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Abstract: Maritime transport, responsible for delivering over eighty percent of the world’s goods, is
the backbone of the global delivery industry. However, it also presents considerable environmental
risks, particularly regarding aquatic contamination. Nearly ninety percent of marine oil spills near
shores are attributed to human activities, highlighting the urgent need for continuous and effective
surveillance. To address this pressing issue, this paper introduces a novel technique named OS-
BREEZE. This method employs an Unmanned Surface Vehicle (USV) for assessing the extent of
oil pollution on the sea surface. The OS-BREEZE algorithm directs the USV along the spill edge,
facilitating rapid and accurate assessment of the contaminated area. The key contribution of this
paper is the development of this novel approach for monitoring and managing marine pollution,
which significantly reduces the path length required for mapping and estimating the size of the
contaminated area. Furthermore, this paper presents a scale model experiment executed at the Coastal
and Marine Engineering Research Institute (CAMERI). This experiment demonstrated the method’s
enhanced speed and efficiency compared to traditional monitoring techniques. The experiment was
methodically conducted across four distinct scenarios: the initial and advanced stages of an oil spill
at the outer anchoring, as well as scenarios at the inner docking on both the stern and port sides.

Keywords: unmanned surface vehicles; marine pollution; oil spill mapping; catastrophic event;
environmental monitoring; remote sensing

1. Introduction

Oil spill incidents, particularly those involving crude oil, cause extensive and long-
lasting harm to marine ecosystems, hinder economic progress, and have significant implica-
tions for public health [1]. These oil spill incidents can arise from various causes, including
the leakage of an oil pipeline, discharges from ships, and other unforeseen disasters [2,3].
A prime example of such a disaster is the Deepwater Horizon, a catastrophic event that
unfolded in the Gulf of Mexico in 2010. This incident led to the spillage of over 800 million
liters of oil, causing extensive and enduring damage to the marine ecosystem, and the
repercussions of this disaster could potentially persist for up to a century [4]. Furthermore,
in a comprehensive analysis of oil satellite images from 2014 to 2019, Dong et al. [5] found
that approximately ninety percent of oil slicks were located within 160 km of shorelines
aligned with major shipping routes, which suggests a strong correlation between maritime
traffic and the occurrence of oil slicks.

Rapid response is critical in the event of an oil spill, as there is a limited window of
opportunity for effectively managing the spill [6]. Due to the rapid expansion of oil spills,
time is of the essence for effective containment, which often involves using oil booms, and
remediation by pumping out the oil.
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Traditionally, the detection and monitoring of oil spills have required the involvement
of human experts and specialized equipment. Expert personnel engage in extensive inspec-
tion missions, during which they visually examine the water surface and collect in-situ
samples. In contrast to the urgent nature of oil spill response, this process is time-consuming.
Monitoring large areas poses additional challenges, requiring significant resources, and is
often affected by weather conditions.

The emergence of remote sensing techniques, which utilize satellite, aircraft, or drone
sensing [7–10], enable oil spill detection efficiently without the need for in situ sampling.
Effective oil spill surveillance is essential for managing oil spill events, and remote sensing
technology can help to identify spills early before they cause significant harm. Oil spills
can be detected and monitored in real-time using passive optical and active radar or
lidar sensors [9]. However, remote sensing by satellite is limited by its resolution and
frequency, which causes detection faults or delayed detection of oil spills [11]. These may
lead to an oil spill spreading over a larger area and potentially causing more damage to the
marine ecosystem.

Aerial surveillance for detecting oil spills requires highly skilled and trained operators
capable of interpreting images to identify oil spills [12]. Unmanned Aerial Vehicles (UAVs)
have emerged as a cost-effective and readily deployable solution, enabling continuous
monitoring of the sea surface, and capturing high-resolution imagery [13]. The research
of remote sensing with UAVs primarily focuses on the detection phase, introducing novel
methods to detect oil pollution. Recent studies underscore a notable progression in the
field of oil spill detection, attributing these advancements primarily to the evolution of
deep learning methodologies [14,15].

Various studies have explored oil spill detection using different sensing instruments [16].
For instance, Koirala et al. conducted experiments to examine the potential of using an
RGB camera mounted on a drone for the detection of various oil types, including diesel oil
and hydraulic oil [17]. Thomas et al. demonstrated the efficacy of combining an infrared
Convolutional Neural Network (CNN) [18]. Similarly, Zongchen et al. presented a method
involving hyperspectral sensing for oil spill detection, utilizing a classifier that relies on
spectral characteristics and CNN for enhanced accuracy [19]. However, the use of UAVs for
oil spill monitoring presents limitations, such as restricted battery capacity, limited payload
capability, and range. These factors currently limit UAVs’ ability to comprehensively
monitor large areas. While the detection of an oil spill is an essential phase, planning
the oil spill sampling path for surveying is equally crucial. This task involves designing
paths that enable efficient data gathering and sampling from the affected area, ensuring
comprehensive monitoring and accurate delineation of the polluted zone (red zone).

Unmanned Surface Vehicles (USVs) offer a practical solution for oil spill monitoring be-
cause their high payload and substantial battery capacity enable continuous operation [20].
However, the limited Field of View (FoV) of USV presents a challenge. Therefore, integrat-
ing their capabilities with effective path-planning strategies is essential to ensuring efficient
monitoring and containment of oil spills.

Coverage Path Planning (CPP) represents a straightforward approach to handling the
task of monitoring oil spills. In this method, the agent navigates through the relevant area,
ensuring that the entire region is systematically covered. Shaocheng et al. [21] demonstrated
a CPP approach by incorporating the principles of the traveling salesman problem and the
utilization of a self-organizing map. Additionally, Bowen et al. [22] presented a method
based on a deep Q network for efficient CPP, which aims to achieve complete coverage of
the polluted area, a process that often involves prolonged and dense sampling.

In this context, our recent research introduced an approach known as the Boundary
Red Emission Zone Estimation (BREEZE) [23]. This path-planning method, BREEZE,
proposes estimating the boundary of the contaminated area, in events of gas leakage using
UAV platforms. Rather than conducting exhaustive mapping of the entire area, the BREEZE
approach strategically focuses on following the boundary of the red zone.
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This current manuscript introduces the Oil Spill-BREEZE (OS-BREEZE) method, a
novel approach for USVs that employs real-time computer vision techniques to estimate
the red zone of oil pollution. It is designed to trace the boundary of this zone, offering a
rapid and accurate assessment of the entire polluted area while addressing the challenge of
the USV’s limited FoV. We demonstrate the efficacy of OS-BREEZE through a synthesized
experiment, evaluating its effectiveness against traditional sampling approaches using four
common metrics. The key contribution of this study is outlined as follows:

1. OS-BREEZE, an efficient pollution sampling path planning method for a USV platform.
2. Mapping red zone method to estimate the extent of pollution.
3. An experimental framework for examining oil spill events.

Furthermore, the study’s results indicate a substantial reduction in path length while
maintaining high accuracy in pollution assessment.

2. Framework and Methodology

This section outlines the basis of the study, including a general understanding of the
system, the methodology for visual sensing, the setup for experiments, and the performance
measures. The design of the experiments showcases various oil spill scenarios to assess the
efficacy of our algorithmic solution.

2.1. System Overview

The system provides a comprehensive framework for evaluating the OS-BREEZE
algorithm through small-scale experiments. These experiments encompass a complete
experimental setup and software with an algorithmic workflow designed for boundary
tracing, mapping, and determining termination criteria. The data were obtained from a
drone (DJI phantom) platform, which conducted visual monitoring in the synthesized,
scaled-down model of Haifa port, as illustrated in Figure 1. The software then processes the
visual data collected by the drone, adapting them to closely simulate the visual capabilities
of a USV platform.
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down model (1:120 ratio) of the same section of the port, recreated in a controlled pool environment.
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2.2. Experimental Framework

The experimental setup depicted in Figure 1 features the Coastal and Marine Engi-
neering Port Model (CPM), a detailed scaled model of Haifa port with a 1:120 ratio in three
dimensions, including depth. The CPM was chosen for experimentation due to its accurate
and detailed replication of the actual Haifa port, providing an ideal setting for simulating
various oil spill scenarios. To mimic these scenarios, a dark substance was released from
different sources and locations within the port and anchorage areas.

To replicate a realistic scenario, the limited FoV of the USV was synthesized. This was
achieved by cropping the entire imagery based on the simulated location of the USV and
its visual inspection capabilities. This approach provided a more accurate representation of
the USV’s visual abilities in real-world conditions.

2.3. Visual Sensor Model

The development of a visual model for a USV is essential for precisely estimating
and enhancing the USV’s operational effectiveness. In this work, we treat the FoV of
the USV as having a limited range, enabling it to inspect only a small area surrounding
its current location. A represents the area that the USV can observe from its position,
encompassing all the cells within its limited visual range. Figure 2 provides a sequence of
steps depicting the process of the red zone estimation with OS-BREEZE. In the first image
on the right, we observe the initial field of view of the USV, which captures only a portion
of the affected area. As the monitoring process progresses, the subsequent images show
the USV’s increasing estimation of the red zone.
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2.4. Performance Measures

The study focuses on the task of estimating the red zone area, necessitating the accurate
determination of the extent of the polluted area. Consequently, the performance of this task
is evaluated by converting it into a classification task. In this setup, an agent is responsible
for categorizing each area as either red cells or safe cells. This classification approach
enables the utilization of established performance metrics to assess the effectiveness of
the OS-BREEZE algorithm as demonstrated in [23]. The core components for measuring
performance involve delineating the algorithm’s operational domain as a 2D cartesian
grid, labeledM. This approach is theoretically grounded in spatial analysis theory, which
advocates for a grid-based method to transform complex spatial environments into distinct,
manageable units. Such a framework not only aids in the practical deployment of the
OS-BREEZE algorithm but also offers an organized method to measure and interpret
environmental data. Within the grid, the estimated red zone identified by the agent is
represented asME, which is depicted in red in Figure 2. This illustrates the area estimated
to be a red zone by the OS-BREEZE algorithm. The optimal red zone is denoted as
MO, representing the entire area identified as the ground truth red zone based on a
predetermined threshold value.

This sets the stage for subsequent comparisons between the algorithm’s estimations
and the optimal scenario, which are essential for evaluating the precision and accuracy of
OS-BREEZE in identifying and delineating the extent of oil pollution. The grid is discretized,
and the classification is categorized into three types: true-positive TP, where red zone cells
are correctly identified; false-positive FP, where safe cells are incorrectly marked as red
zone cells; and false negative FN, where polluted cells are incorrectly classified as safe.

Subsequently, the evaluation of the algorithm utilizes four performance measures:
Precision, Recall, F1 score, and Coverage. Precision is defined as the ratio of true positive
classification TP to the total number of positive classifications made by the algorithm, which
is the sum of true positive and false positive TP + FP. This metric essentially quantifies the
accuracy of positive predictions, indicating the proportion of correctly identified positive
cases out of all cases labeled as positive by the algorithm.

Precision =
TP

TP + FP
=
ME ∩MO

ME
(1)

Recall measures the proportion of true classifications TP to the total number of actual
red zone cells, which is the sum of true positives and false negatives TP + FN. This
metric reflects the algorithm’s ability to correctly identify all red zone cells in a given area.
Essentially, it assesses the algorithm’s sensitivity in detecting the presence of red zone cells,
indicating how well the algorithm avoids false negatives.

Recall =
TP

TP + FN
=
ME ∩MO

MO
(2)

The F1 score is calculated as the harmonic mean of Precision and Recall, providing
a balanced measure of the algorithm’s accuracy. Unlike a simple average, the harmonic
mean tends to give more weight to lower values, which ensures that both Precision and
Recall are reasonably high for a favorable F1 score.

F1 =
TP

TP + 1
2 (FN + TP)

=
ME ∩MO

MO ∪ME
(3)

The final metric, Coverage, is computed by determining the ratio between the current
estimated area, Mi

E, to the total estimated area, ME, that is covered during the USV’s
operational path. In this context,Mi

E, represents the extent of the area estimated as the
red zone at a specific iteration step, i, during the USV’s task. The total estimated area,ME,
refers to the cumulative area classified by the algorithm over the entire course of action.
This metric essentially assesses the algorithm’s capability to continuously and effectively
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classify areas, providing insight into its comprehensive operational coverage throughout
the task.

Coverage =
Mi

E
ME

(4)

3. Algorithmic Work

The following section offers an in-depth description of the OS-BREEZE algorithm,
covering its various stages and operational framework. This is complemented by Figure 3,
which graphically represents the algorithm’s structure and process flow. This flow involves
three main components: Experimental Environment, Boundary Tracing, and Mapping.
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Initially, the experimental environment provides the zone of contamination, denoted
by M, informing the boundary tracing component’s visual sensor model. The visual
sensor model then generates state visuals, st, for the OS-BREEZE algorithm, which in turn
directs the agent’s actions via the command, at. During the mapping phase, these state
visuals are compiled into a cumulative map. This map is subsequently employed in the red
zone estimation process, which identifies and delineates the estimated contaminated area,
labeled asME, thus effectively outlining the scope of the pollution.

3.1. OS-BREEZE

The OS-BREEZE, as outlined in Algorithm 1, is designed to effectively monitor dy-
namic oil spills, focusing particularly on tracing the evolving boundaries of these spills. At
the core of its operation, the algorithm relies on inputs from the visual sensor model. This
model is adept at simulating the FoV of the USV, thereby providing a realistic perspective
of aquatic environment surveillance.

This visual, defined as St and depicted in Figure 3 in the visual sensor model, is
received by the OS-BREEZE as the input for the algorithm. The first step in the algorithm’s
processing chain is the application of a Gaussian filter. This filter is applied through
a convolution process, which involves overlaying the following Gaussian kernel onto
the image:

K(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (5)
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The convolution process is defined by the following function:

St
f iltered(u, v) =

k

∑
i=−k

k

∑
j=−k

St(u + i, v + j)·K(i, j) (6)

In this context, St
f iltered(u, v) represents the output pixel value, k is the kernel size, St

is the state image, and K(i, j) is the Gaussian kernel. This filter plays a role in mitigating
noise within the visual data, which is a crucial step for ensuring accuracy. The noise in the
image can stem from various sources, including environmental factors like tides and foam,
as well as inherent sensor limitations.

Following noise reduction, the algorithm proceeds to implement a thresholding tech-
nique. In this step, a threshold filter is applied to the FOV visual. This filter is a binary-based
filter with a predetermined opacity value that is characteristic of the water in the surveyed
area. The purpose of this step is critical for distinguishing between areas affected by the oil
spill and the surrounding water.

Subsequently, the algorithm advances to the stage where the Sobel filter is applied.
This filter is crucial in the process of boundary detection, calculating the gradient magnitude
and direction for each pixel in the image. The Sobel filter operates by applying two separate
convolution kernels, horizontal Sobelx and vertical Sobely

Sobelx =

−1 0 1
−2 0 2
−1 0 1

, Sobely =

−1 −2 −1
0 0 0
1 2 1

 (7)

These calculations of the Sobel gradient Ix, Iy enable the algorithm to effectively
highlight the most significant changes in intensity, corresponding to the edges within the
visual data.

In the algorithm’s final stage, the task is to trace the spill boundary, which involves
calculating the perpendicular mean relative angle within the FoV image. This method
accurately maps the contours of the spill. The calculation of the perpendicular mean relative
angle represented by

at = atan2
(
−∑n

Ix(x, y)
n

, ∑n
Iy(x, y)

n

)
(8)

This identifies the direction of edge gradients, facilitating the precise following of the
spill boundary within the aquatic environment.

Algorithm 1. OS− BREEZE

Inputs: St ← USV FoV
Output: at ← action
St

f iltered ← K(x, y, σ) ∗ St

for each (x, y) in St
f iltered do:

if St
f iltered(x, y) ≥ ϵ do:

I(x, y) = 1
else:

I(x, y) = 0
for each (x, y) in I :

Ix(x, y)← Sobelx ∗ I
Iy(x, y)← Sobely ∗ I

at ← atan2
(
−∑n

Ix(x,y)
n , ∑n

Iy(x,y)
n

)
return at
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3.2. Mapping and Red Zone Estimation

The mapping process, as shown in Algorithm 2, is initiated simultaneously with
the boundary tracing, utilizing visuals received from the visual sensor. This process
involves integrating the USV’s precise location data with the visuals of its surrounding
area, as depicted in Figure 3. These visuals are then united into the cumulative map, Ic,
encompassing all visuals collected from the locations visited by the USV.

Subsequently, the red zone estimation process takes over, utilizing the cumulative map
to accurately estimate the spread of the red zone. This process mirrors the initial steps of
the OS-BREEZE algorithm, starting with noise cancellation filtering to enhance estimation
precision. Following this, a threshold filter is applied to classify the visuals based on the
opacity values, a crucial step in identifying areas of the oil spill.

The next critical step involves locating boundary pixels within the exposed areas of the
cumulative map. This is achieved by applying the Sobel filter and identifying pixels with a
gradient magnitude above a certain threshold as potential boundary markers. Finally, the
contour of the oil spill is delineated using the Topological Structural Analysis method [24],
extracting it from the set of identified boundary pixels.

Algorithm 2. Red Zone Estimation

Inputs: Ic ← USV FoV
Output: ME ← Estimated red zone
It
c, f iltered(x, y)← G(x, y, σ) ∗ Ic

for each (x, y) in It
c, f iltered do:

if It
c, f iltered(x, y) ≥ ϵ do:
I(x, y) = 1

else:
I(x, y) = 0

for each (x, y) in I :
Ix(x, y)← Sobelx ∗ I
Iy(x, y)← Sobely ∗ I
M(x, y)←

∥∥(Ix, Iy
)∥∥

if M(x, y) ≥ ϵmag do:
B ←

∥∥(Ix, Iy
)∥∥

ME ← contour Detection(B)
returnME

4. Results

The results were obtained during a physical experiment, as presented in Figure 4
carried out on the CPM, an accurate scale model of Haifa port with an aspect ratio of 1:120.
The CPM is designed to simulate real port scenarios, such as oil pollution.

In our experiment, we examined the OS-BREEZE algorithm framework’s performance
in managing oil spills from various sources.

We experimented with different pollution scenarios, each varying in the source of
pollution (vessel, pipeline), the rate of input (slow, medium, high), and changing meteoro-
logical and oceanographic conditions. Figure 4 presents four distinct spill scenarios: Outer
Anchoring Spill Initial Stage, Outer Anchoring Spill Advanced Stage, Inner Docking Stern
Side Spill, and Inner Docking Port Side Spill.

The Outer Anchoring Spill Initial Stage represents the early phase of a spill, where
an oil pipeline lies on the seabed in the port area. In the Outer Anchoring Spill Advanced
Stage, the USV encounters a more advanced phase of the spill, where the red zone of the oil
spill has extended, making the estimation process more complex. Lastly, the Inner Docking
spills illustrate the challenges posed by oil spills that spread along the vessel and the pier.
Figure 5 presents the ground truth areas of the red zone for the examined scenarios, defined
by a predetermined opacity level that serves as the threshold for pollution level in the
experiment. The effectiveness of the OS-BREEZE algorithm in estimating the red zone was
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assessed by comparison with a standard baseline algorithm, known as Sweep, across a
variety of scenarios. The Sweep algorithm, commonly likened to the path of a lawnmower
traversing a lawn, is a systematic method frequently employed for comprehensive area
coverage. Utilizing this method, the agent starts at one corner of the target area, and
proceeds in a straight line until it encounters the boundary. Upon reaching this limit, the
agent adjusts its position vertically by a predetermined distance and then continues in the
opposite direction. This back-and-forth process is repeated in an exhaustive manner until
the entire area is covered.
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ological and oceanographic conditions. Figure 4 presents four distinct spill scenarios: 
Outer Anchoring Spill Initial Stage, Outer Anchoring Spill Advanced Stage, Inner Docking 
Stern Side Spill, and Inner Docking Port Side Spill. 

The Outer Anchoring Spill Initial Stage represents the early phase of a spill, where 
an oil pipeline lies on the seabed in the port area. In the Outer Anchoring Spill Advanced 
Stage, the USV encounters a more advanced phase of the spill, where the red zone of the 
oil spill has extended, making the estimation process more complex. Lastly, the Inner 
Docking spills illustrate the challenges posed by oil spills that spread along the vessel and 
the pier. Figure 5 presents the ground truth areas of the red zone for the examined scenar-
ios, defined by a predetermined opacity level that serves as the threshold for pollution 
level in the experiment. The effectiveness of the OS-BREEZE algorithm in estimating the 
red zone was assessed by comparison with a standard baseline algorithm, known as 
Sweep, across a variety of scenarios. The Sweep algorithm, commonly likened to the path 
of a lawnmower traversing a lawn, is a systematic method frequently employed for com-
prehensive area coverage. Utilizing this method, the agent starts at one corner of the target 
area, and proceeds in a straight line until it encounters the boundary. Upon reaching this 
limit, the agent adjusts its position vertically by a predetermined distance and then con-
tinues in the opposite direction. This back-and-forth process is repeated in an exhaustive 
manner until the entire area is covered. 

Figure 4. Demonstration of oil spill variations in a controlled experiment. The top images illustrate
the spill’s development over time, showcasing the initial and advanced stages. The bottom images
depict the challenges posed by spills along the vessel and the pier. Each image captures the unique
dynamics and spread patterns of oil spills in various port spill scenarios, serving as test cases for the
OS-BREEZE algorithm.
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This comparative analysis included evaluating the coverage of the path planning
and comparing the path lengths generated by both the Sweep and OS-BREEZE algo-
rithms, as illustrated in Figure 6. The results for the OS-BREEZE algorithm were derived
from 10 separate runs, each under different initial conditions, where the mean was cal-
culated as the following µ = µi

10 and the standard deviation (SD) calculated according to

σ =

√
∑(µ−µi)

2

10 .
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Figure 6. Comparative Analysis of OS-BREEZE and Sweep methods for oil spill monitoring. The
figure presents a series of images and graphs for the Outer Anchoring Spill in its initial and advanced
stages, followed by the Inner Docking Stern Side and Port Side spills. The graphs plot coverage
against path length (km) indicating the efficiency of the methods and illustrating the path patterns of
both methods.
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Experimental Results

The experimental results for the Outer Anchoring and Inner Docking scenarios, using a
USV deployed to map and monitor areas impacted by the oil spill, with the representation of
the red zone ground truth oil spill is shown in Figure 5. The performance of the OS-BREEZE
algorithm, as quantitatively measured by Precision, Recall, and F1-Score, is detailed in
Table 1. This table provides a statistical analysis of the algorithm’s effectiveness across
different scenarios, illustrating the mean (µ) and SD (σ).

Table 1. Evaluation metrics for the OS-BREEZE method including Precision, Recall, and F1-Score.

Scenarios
Precision Recall F1-Score

µ σ µ σ µ σ

Outer Anchoring Initial Stage 0.95 0.03 0.86 0.03 0.9 0.00

Outer Anchoring Advanced Stage 0.95 0.00 0.92 0.00 0.93 0.00

Inner Docking stern Side Oil Spill 0.9 0.06 0.88 0.07 0.89 0.02

Inner Docking Port Side Oil Spill 0.86 0.01 0.98 0.01 0.89 0.00

The experimental results for the Outer Anchoring scenario are visualized in Figure 6,
which compares the Sweep method with the OS-BREEZE. These results illustrate the
differences in efficiency and coverage between the two methods through both graphical
and visual data. OS-BREEZE is notable for its swift coverage rate and shorter path length in
both the initial and advanced stages, suggesting a higher efficiency. In contrast, the Sweep
method presents a slower coverage rate, indicating the need for a longer path to achieve
similar coverage. The initial stage results specifically highlight OS-BREEZE’s ability to fully
cover the area with a 1 km path, while Sweep requires about 3.75 km, and this efficiency
remains apparent despite the SD. In the advanced stage, OS-BREEZE maintains its lead
with a path length of about 5.6 km, in contrast to the Sweep’s substantially long 20 km path.

Visually, the two images compare the implementation of each method. OS-BREEZE
is depicted as following a direct and focused path in green, closely followed by the spill’s
boundary. In contrast, the Sweep method is characterized by a systematic, alternating
coverage pattern. A notable observation is that in the initial stage, the Sweep covers a small
section to the right of the red zone that OS-BREEZE does not.

The Inner Docking scenarios, shown in Figure 6, exhibit similar comparative results
between the methods. In the Stern Side scenario, OS-BREEZE completes its coverage with
a path length of about 1.5 km, whereas the Sweep requires about 2.5 km. In the Port Side
scenario, OS-BREEZE’s path length is around 0.7 km, much shorter than Sweep’s path
of 3 km. The graphs from both scenarios, underscored by Table 1, reveal OS-BREEZE’s
boundary-following path and Sweep’s incremental coverage approach.

5. Discussion and Conclusions

The research presented herein introduces the OS-BREEZE algorithm, a path-planning
strategy adept at delineating the red zone of oil pollution both swiftly and accurately. The
efficiency and accuracy of OS-BREEZE are rigorously evaluated through comparative anal-
yses against the conventional sweep method. These analyses were conducted across four
varied pollution scenarios within a port environment, as detailed in Figure 6 and Table 1.
Evaluation metrics for the OS-BREEZE method include Precision, Recall, and F1-Score. The
findings consistently demonstrate that OS-BREEZE necessitates a reduced path length for
effective red zone monitoring, thereby indicating a substantial improvement in operational
efficiency compared to the traditional sweep method. Notably, the algorithm achieves an
accuracy rate of approximately ninety percent, as measured across key metrics such as Pre-
cision, Recall, and F1 Score, as shown in Table 1. These results significantly underscore the
precision and reliability of the OS-BREEZE algorithm, affirming its efficacy in conducting
oil spill surveillance under diverse and challenging environmental conditions.
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This study’s primary contribution, as highlighted by the findings, lies in the strategic
approach of the OS-BREEZE algorithm, particularly its focus on delineating the boundary
of the red zone of oil pollution. This approach contrasts with the conventional method
that typically involves extensive coverage of the entire affected area. The novel strategy
employed by OS-BREEZE allows for a significant reduction in the time required for moni-
toring. By strategically avoiding dense sampling of the entire polluted zone and instead
concentrating on mapping the perimeter of the pollution, OS-BREEZE provides a more
focused and resource-efficient method for surveillance.

Furthermore, this research employs a synthetic oil spill experiment, which requires
further study in certain challenging conditions that are not accounted for in the experimen-
tal design. The potential influence of the USV on the distribution of the nearby oil spill.
This influence encompasses factors such as the USV’s potential inaccuracies in sensing
capabilities, which may compromise the precision of estimation. Additionally, various ma-
rine environmental phenomena, including waves and foam, can also impact the accuracy
of the USV’s operations.

Moreover, the study utilizes a simulated camera model designed to replicate the visual
capabilities of a USV in the scaled model. This model aids in visualizing the surrounding
area. However, in real-world scenarios, several critical factors related to the camera must
be considered for a more accurate representation. These include the camera’s resolution, its
positioning, and the projection of the imagery.

6. Future Work

In forthcoming research efforts, the objective is to refine and extend the present method-
ology to facilitate a collaborative interface between UAV and USV, aiming to enhance overall
efficacy. Whereas the current investigation is centered on monitoring applications, prospec-
tive studies will develop coordinated strategies for detecting and cleansing oil pollution in
port areas. Incorporating oil spill detection and response functionalities into this collabora-
tive framework is anticipated to significantly advance marine ecosystem protection and
reduce the detrimental environmental impact of oil spillages.

Furthermore, this research will be expanded to investigate the boundary-following
strategy under realistic marine conditions, including challenges such as foam and waves,
which can only be authentically evaluated in an actual marine environment. A small-scale
experiment will be developed to facilitate this investigation, utilizing a compact USV
equipped with an onboard camera. This experimental setup is designed to examine various
critical factors comprehensively. These include the impacts of camera positioning and tilt-
ing on the visual capabilities, potential inaccuracies in the USV’s sensing capabilities, and
the influence of the USV’s presence on the distribution of the oil spill in its vicinity. By con-
ducting these investigations, the study aims to gain a deeper understanding of how these
elements interact and affect the efficiency and accuracy of the oil spill monitoring process.
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