatively simple and easily modellable
aberration patterns, Zernike polynomials, representing common distortion modes in optical
systems, can more effectively and concisely describe wavefront aberrations. To bridge the
gap concerning indirect phase retrieval methods within the domain of diffraction neural
networks combined with wavefront adaptive optics, we propose an indirect phase retrieval
scheme based on Zernike polynomials, as shown in Figure 1. We employ deep learning
to train a set of transmissive diffractive layers and achieve the all-optical inversion of
the mapping relationship between the distorted phase carried by the input beam and its
corresponding Zernike coefficients. After the jointly modulated light, which carries an
unknown distorted wavefront, passes through a prepared multilayer diffractive element,
the desired intensity distribution is obtained in a specific region of the output plane, as
shown in Figure 1a. The intensity within this region corresponds to the coefficients of
Zernike polynomials, and a straightforward combination operation yields the distribution
of the unknown distorted phase, as shown in Figure 1b. The simulation results indicate
an average root mean square (RMS) error of 0.086λ for the phase results obtained via this
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method, thus meeting the imaging quality requirements of the system. This approach holds
great potential for widespread application across various fields in the future.
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Figure 1. Schematic diagram of the DDNN-based indirect phase recovery scheme. (a) Illustration of
the beam modulation process in the optical system. When parallel light with an unknown distorted
wavefront passes through the pre-trained diffraction layers, a concentrated intensity distribution is
obtained in a specific region of the output plane. (b) Flowchart for post-processing in the computer.
After simple operations such as summing the output plane intensity collected by the imaging module,
applying the sigmoid inverse transformation, and combining them, the predicted target phase
is obtained.

2. Theory and Analysis
2.1. Indirect Phase Recovery Scheme Based on Diffraction Neural Network

The conceptual illustration of our proposed diffraction neural network-based indirect
phase recovery scheme is presented in Figure 2. In this system, the wavefront detection
module comprises a diffraction network and a Charge-Coupled Device (CCD1), while
the wavefront control module is managed by a Personal Computer (PC). The wavefront
correction module consists of a polarizer and half wave plate (HWP), used to adjust the
polarization direction of the incident beam, and a spatial light modulator (SLM), used for
phase modulation. In this scheme, incident beams experiencing distortion due to factors
such as fluid (e.g., atmospheric turbulence) or biological tissues have their phases mod-
ulated layer by layer through a well-trained multilayer diffraction neural network. The
intensity representation of the mapped distorted phase Zernike coefficients is obtained
in the output field. Subsequently, the intensity distribution captured by the CCD1, the
resolution of which needs to be greater than 400 × 400, is fed into the computer for the re-
construction of the phase screen and reverse operations, resulting in a compensatory phase
screen. Finally, the spatial light modulator corrects the beam, effectively compensating for
the distorted wavefront. In this scheme, a 50:50 beam splitter (BS) is used to divide the
light into two beams. One beam is used to complete the above wavefront detection work,
and the other beam is used as the verification beam. The comparison of the point spread
function (PSF) before and after correction can be seen through the imaging of the beam on
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the CCD2 through the lens, which is used to describe the response of the focusing optical
imaging system to the point source or point object.
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The diffractive neural network is an all-optical machine learning platform that cal-
culates a given task through successive transmission layers, with each diffraction layer
typically composed of tens of thousands of diffraction units in order to modulate the phase
or amplitude of the incident light. Similar to deep learning techniques, it can learn a certain
mapping relationship from a large dataset. Subsequently, through error backpropagation
and optimization methods such as stochastic gradient descent, it refines the modulation
values of each layer to map the complex-valued input field containing optical information
that is of interest to the desired output field. Assuming that the amplitude of a light beam
is A(x, y) and its wavefront aberration is Φ(x, y), where x and y are polar coordinates
on the input pupil plane, the pupil function P(x, y) of the input beam can be expressed
as follows:

P(x, y) = A(x, y)ejkΦ(x,y) (1)

where k = 2π
λ is the wave number and the imaginary unit j =

√
−1.

As has been established, Φ can be expressed as a linear combination of a series of
Zernike polynomials, and it is represented as follows:

Φ(x, y) = ∑
i

aiZi (2)

In this expression, Zi represents the i-th Zernike polynomial, and ai represents the
i-th Zernike coefficient.

Moreover, since the output plane intensity does not have negative values, in order
to allow the positive and negative values of Zernike coefficients to be represented in the
output plane as intensities, the coefficients ai undergo a Sigmoid transformation to ensure
their distribution within the (0, 1) range, which is expressed as follows:

Si(xi, yi) =
1

1 + e−ai
(3)

where Si(xi, yi) represents the transformed value of the i-th coefficient; its relationship with
the intensity of the output plane is illustrated in Figure 3. (xi, yi) denotes the coordinates
of the i-th region in the plane. According to Equations (1) and (2), the complex amplitude
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of the distorted input beam and the Zernike coefficients a, representing the wavefront
aberration, satisfy a certain mapping relationship:

f : P → a (4)
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Figure 3. Schematic diagram of output plane assignment method. Si represents the ten areas that are
assigned values.

This paper utilizes the learning capability of a diffraction neural network similar to
a deep neural network to accurately estimate the mapping f . Equation (3) reveals the
relationship between the output field intensity and the coefficients a, which addresses the
challenge of expressing the output plane in the negative domain using this transformation.

2.2. Network Structure and Parameter

DDNN is a system composed of a series of transmission or reflection diffraction
layers and is endowed with the capacity to learn and modulate the optical field. Each
layer consists of N × N pixels, where each pixel serves as a sensor node corresponding
to neurons in a neural network. Similarly, the complex-valued transmission coefficients
(including amplitude and phase) of each pixel in the diffraction element are trainable
network parameters. The propagation of light between diffraction layers in the DDNN
follows a connectivity pattern that is highly analogous to traditional fully connected
neural networks, where each unit in a diffraction layer is connected to all units in the next
layer. Each diffraction neuron can be regarded as the starting point of a secondary wave,
and the complex-valued transmission coefficients and input field of each neuron jointly
determine the amplitude and phase of the secondary wave. The free space propagation
(FSP) between adjacent layer neurons adheres to the Rayleigh–Sommerfeld diffraction
formula [24]. Therefore, the optical field of the secondary wave can be expressed as follows:

wl
i(x, y, z) =

z − zi
r2

(
1

2πr
+

1
.
jλ

)
exp

(
j2πr

λ

)
(5)

where wl
i represents the i-th neuron unit located at the position (xi, yi, zi) in the l-th layer of

the DDNN. r =
√
(x − xi)

2 + (y − yi)
2 + (z − zi)

2 is the distance from the starting point
to this neuron. λ is the wavelength.
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The transmission coefficients tl
i(xi, yi, zi) of layer l can be represented by the amplitude

and phase terms, formulated as follows:

tl
i(xi, yi, zi) = al

i(xi, yi, zi) exp
(

jφl
i(xi, yi, zi)

)
(6)

This paper considers the ideal scenario of a pure phase-type DDNN structure, where
al

i(xi, yi, zi) = 1; this neglects the optical loss. According to the Huygens–Fresnel principle,
the incident wave at layer l is the coherent superposition of the secondary waves emitted
by each unit in layer l − 1 [25]. Therefore, the complex amplitude nl

i of the light field output
by the i-th neuron at position (xi, yi, zi) in layer l can be expressed as follows:

nl
i(xi, yi, zi) = wl

i(x, y, z) · tl
i(xi, yi, zi) · Σknl−1

k (xi, yi, zi) (7)

In this equation, Σknl−1
k (xi, yi, z) is the sum of the outputs of all sensor nodes in layer

l − 1, which, after propagating to layer l, undergoes phase modulation via the i-th neuron
in layer l. The secondary wave from the previous layer diffracts to the next layer, eventually
diffracting to the output layer.

The fully connected structure of the network requires a high level of connectivity
between the diffraction elements in each layer. The derived model of the second-order
wavefront field is valid only when there is sufficient transmission of information between
layers, i.e., when the diffracted light outputs of each layer can be fully interconnected.
Therefore, before designing the network parameters, it is necessary to calculate the diffrac-
tion angles of the light passing through the diffractive neurons, ensuring that the next layer
of diffractive optical elements can be fully covered. The maximum half-cone diffraction
angle can be calculated using the Fraunhofer diffraction formula. When the diffraction
order is minimized, the expression for the maximum half-cone angle is as follows:

θmax = sin−1

(
λ

2d f

)
(8)

where d f represents the size of the diffractive neurons in this model.
It is evident that a combination of larger wavelengths and smaller neurons yields a

larger half-cone diffraction angle. Therefore, in previous studies, terahertz lasers were
commonly used as light sources. In this paper, a He-Ne laser with a wavelength of 632.8 nm
was employed as the light source, following the general approach used to design the visible
light diffraction neural networks mentioned in reference [26]. For a square diffraction layer,
it is necessary to ensure that the radius r of each diffraction point is greater than the side
length w of each diffraction layer. This ensures that the entire region of the next layer’s
diffractive elements is covered by the output light field of the previous layer. The side
length w of the diffraction layer can be expressed in terms of the number of neurons N
and the size d f of the diffractive neuron. The diffraction radius is determined by both the
maximum half-cone diffraction angle and the interlayer distance d. The physical quantity
relationships included in the above model can be summarized as Equation (9).

r ≥ w
w =

√
N·d f

2

r = d· tan θmax

(9)

By combining this with Equation (8), it can be deduced that the interlayer distance d
must satisfy the following inequality:

d ≥
√

N·d f ·

√
4d f

2

λ2 − 1 (10)
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As shown in Figure 4, the diffraction neural network proposed in this paper for use
in indirect phase recovery consists of 5 layers of diffractive elements. Each layer has
400 × 400 pixels, and each pixel has a size of 4 µm. Without considering pixel gaps, the size
of the square diffraction layer is 3.2 mm. After calculation, the distance between adjacent
diffraction layers, d, is set to 20 mm. Considering the requirement for the intensity of
the received plane, the distance l between the last diffraction layer and the CCD is set as
10 mm.
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2.3. Network Backpropagation

In order to ensure consistency between the network output and the target output, the
Adam gradient descent optimizer is employed during the training process to adjust the
network weights and minimize the loss function. The loss function in this paper consists of
two parts. Firstly, it is assumed that the input data for training are X ∈

{
X1, X2, . . . , Xn

}
,

where X represents the distorted wavefront phase. The true values for each input data corre-
spond to an array Ai =

{
ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8, ai9, ai10

}
, where the elements

represent the coefficients of the first ten Zernike polynomials. In the training set, the ground
truth can be represented as A ∈

{
A1, A2, . . . , An

}
. The mapping relationship between

the distorted phase and the true coefficients is denoted as Fmodel(X) → A . Performing the
prediction task for these data using the diffractive optical neural network system involves
modulating the distorted wavefront phase in the input data onto a coherent light beam,
obtaining the input field Uin, and then collecting the intensity result Iout of the output field
via a photoelectric coupling device.

The training dataset comprises the mapping relationship Fmodel(X) → A , where X
represents the input data with a distorted wavefront phase. In the optical system, the
desired mapping relationship is Fmodel(Uin) → Iout . These two mapping relationships
share a common essence at their core but can be considered as two different approaches
during approximation, guiding the network convergence and progressively optimizing the
phase parameters φlayer of diffractive neurons. Consequently, two distinct loss functions
are derived: the RMS error between the output plane intensity Iout and the ideal output
intensity Îout, and the RMS between the computed actual coefficient array Â and the target
coefficient array A in the training set. Mathematically, these can be expressed as follows:

Loss1 = min
φlayer

√
1
n ∑

n

∣∣ Îout − Iout
∣∣2, φlayer ∈ {0, 2π}

Loss2 = min
φlayer

√
1
n ∑

n

∣∣Â − A
∣∣2, φlayer ∈ {0, 2π}

(11)

Loss1 represents the loss of the diffractive neural network’s output plane light intensity,
which serves to avoid the presence of stray light spots in the background of the output
field, thus achieving overall optimization. Loss2 is the loss of label accuracy in the neural
network’s phase inversion effect, which plays a role in controlling the intensity of the
effective region on the output plane. Therefore, the combined total loss of the network can
be expressed as follows:

Loss = Loss1 × Loss2 (12)
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3. Datasets and Network Training

To assess the performance of the diffraction neural network-based indirect phase recov-
ery approach, we employed the Zernike polynomial method to simulate phase aberrations,
thus generating a substantial volume of wavefront data for the training and validation
datasets. To independently validate the network model’s effectiveness in addressing
tasks related to single Zernike aberrations and combined Zernike aberrations, two dis-
tinct datasets were created for training, each consisting of single Zernike aberrations and
combined Zernike aberrations.

Dataset 1: Phase distortions generated from single Zernike polynomials ranging from
Z1 to Z10 were utilized in this study. The ground truth consisted of Zernike coefficients,
which were individually transformed using Equation (3) to obtain values ranging between
zero and one. These transformed coefficients represented the intensity values assigned
to the corresponding output regions. The transformation was applied only to non-zero
coefficients to avoid interference from zero terms. Dataset 1 comprised 10,000 training
images and 2000 testing images. The training set consisted of 10 different individual
Zernike polynomials, each with 1000 images, while the testing set included 200 images for
each polynomial.

Dataset 2: The distorted phase is generated by combining Zernike polynomials of
orders one to ten. The output ground truth is obtained by transforming the coefficients of
each Zernike term through Equation (3), resulting in output intensity values within the
range zero–one. Dataset 2 comprises a total of 12,000 images, with 10,000 images in the
training set and 2000 images in the testing set.

For most applications of adaptive optics (AO) systems, the wavefront errors typically
fall within a specific range over a given time frame. Drawing from accumulated experience
in astronomical observations, we set the peak-to-valley (PV) values of the input aberration
phases within the range of 0.3λ to 3λ, with an average PV value of 1.5λ and an average
RMS error of 0.25λ. The dataset comprises a total of 12,000 images generated using Zernike
polynomials, from orders two to eleven. Among these, 10,000 images constitute the training
set, and the remaining 2000 images form the test set. The distribution of the aforementioned
data is illustrated in Figure 5.
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mean of 10 categories of single Zernike polynomials in Dataset 1, the RMS and PV distributions of
1000 training data and 200 test data are obtained. (b) RMS and PV distributions of 10,000 training
data and 2000 test data in Dataset 2.

The training of the diffraction neural network model for indirect phase recovery
was conducted using the PyTorch 3.6 framework on an NVIDIA GeForce RTX 3080 GPU
with 12 GB of RAM. The training environments and parameters for the two networks
were consistent. The Adam optimizer was employed to optimize the parameters of the
diffraction neural network, with training conducted over 100 epochs using a batch size of
128 and a learning rate of 0.01. The loss function and mean square error (MSE) decline curve
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of the training set and verification set during the training process are shown in Figure 6.
The total duration for a single training session was 8 h.
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Figure 6. The loss function and MSE decline curve. (a) Network training process based on combined
Zernike wavefront distortion data. (b) Network training process based on single Zernike wavefront
distortion data.

We constructed a five-layer diffraction neural network to learn the mapping rela-
tionship between the distorted phase and the decomposition coefficients of the Zernike
polynomials. The input beam is represented in the form of complex amplitude, while the
output is expressed as the distribution of light intensity. The training process involves the
continuous adjustment of the phase values for each pixel in the five diffraction layers and
aims to progressively minimize the differences between the predicted 10 Zernike coeffi-
cients and the ground truth. The phase distribution results for each layer after training are
depicted in Figure 7. Subsequently, the physical preparation of the diffraction layers can
be accomplished using techniques such as photolithography or 3D printing based on the
obtained phase distributions for each layer.
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4. Performance Evaluation
4.1. Testing for Non-Degenerate Response in the Network

First, the network is trained with the data of the Z7 part of the single coma in Dataset 1,
and it is tested whether the network is non-degenerate when single-order aberration is
input. The objective of this was to assess the system’s ability to generate reliable and stable
outputs when confronted with different input scenarios. In particular, in situations in
which the input phase has the same amplitude but opposite signs, it is crucial to ensure
that the network can produce the corresponding coefficient values.

Seven sets of vertical astigmatism term pupil phases, with the seventh Zernike phase
(Z7) having magnitudes scanned within the range of [−3λ, 3λ], are imposed on a colli-
mated beam with unit intensity. The acquisition of the seven phases involves using the
positive aberrations within the range of [−λ, λ] as the basis, and applying 0, ±1, ±2, and
±3 multiplication transformations to each of them, respectively. The resulting intensity
distribution in the output plane after modulation that was performed by the diffraction
network is illustrated in Figure 8. The test results indicate that altering the sign and am-
plitude of the input phase yields spots of different sizes at the location corresponding
to the seventh term in the output plane. This demonstrates the network’s sensitivity to
variations in the input and simultaneously validates its robustness, ensuring its reliability
in practical applications.
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Figure 8. Output plane intensity when scanning the magnitude of a single-order aberration input
phase within the range of [−3λ, 3λ].

To illustrate the relationship between input phase magnitude and output light intensity,
a bar graph was constructed, plotting the mean intensity extracted from the targeted
region of the network’s output plane against the base phase multiplier as the horizontal
axis, as shown in Figure 9a. As the multiplier increases, the obtained light intensity
also increases, demonstrating that the proposed approach can produce different output
values in response to input wavefront phases of varying magnitudes. Subsequently, an
inverse transformation, given by Equation (3), was applied to the obtained intensity values
to restore the corresponding Zernike coefficients for phase generation. Similarly, a bar
graph was plotted with the base phase multiplier as the horizontal axis, revealing that
the distribution of the restored coefficients corresponds to the input wavefront’s peak-to-
valley (PV) value and keeps consistent with the positive and negative directions. As the
phase range tested exceeds that of the network training set, this discussion focuses on
the corresponding trends between phase and coefficients, without considering specific
numerical relationships.
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Figure 9. Analysis of non-degenerate response test results. (a) Correspondence between output
intensity and multiple of base phase. (b) Correspondence between the transformed predicted
coefficient and multiple of base phase.

4.2. Testing the Single-Order Zernike Identification Function

Benefiting from a partitioned, multi-category network output design, the system
demonstrates the capacity for classification recognition when subjected to single-order
Zernike aberrations as the input. For the network trained with Dataset 1, distorted phase
distributions corresponding to the first ten orders of Zernike aberrations, with phase
magnitudes ranging from −0.6λ to 0.6λ, are individually superimposed onto the input
beam. After modulation and propagation through the network, concentrated spots appear
in the regions corresponding to the respective terms in the output plane, with the intensity
in other regions approaching zero. As depicted in Figure 10, the test results unequivocally
confirm the network’s ability to accurately identify the categories of the first ten orders
of Zernike aberrations. This capability enhances the ease of diagnosing issues in optical
systems with specific aberrations, thus aiding in the implementation of corresponding
measures in order to improve and optimize the system.
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4.3. Combined Phase Retrieval Performance Test

In order to further assess the performance of the diffraction neural network-based
indirect wavefront phase retrieval scheme, the output intensity distribution was obtained
using the first ten combined Zernike phases as input, as shown in Figure 11. A subjec-
tive evaluation of the results reveals that spots corresponding to larger coefficients are
brighter, while those corresponding to smaller coefficients are darker, demonstrating a
correspondence between the output and the true values. From an objective perspective, the
coefficient distribution obtained via averaging and the inverse operations on the intensity
within specific regions is illustrated in Figure 12a.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 11. The combined phase of the input, the intensity of the output plane, and the corresponding 

true value of the output plane. 

 

Figure 12. Analysis of network output results. (a) Zernike polynomial coefficients obtained after 

transformation of the output intensity and comparison with true coefficients. (b) Comparative anal-

ysis of predicted results and ground truth. 

Figure 11. The combined phase of the input, the intensity of the output plane, and the corresponding
true value of the output plane.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 11. The combined phase of the input, the intensity of the output plane, and the corresponding 

true value of the output plane. 

 

Figure 12. Analysis of network output results. (a) Zernike polynomial coefficients obtained after 

transformation of the output intensity and comparison with true coefficients. (b) Comparative anal-

ysis of predicted results and ground truth. 

Figure 12. Analysis of network output results. (a) Zernike polynomial coefficients obtained after
transformation of the output intensity and comparison with true coefficients. (b) Comparative
analysis of predicted results and ground truth.
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Utilizing the network output, the reconstruction of the wavefront is performed by
obtaining the first ten Zernike coefficients (aout). These coefficients are then substituted
into Equation (2). The reconstructed phase distribution, denoted as Φout, is shown in
Figure 12b. To further validate the accuracy of the reconstructed phase, the conjugate of
Φout is superimposed with the input phase. This process simulates the ideal aberration
correction using mathematical calculations, and the corrected result is depicted in Figure 13.
The graph illustrates the change in the RMS error before and after correction. In addition,
Figure 13 also illustrates the comparison between the original phase and the residual
wavefront after correction is performed by the predicted phase on the same coordinate scale.
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A comparison reveals a significant reduction in the RMS after correction, indicating
that the system is capable of recovering the combined aberration phases of the first ten
Zernike orders. Moreover, the error in the recovered phase falls within an acceptable range.
Thus, after testing the network’s capacity for inversion using 1000 test data, the average
RMS error of the output results is determined to be 0.086λ. According to the Maréchal
criterion for assessing the optical system quality, the corrected system imaging quality
is considered.

4.4. Influence of the Number of Layers on the Network

During the network training process, the dataset employed includes phase values
distributed within a predefined range. For data beyond this phase distribution range, the
network’s accuracy during phase recovery cannot be precisely guaranteed. Therefore, it
is crucial to validate the network’s generalization performance. A test set, scanning the
RMS within one wavelength, is used to evaluate the network; this comprises four test
groups, each containing 200 randomly generated phases within a specified range. The RMS
error values of the test results are calculated, and the distribution box plot is illustrated in
Figure 14. It is observed that the network exhibits minimal restoration error for the input-
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phase RMS sizes at 0.5λ. The distortion wavefront restoration error for the input-phase
RMS sizes in the range of 0–0.75λ can be controlled around 0.1λ. In conclusion, the effective
application range of this scheme is within 0.75λ, demonstrating the good generalization
performance of the network within this range.
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Figure 14. Generalization test results of the five-layer network. The red + represents outliers, and the
gray dotted line represents the line connecting the medians of each group of data.

In addition, it has been established that increasing the number of layers in traditional
neural networks typically confers various benefits, such as an enhanced expressive power,
an improved capacity for generalization, and a reduced risk of overfitting. Therefore, we
aim to examine the impact of varying the number of layers on the accuracy of the network
output results. Initially, the number of diffraction layers is set to four and six while the
other parameters are kept constant, and the network is retrained accordingly. The resulting
four-layer and six-layer network models are then tested for the occurrence of RMS error
in the output results using the same method; the test results for networks with different
numbers of layers are illustrated in Figure 15.
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The comparison of RMS errors during the process of phase reconstruction performed
by networks with different numbers of layers reveals that, when the input phase size is
0.5λ, the three networks exhibit a consistent capacity for inversion. However, as the input
phase size deviates from the training set range, the five-layer network demonstrates the
best phase reconstruction accuracy among the three, indicating its superior capacity for
generalization. Consequently, the five-layer network is chosen as the final design parameter
for this approach.

5. Conclusions

To address the deficiency in the indirect phase recovery of diffraction neural networks
and to specifically target the distortion phase recovery problem in optically simple and
easily modellable systems with aberration modes, we propose a diffraction neural network-
based indirect phase inversion scheme in this work. This scheme utilizes the passive
diffraction of multiple layers of diffraction units to achieve the inversion of distorted
phases corresponding to the Zernike polynomial coefficients within a specific range. The
mathematical model and mapping relationships of the DDNN are derived, and the DDNN
model is trained to obtain the optimal solution for the diffraction layer phase distribution
that meets the phase modulation requirements. When a distorted beam is incident on the
diffraction network, the trained model will output the Zernike coefficients corresponding
to the distorted phase. The simulation results demonstrate that this scheme can achieve
single-order Zernike phase identification and recover combined phases within a specific
range. The evaluation of the network is conducted via the output coefficients and phase
correction results, proving that the network significantly reduces the mean square error
of the distorted phase, thus greatly improving the imaging quality of optical systems.
Additionally, the simulation verifies the impact of the number of diffraction layers on
the network performance. By endowing the diffraction neural network with wavefront
sensing capabilities, this work achieves low-power, high-speed phase recovery, exhibiting
advantages with regard to convenience and cost control over the Shack–Hartmann sensor
in traditional adaptive optics systems. The proposed wavefront recovery scheme, based
on diffractive neural networks, demonstrates superior performance in terms of power
consumption and real-time processing compared to wavefront recovery schemes relying
on deep learning networks. However, the complexity of the recovered wavefront in
this scheme is constrained by the designed light intensity distribution on the output
plane, limiting its effectiveness in addressing the recovery of high-order complex phases.
Further research is required to explore aspects such as the physical implementation and
performance enhancement of this scheme. In summary, this scheme provides a new
approach for distorted wavefront recovery, and future optical experiments are expected to
validate and contribute to the development of adaptive optics systems.
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