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Abstract: Cloud computing has become a major component of the modern IT ecosystem. A key
contributor to this has been the development of Infrastructure as a Service (IaaS) architecture, in
which users’ virtual machines (VMs) are run on the service provider’s physical infrastructure, making
it possible to become independent of the need to purchase one’s own physical machines (PMs). One
of the main aspects to consider when designing such systems is achieving the optimal utilization of
individual resources, such as processor, RAM, disk, and available bandwidth. In response to these
challenges, the authors developed an analytical model (the ARU method) to determine the average
utilization levels of the aforementioned resources. The effectiveness of the proposed analytical model
was evaluated by comparing the results obtained by utilizing the model with those obtained by
conducting a digital simulation of the operation of a cloud system according to the IaaS paradigm.
The results show the effectiveness of the model regardless of the structure of the emerging requests,
the variability of the capacity of individual resources, and the number of physical machines in the
system. This translates into the applicability of the model in the design process of cloud systems.

Keywords: cloud computing; IaaS; analytical model

1. Introduction

The telecommunications market, in its constant state of evolution, demonstrates a
relentless drive to meet increasingly demanding user needs. This evolution is clearly
visible in the field of wireless access networks, where the advent of 4G and 5G technologies
has ushered in a new era of seamless voice transmission and lightning-fast data transfer.
Declining device and data costs have greatly expanded the network services sector. Today,
IP traffic is a major contributor to the flow of data on the Internet, demonstrating the
ubiquitous role of wireless access networks in modern communications ecosystems [1].
Nevertheless, it is important to realize that wireless access networks are only one aspect
of a broader system dedicated to serving user requirements. High-performance backbone
networks and high-performance servers form the backbone of this infrastructure, facilitating
seamless service delivery processes. Servers, often consolidated in sprawling data centers,
play a key role in streamlining service management operations. Leading content-delivery
networks boast extensive sets of servers, comprising thousands of units, enabling them
to offer a diverse set of services to end users. The advent of cloud computing [2–5] has
further revolutionized service availability and deployment, with cloud-based resources
now available as on-demand instances. This allows a myriad of content and applications to
be made available quickly and efficiently. As a result, cloud-based services have penetrated
both enterprise-class service providers and individual users seeking customized server
resources or storage capacity for personal data management. Other examples of data-
processing approaches include Edge Computing [6–8] and Fog Computing [9–12], which
are extensively described in the literature. Fog and Edge Computing approaches are widely
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used, especially in real-time data processing, where minimizing latency and providing
excellent scalability are becoming increasingly important. Fog Computing, thanks to
its distributed infrastructure, allows it to complement Edge Computing and extends its
capabilities by providing a computing infrastructure layer between edge devices and the
cloud. Consequently, it provides additional computing resources and services to edge
devices. At the same time, with huge requirements for computing power or a service
where the user requires access to infrastructure in the form of virtual machines, cloud
solutions remain irreplaceable. At the same time, cloud solutions remain indispensable in
handling a huge demand for computing power or services, where the user requires access
to infrastructure in the form of virtual machines.

Cloud computing, epitomized by the on-demand resource-delivery model, is an
indispensable part of users’ lives. Characterized by the ability to rapidly scale computing
resources up or down in response to user demand, it offers unparalleled flexibility and cost
efficiency. Prominent among the various cloud service models is Infrastructure as a Service
(IaaS), which provides users with unlimited access to virtualized computing resources such
as virtual machines, storage, and network components via the Internet. With IaaS, users
retain full autonomy to provision and manage resources, while not having to invest in their
own physical infrastructure.

The National Institute of Standards and Technology (NIST) has delineated the essential
attributes of IaaS, defining it as “the capability provided to the consumer to provision
processing, storage, networks, and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software, which can include operating
systems and applications. The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, deployed applications, and
possibly select networking components” [2].

However, the effectiveness of cloud computing systems depends on judicious resource
allocation and vigilant monitoring. Overloading individual resources can result in degraded
performance of the entire system and increased failure rates. Thus, an optimal use of
resources is sought, according to the assumptions made while avoiding their maximum use
in longer time sequences. For example, constant CPU overload can mean system bottlenecks
or software inefficiencies. Similarly, disk space allocation requires a high degree of caution,
and experts recommend a buffer of 10–15% of free disk space to prevent system instability.
The effective management of cloud computing infrastructure involves dealing with a
myriad of challenges, chief among which are resource availability and energy efficiency.
Service providers have to deal with the complexity of scaling physical server resources to
meet growing user demands, especially in IaaS offerings. Moreover, optimizing energy
consumption and managing heat dissipation while servers are running remains a pressing
issue. Data centers, the backbone of cloud infrastructures, are significant consumers of
energy, prompting ongoing sustainability and energy efficiency efforts. According to the
International Energy Agency (IEA), the entirety of data centers worldwide consumed
about 200 TWh of electricity in 2020 [13]. To this end, advanced load-balancing algorithms,
including Opportunistic Load Balancing (OLB), Round Robin (RR), and Central Load
Balancing Decision Models (CLBDM), have been developed to ensure equitable use of
resources and minimize energy losses [14–17]. A detailed description of the various load-
balancing models is provided in Section 2.1.

To address the identified challenges, the paper presents a general approach to predict-
ing resource utilization in the cloud. The authors developed a model (the ARU method)
to predict the utilization of basic cloud system resources such as CPU cores, disk storage,
RAM, and available bandwidth when observing the system.

1.1. Related Works

The topic of resource management and resource usage prediction has been widely
addressed in the literature on the subject. In the paper [18], the authors proposed an
intelligent Regressive Ensemble Approach for Prediction (REAP). The solution integrates
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feature selection and resource usage prediction techniques to achieve high performance.
The authors verified the accuracy of their solution in a real cloud environment. The main
parameter analyzed was CPU utilization, and the model was characterized by very high
accuracy and speed. A method proposed by [19] focuses on load prediction for energy-
efficient consolidation of virtual machines in cloud data centers. The authors introduce
LiRCUP, a technique based on linear regression for predicting CPU utilization on each
host. LiRCUP also facilitates the prediction of underloaded hosts and the migration of VMs
to other hosts. Similarly, Ref. [20] presents a model for predicting resource instances in
real-time cloud environments. They classify workloads based on trend degree (TD) and
utilize a hidden Markov model (HMM) to forecast cloud resource usage using historical
and current data. In contrast, Ref. [21] proposes an ensemble prediction algorithm to
forecast energy efficiency in cloud environments. Their model operates at various levels,
employing prediction models such as moving average, linear regression, exponential
smoothing, and double exponential smoothing. Another distinctive approach is illustrated
by [22], where the authors develop a prediction-based resource provisioning technique
using neural networks (NNs) and linear regression (LR) specifically for the Amazon EC2
cloud. Article [23] attempts to predict real-time resource utilization for IaaS-based cloud
systems using the ARIMA method for requests following a Gaussian distribution. Their
model selection is based on minimum Akaike Information Criterion (AIC) values, with
evaluation performed on the FastStorage dataset. In [24], an ensemble model for load
prediction is presented, demonstrating improved accuracy and root mean square error
(RMSE) compared to baseline studies. The ensemble, named the “Ensemble based workload
prediction mechanism”, employs stack generalization and base classifiers such as k-nearest
neighbors (KNN) and decision trees, showing promising performance enhancements. In
the article [25], the authors presented an approach to predicting resource utilization in the
cloud at the level of individual tasks and resources. The proposed solution uses methods
from the field of machine learning to create predictive models based on historical data. The
authors used real-world datasets in their study and, based on these datasets, showed that
the approach they developed improves the prediction accuracy of the duration of emerging
requests compared to a simple linear regression approach. Based on their evaluation,
it was shown that in a typical case, a 20% reduction in prediction error is possible and
that improvements above 89% are among the best cases. For the median case, the model
predicted the duration of tasks in the cloud with an error factor of 0.80 (i.e., 20% less
prediction error). The best 5% of cases achieved an error rate of 0.11 (i.e., 89% lower
prediction error).

In summary, a number of approaches to managing and predicting resource usage in
cloud systems can be found in the literature. Most of the proposed solutions are based
on historical data and its analysis for prediction using artificial intelligence algorithms.
The approach proposed by the authors differs and is based on the intensity of incoming
requests, request characteristics, and physical machine parameters, followed by analytical
modeling using Markov processes.

1.2. Research Contribution

The main achievements of this article are as follows:

• An analytical model in the form of a method, called ARU method, is developed to
determine the average use of each cloud system resource (RAM (R), disk (D), processor
(P), bandwidth (B)) during its operation.

• In order to develop the proposed algorithm, models of multi-service systems were
used: a model of multi-service resources with full availability, a model of multi-service
resources with limited availability, and the methodology of fixed points.

• A simulation model of a cloud system based is developed on requests for four param-
eters (R, D, P, B) in order to obtain information on the use of individual resources of
physical machines and indicate the impact of individual resources on the rejection
of requests;
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• The results obtained using the model are compared with the results obtained using
the simulator developed by the authors.

2. Cloud Computing Structure

The concept of creating a virtual machine in a cloud environment is described by the
author in the article [26]. The whole concept is depicted in the schematic drawing Figure 1.
This diagram consists of two main components: the management part (consisting of the
Main Resource Manager (MRM) and the Group Manager (GM)) and the Physical Machine
(PM) itself, represented as a server [27].

Figure 1. The process of creating a virtual machine in a cloud system.

2.1. Management in the Cloud

In a cloud computing environment, the Main Resources Manager (MRM) and Group
Manager (GM) are responsible for managing the allocation and utilization of resources
within the cloud. The introduction of such a division is intended to simplify the manage-
ment of resources by dividing them into individual groups.

The MRM is responsible for managing the physical resources of the cloud, such as
servers, storage, and networking equipment. It ensures that these resources are available
and accessible to users in the cloud. The MRM also monitors the utilization of these
resources and makes decisions on resource allocation based on user demand.

The GM, on the other hand, manages the virtual resources within the cloud. This
includes virtual machines, applications, and other services. The GM ensures that these re-
sources are provisioned and available to users as needed and also monitors their utilization
and performance.

Both the MRM and GM work together to ensure efficient and effective utilization of
resources within the cloud environment. They use various algorithms and strategies to
manage resource allocation and utilization, such as load balancing and auto-scaling, to
optimize performance and minimize downtime.

There are several algorithms used in cloud computing to distribute Virtual Machines
(VMs) to Physical Machines (PMs). Some of the commonly used algorithms are [14–17]:

• Round-robin: This algorithm distributes VMs in a round-robin fashion across the
available PMs. It ensures an even distribution of VMs across the PMs and prevents
the overloading of any single PM.

• Opportunistic load balancing (OLB): This algorithm dynamically monitors the load
on each PM and migrates VMs from overloaded PMs to underloaded ones to balance
the load. It makes use of statistical models to predict the future load on PMs.

• Central load balancing decision model (CLBDM): This algorithm uses a central con-
troller to balance the load across the PMs. The controller has access to the load
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information of all PMs and makes decisions on where to place VMs based on the
current and predicted future load.

• Ant Colony Optimization (ACO): This algorithm is inspired by the behavior of ants in
finding the shortest path between two points. In the cloud computing environment,
ACO can be used to find the optimal placement of VMs based on resource utilization,
energy consumption, and other criteria.

• Genetic algorithm (GA): This algorithm uses a population-based approach to find the
optimal solution for VM placement. It starts with an initial population of VM place-
ment solutions and evolves them using mutation, crossover, and selection operations
to find the fittest solution.

• Uniform distribution: This is an even distribution that tends to average each de-
vice’s resource usage. This approach was taken into account by the authors during
the research.

These are just a few examples of the algorithms used in cloud computing for VM
placement. Different cloud providers may use different algorithms based on their specific
requirements and goals.

According to the typical behavior of a cloud system, when a new request is received,
the MRM and GM attempt to locate where the new machine will be started. This process
follows the physical resource-allocation algorithm implemented in the system, examples
of which are described above. For the study, the authors assumed an even distribution
between all available physical machines in the system. It was also assumed that the
activation of a new VM on a PM can only occur if a single PM has sufficient free resources
defined by a call consisting of the necessary amount of RAM, the necessary disk space, the
number of CPU cores and, the bit rate to connect to the server.

2.2. Physical Machine

As presented by the authors in [27,28], a single physical machine on which VMs are
created can be described by four basic parameters:

• CP—the number of processors (cores),
• CR—the total capacity of RAM,
• CD—the total capacity of the hard disk,
• CB—the total bitrate of a network link.

A demand for the creation of a new VM of class i can be described by the four-element
set VMi = {ci,P, ci,R, ci,D, ci,B}, where

• ci,P—the number of demanded processors (cores),
• ci,R—the demands for capacity of RAM,
• ci,D—the demanded capacity of the hard disk,
• ci,B—the demanded speed of a network link,

where i denotes the class of a VM, understood as a group of machines that require identical
values of the parameters of set VMi. Typically, it is assumed that the number of classes of
VM is equal to m.

Consequently, for a single physical machine (PM = (CP, CR, CD, CB)) to be able to
create a new virtual machine with requests, respectively (VMi = (ci,P, ci,R, ci,D, ci,B)), it is
necessary that the current free number of resources of each type is sufficient to handle this
request. The original concept of such a system was first proposed in the article [26], and
a model for determining the blocking probability for such a system was proposed by the
authors in [28].

3. Model
3.1. Basic Analytical Models

Models that can be used to analyze ICT systems include analytical and simulation
models. These models can be utilized to analyze various aspects of a system, such as
network performance, reliability, availability, and security. In this study, the authors
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conducted research on resource utilization in an infrastructure of cloud computing using
basic analytical models of multi-service ICT systems.

The proposed solution uses three models known from the literature on the subject:
the full-availability system (FAS) model [29,30], the limited-availability system (LAS)
model [31,32], and the fixed-point (FP) method [33]. Using these three methods in a single
model made it possible to estimate resource utilization in a complex system such as cloud
computing physical infrastructure. To more easily analyze the analytical solution proposed
in the article, the remainder of this section presents the most important information about
the FAS, LAS, and FP models used.

3.2. Full Availability System

An ICT system is called a full-availability system if requests occurring at its input have
access to any of its resources as long as they are free [29,30]. A simplified schematic of the
structure of such a system is shown in Figure 2.

Figure 2. Illustration of the construction of a full availability system.

The capacity of the system is C units of system capacity, referred to as allocation
units (AUs). An AU is an abstract dimensionless unit that allows the capacity of any
system to be represented independently of the units in which the actual capacity of the
system is expressed. This is extremely important from the point of view of analytical
model usage. Modern networks are based on packet transmission. However, network
analysis at the packet level is computationally inefficient. In [34], it was shown that ICT
systems can be analyzed at the level of packet streams associated with the delivery of the
services offered. Such an analysis would not be possible without the process of resource
discretization [28,35], which allows the transmission rate to be expressed in dimensionless
AUs. Thanks to the discretization of resources, it is possible to also apply the analytical
model in cases where the actual capacity of the system is expressed in other units (e.g., in the
number of processors or bytes) [26,28]. The system in Figure 2 is offered m request classes,
each of which requires ci AUs (0 ≤ i ≤ m) to be serviced. The best-known analytical models
of full availability system are the models proposed in [29,30]. The basis of the model is the
following recursive equation, which allows us to determine the occupancy distribution in
the system:

n[P(n)]C =
m

∑
i=1

Aici[P(n− ci)]C, (1)

where Ai is the intensity of traffic of class i and [P(n)]C is the occupancy probability of n
AUs in FAS with a capacity of C AUs.

By knowing the occupancy distribution, it becomes feasible to determine the probabil-
ity of blocking for each request class serviced by the system under investigation:

Ei =
C

∑
n=C−ci+1

[P(n)]C. (2)

In a simplified manner, the results of FAS modeling can be symbolically represented
as follows:

{P, E} = FAS(A, c, C), (3)

where P represents the occupancy distribution obtained based on (1):

P = {[PFAS(n)]C, 0 6 n 6 C}, (4)
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E is a set of blocking probabilities obtained based on (2):

E = {Ei, 0 6 i 6 m}, (5)

while
A = {A1, A2, ..., Am}, (6)

c = {c1, c2, ..., cm}, (7)

are sets of offered traffic and demands of individual classes of requests.

3.2.1. Limited Availability System

Limited availability system (LAS) is a system that is divided into k identical, separated
FAS subsystems [31]. The capacity of each FAS subsystem is equal to C AUs. The system is
offered m classes of requests, demanding ci AUs (0 ≤ i ≤ m) for service. An illustrative
drawing of a LAS system is shown in the Figure 3.

Figure 3. Illustrative drawing of the construction of a limited available system

The system works in such a way that any new request that demands ci AUs can
be accepted for service only if it can be completely serviced by a single FAS subsystem.
Consequently, it is not possible in this system to divide the request of ci AUs between
separate subsystems

Analytical models for such systems have been proposed in [31,32]. According to these
models, the occupancy distribution in LAS can be determined in the following way:

n[P(n)]kC =
m

∑
i=1

kAiciσi(n− ci)[P(n− ci)]kC, (8)

where

• Ai—the traffic intensity of traffic class i offered to a LAS;
• [P(n)]kC—the occupancy probability of n AUs in a LAS with a total capacity of kC

units, where C is the capacity of single subsystem;
• σi(n)—the so-called conditional passage probability for transitions between neighbor-

ing occupancy states in a LAS:

σi(n) = 1− F(kC− n, k, ci − 1)
F(kC− n, k, C)

, (9)
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where F(x, k, c) is the number of possible distributions of x free (unoccupied) AUs in
k separate resources, where each of the resources has a capacity of C units:

F(x, k, C) =
b x

C+1c
∑
i=0

(−1)i
(

k
i

)(
x + k− 1− i(C + 1)

k− 1

)
. (10)

By knowing the occupancy distribution, it becomes feasible to determine the probability of
blocking for each request class serviced by the system under investigation:

Ei =
kC

∑
n=0

[1− σi(n)][PLAS(n)]kC, (11)

In a simplified manner, the results of LAS modeling can be symbolically represented
as follows:

{P, E} = LAS(A, c, kC), (12)

where P represents the occupancy distribution in LAS, obtained based on (11):

P = {[PLAS(n)]C, 0 6 n 6 kC}. (13)

E is a set of blocking probabilities (5), obtained based on (2), while A and c are sets of
offered traffic and its demands (formulas (6) and (7)).

3.2.2. Fixed-Point Method

The last model used to develop the algorithm is known in the literature as the fixed-
point (FP) method. This method makes it possible to determine the blocking probability in
systems in which the new request demands access to several different resources (subsys-
tems) simultaneously. This involves the assumption that to each of the subsystem is offered
the traffic (the so-called effective traffic) that is not lost in the other component subsystems
of a given system [33]. Such an assumption implies the need to determine the probability
according to the adopted algorithm. This algorithm is described in detail by the authors in
the article [28] and is as follows:

Request of class i (1 ≤ i ≤ m) demands access to s subsystems at the same time. The
effective traffic of class i requests Ai(j) offered to the subsystem j (1 ≤ j ≤ s) is defined
as follows:

Ai(j) = Ai

s

∏
l=1,l 6=j

[1− Ei(l)], (14)

where Ei(l) is the blocking probability for class i requests in the subsystem j.
Note that to determine the offered traffic Ai(j), it is necessary to know the value of

blocking probability Ei(l) in other subsystems; i.e., all l 6= j. Therefore, the FP method is an
iterative method that can be implemented in the following way:

1. Initialization of the iteration step: z = 0.
2. Determining the initial approximations (z = 0) for the blocking probabilities of all

traffic classes in all subsystems:

∧
i6j6s

Ez
j = {E

(z)
i,j , 1 6 i 6 m}, (15)

where ∧
i

∧
j

E(0)
i,j = 0. (16)
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3. Increasing the iteration step:
z = z + 1. (17)

4. Determining A(z)
j , i.e., the effective traffic intensities of individual classes offered to

subsystem j in step z:

∧
16j6s

A(z)
j = {A(z)

1,j , A(z)
2,j , ..., A(z)

m,j}, (18)

where each element of set A(z)
j is determined according to the formula:

∧
16i6m

∧
16l6s

A(z)
i,j = Ai

s

∏
l=1,l 6=j

[1− E(z−1)
i,l ]. (19)

5. Determining P(z)
j , E(z)

j , i.e., the occupancy distributions and blocking probabilities of
individual classes in subsystem j at step z:

∧
16j6s

P(z)
j = {[PFAS(n)]

(z)
Cj

, 1 6 n 6 Cj}, (20)

∧
16j6s

E(z)
j = {E(z)

1,j , E(z)
2,j , ..., E(z)

m,j}, (21)

where each element of the P(z)
j and E(z)

j sets is determined, respectively, based on (3):

∧
16j6s

P(z)
j = FAS(A(z)

j , cj, Cj), (22)

∧
16j6s

E(z)
j = FAS(A(z)

j , cj, Cj), (23)

where cj is a set of requests for individual traffic classes in subsystem j with capacity Cj:

cj = {c1,j, c2,j, ..., cm,j}, (24)

6. Determining the total blocking probability E(z), i.e., the blocking probability values of
individual classes in the entire system at step z:

E(z) = {E(z)
1 , E(z)

2 , ..., E(z)
m }, (25)

where each element of the E(z) set is determined by the formula:

∧
16i6m

∧
16j6s

E(z)
i = 1−

s

∏
j=1

[1− E(z)
i,l ]. (26)

7. Checking the accuracy of the calculations:

∧
i

∣∣∣∣∣E
(z)
i − E(z−1)

i

E(z)
i

∣∣∣∣∣ ≤ ε. (27)

If the condition is not met for all i, go to Step 3; otherwise, E(z) = E, and the calcula-
tions end.
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The results of the FP method are symbolically represented as follows:

{Pj, Ej} = FP(A, cj, Cj), (28)

where A is a set of offered traffic defined by (6).
In the presented algorithm, it is assumed that X(z) is the value of parameter X in the

z-th iteration step. The ε parameter is the absolute error of the calculations, which specifies
the accuracy of the iteration process.

3.3. Proposed Model

The proposed analytical algorithm makes it possible to determine the use of individual
resources in physical machines in a cloud system operating in the IaaS model. The algorithm
takes into account both the physical architecture of the system and all the basic parameters
necessary to create a machine (P,R,D,B), while assuming that the entire virtual machine
must be allocated in a single physical machine [28]. At the same time, it was assumed
that the entire system consists of k identical physical machines, and that the algorithm for
allocating VMs to physical machines used by the Cloud Manager seeks to load all machines
equally. In summary, a request of class i occurring in the system can be fully served if and
only if there is at least one physical machine in the system consisting of k physical machines
in which there is a sufficient number of free AUs necessary to create a new virtual machine.
In order to calculate the resource utilization of a cloud system, the Cloud I Algorithm,
proposed by the authors in the paper [28], served as the basis. In this algorithm, the
LAS and FAS models, as well as the fixed-point method, were used in order to determine
the blocking probability in the cloud system. This model, in an initial phase, allows the
determination of the distribution considering the individual resources independently for
a single machine (FAS) and a group of machines (LAS), then finding the relationship in
the obtained loss factors. Each of these models simultaneously allows a distribution of
occupancy to be created, which, in subsequent steps, can be used to determine the average
use of each resource independently and to determine the relationship coefficients for these
parameters as well. At the same time, the fixed-point method makes it possible to determine
the occupancy distribution for a single machine, taking into account the simultaneous need
for all types of resources to create a virtual machine. In the next step, this translates into
the possibility of taking into account the previously determined correlation coefficients of
the average utilization of individual, independent resources using LAS and FAS models to
determine the utilization in an actual physical machine located in the cloud system. The
determined correlation coefficients take into account the presence of multiple physical
machines so that the parameters obtained using the fixed-point method can be multiplied
by these values.

Let us delve into the idea used in the proposed ARU (Actual Resource Utilization)
model. The average resource utilization LFAS in a given FAS system with capacity C is
determined by the equation

LFAS =
C

∑
n=0

n[PFAS(n)]C. (29)

Now, consider a LAS (large aggregation system) consisting of k FAS subsystems, such
that the traffic intensity offered by LAS and its capacity are k times greater than the traffic
offered to the FAS subsystem. In such a system, the utilization of resources LLAS can be
defined by the equation:

LLAS =
kC

∑
n=0

n[PLAS(n)]kC. (30)
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The utilization of resources LLAS in a single LAS subsystem, assuming a uniform distribu-
tion of traffic among all subsystems, is determined by the equation

lLAS =
LLAS

k
. (31)

Now, let us introduce the resource utilization coefficient ϑ, which defines the ratio of the
load on a single LAS subsystem to the load on the FAS system:

ϑ =
lLAS
LFAS

=
LLAS
kLFAS

. (32)

It is evident that the coefficient ϑ allows us to determine the average resource utilization
in LAS based on the average resource utilization in FAS, as well as average resource
utilization in FAS based on the average resource utilization in LAS. Such an approach has
been employed in the proposed model for determining resource utilization.

Let us consider a system in which we have access to k PMs. In such a system, a single
PM is regarded as a set of resources:

CPM = {CP, CR, CD, CB}. (33)

Let us assume that each individual PM is offered requests for VM allocation of class i
(1 6 i 6 m) in each of the resources belonging to CPM. We will denote these requests in a
set as

ci = {ci,P, ci,R, ci,D, ci,B}. (34)

Now, let us consider the occupancy distributions in individual resources CX (CX ∈ CPM),
assuming at the same time that these resources serve VMs with requests ci,X (ci,X ∈ ci)
independently of handling these requests in the remaining resources CPM. Therefore, based
on (3) and (4),

PPM,X = FAS(APM,X , cPM,X , CX) = {[PFAS(n)]CX , 0 6 n 6 CX}, (35)

where
APM,X = {[Ai,X , 1 6 i 6 m}, (36)

cPM,X = {ci,X , ci,X ∈ ci ∧ 1 6 i 6 m}, (37)

The distribution PPM,X allows us to determine the average utilization LPM,X of type X
resources in a single PM

LPM,X =
CX

∑
n=0

n[PFAS(n)]CX , (38)

Now, let us determine the average utilization of resources LkPM,X in a group of k PMs
forming an LAS. The system is offered traffic with intensity AkPM,X, which is k times the
multiplied traffic intensity of APM,X :

AkPM,X = kAPM,X = {kAi,X , 1 6 i 6 m}, (39)

The occupancy distribution in such a LAS, based on (12) and (13), can be expressed
as follows:

PkPM,X = LAS(AkPM,X , cPM,x, kCX) = {[PLAS(n)]kCX , 0 6 n 6 kCX}, (40)



Sensors 2024, 24, 2758 12 of 21

The distribution (40) allows for the direct determination of the average resource utilization
LkPM,X in the system composed of k PMs:

LkPM,X =
kCX

∑
n=0

n[PLAS(n)]kCX , (41)

as well as the utilization coefficient ϑ defined in (32). For resources of type X, we have

ϑX =
LkPM,X

kLPM,X
. (42)

In determining LPM,X, we assumed that the VM handling in the selected resources
CX(X ∈ P, R, D, B) is independent of this machine’s request to hand in the remaining
PM resources. In reality, VM handling requires the simultaneous allocation of requests ci
(Equation (34)) in each resource belonging to the resource set cPM (Equation (33)). There-
fore, to determine the occupancy distribution PPM,X in the selected X-type resources, the
FP method can be used. Thus, according to (28), we can write

P∗PM,X = FP(APM,X , cPM,X , CX). (43)

The obtained occupancy distribution allows for the determination of L∗PM,X , i.e., the actual
average utilization of type X resources. According to (38), we can formulate the equation as

L∗PM,X =
CX

∑
n=0

n[P∗FP(n)]CX , (44)

where
[P∗FP(n)]CX ∈ P∗PM,X . (45)

Now, utilizing the resource utilization coefficient determined in Equation (42), we can
calculate the parameter L∗kPM,X , which represents the actual average resource utilization of
type X in a group of k PMs. Based on Equation (42), we have

L∗kPM,X = kϑX L∗PM,X (46)

The determination of the average resource utilization will be expressed in the form of the
ARU method.

ARU Method

Summarizing the previous considerations, the ARU method can be represented
as follows:
ARU METHOD:

1. Determination, based on (35), of the distributions PPM,X in a single PM for each type
of resource (X ∈ {P, R, D, B}). It is assumed that the resources CX handle VMs with
requests ci,X (ci,X ∈ ci, 1 6 i 6 m), independently of the handling of these VMs in the
other resources CPM.

2. Determination—based on (38)—of the average resource utilization LPM,X for each
type of PM resource (X ∈ {P, R, D, B}).

3. For each type of resource (X ∈ {P, R, D, B}), determination of the occupancy distribu-
tions PkPM,X (formula (40)) in a group of k PMs forming LAS. It is assumed that the
system offers traffic that is k times the multiplicity of the traffic offered by a single PM
(Formula (39)).

4. Determination—based on (42)—of the average resource utilization LkPM,X for each
type of resource (X ∈ {P, R, D, B}) in a group of k PMs.

5. Calculation, for each type of resource X, of the resource utilization coefficient ϑX
(Formula (42)).
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6. Determination, based on (43), of the distributions P∗PM,X in a single PM for each type
of resource (X ∈ {P, R, D, B}), assuming that VM handling requires the simultaneous
allocation of requests ci (formula (34)) in each resource belonging to the set of resources
CPM (Formula (33)).

7. Determination—based on (44)—of the actual average resource utilization L∗PM,X in a
single PM for each type of resource X (X ∈ {P, R, D, B}).

8. Determination of the actual average resource utilization L∗kPM,X in a group of k PMs
for each type of resource X (X ∈ {P, R, D, B}) (Formula (46)).

To determine the actual average resource utilization L∗kPM,X in a group of k PMs,
the resource utilization coefficient ϑX was applied, calculated with the assumption that
the traffic handling in the specific resources CX of a given PM is independent of the
traffic handling in the remaining resources belonging to the set CPM. This means that the
calculations of the ϑX parameter are based on the traffic APM,X (Equation (36)), directly
offered by a single PM. Conversely, the calculations of the actual average resource utilization
L∗PM,X in a single PM result from the application of the FP method and thus are based on

the effective traffic A(z)
PM,X (Equation (18)), determined on the basis of the Equation (18) in

the last z-iteration of the FP method. Therefore, to determine the actual average resource
utilization L∗kPM,X in a group of k PMs, the resource utilization coefficient ϑX (Equation
(46)), previously determined for different traffic values, i.e., traffic APM,X , is applied in the
ARU method. Simulation studies conducted by the authors have shown that the adopted
approximation has little impact on the accuracy of the final results. In the examples
analyzed in Section 4, the error introduced by traffic differences does not exceed 1%.

4. Results

The proposed calculation method was implemented in the C++ language. This pro-
gram makes it possible to perform calculations for a given cloud computing infrastructure
as a function of offered traffic. Since the proposed method is approximate (i.e., the results
obtained are not derived from the solution of a system of linear equations resulting from
the analysis of the process of servicing requests in the cloud infrastructure), it is necessary
to verify its performance by comparing the obtained results with the results of digital
simulation. Therefore, it was necessary to develop and implement a simulator of physical
cloud infrastructure. The simulator, implemented in the C++ language, generated systems
with “k” identical servers. Each server comprised four fundamental parameters—RAM,
hard disk, processors, and Ethernet ports—upon which virtual machines could be created.
Employing an event-scheduling method within the C++ simulator, we conducted eight
series of simulations, each continuing until 1,000,000 requests from the class demanding
the highest number of AUs (the maximum RAM AUs) were processed.

The presented results in the Figures 4–9 are shown as a function of show the average
traffic offered to one AU:

a =
∑m

i=1 Aici,R

CR
. (47)

Traffic offered was divided between the different classes of applications in the following
proportions A1c1,R : A2c2,R : ... : Amcm,R=1 : 1 : ... : 1.
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Figure 4. Average resources (R, D, P, B) utilization in a single server for System 0.

Figure 5. Average resource (R, D, P, B) utilization in a single server for System 1.

Figure 6. Average resources (R, D, P, B) utilization in a single server for System 2.
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Figure 7. Average resources (R, D, P, B) utilization in a single server for System 3.

Figure 8. Relative error between the results obtained using the analytical model and the result of
simulation studies.

Figure 9. Average relative error for all system resources between the results obtained using the
analytical model and the result of simulation studies.



Sensors 2024, 24, 2758 16 of 21

An essential assumption throughout the system pertained to the conversion of AUs
into actual capacity parameters for individual resources. This conversion was determined
based on equivalent bandwidth, as outlined in Table 1.

Table 1. AU definitions.

RAM 1 AU = 16 GB

Processor 1 AU = 8 cores

Disk 1 AU = 64 GB

Bandwidth 1 AU = 100 Mbps

The process of determining the equivalent bandwidth for each system parameter
was carried out for the parameters of the virtual machine and physical machine solutions
offered on the market. The authors carried out a reconnaissance of the offers available on the
market for the purchase of virtual machines available through the Microsoft Azure service.

The research process included five different cases, where System 0 was designed with
available Microsoft solutions in mind. The entire System 0 was built with three DELL
servers (PowerEdge R7625 model) with the following specifications: 2× AMD EPYCTM
9654 processor with a base clock speed of 2.4 GHz/3.7 GHz. The total number of installed
processor cores was 192 (2 × 96), 184 of which were available to users. The server was
additionally equipped with 4× 256 GB of DDR4 RDIMM RAM, 736 GB of which were
available to users. In addition, a 1.92 TB drive, entirely available to users, was fitted to
the server. A 2 × 1 GB network card was also fitted. As mentioned earlier, the system
offered virtual machines in line with the machines that are available for purchase under the
Microsoft Azure D2s v3–D64s v3 service. The machines selected were D8s v3 (8× CPUs,
16 GBs RAM, and 64 GB disk), D16s v3 (16× CPUs, 32 GBs RAM, and 128 GB disk), and
D32s v3 (32× CPUs, 64 GBs RAM, and 256 GB disk). An equal link to all devices was
assumed at the 100 Mbps link guarantee level.

Other analyses (System 1–System 4) were performed to demonstrate the independence
of the model from the system parameters, the combination of both requests, and the
parameters of the physical machines themselves.

The Use of Individual Physical Machine Resources in the System

As part of the study, the authors conducted a series of tests using the author’s simulator.
The tests were carried out on a number of different systems, of which the results for four
are described in detail in the article. Throughout the simulation process, the use of cloud
system resources over time was analyzed to provide data on their average utilization.
Parameters such as RAM, disk, processor (CPU usage), and bandwidth on the server were
monitored. These values were then aggregated after a series of simulations and normalized
by the total simulation time.

In the next phase, the authors compared the results obtained from the simulation
with the results obtained with the authors’ proposed analytical model (see Section 3.3).
Figures 4–7 illustrate the results obtained for Systems 0–3 in which the traffic offered per
unit capacity of the whole system varied between 0.6 and 1.4 Erl. Next, Figure 10, illustrates
the resource utilization results for individual physical machines, where the traffic offered
for the system was constant at 1 Erl (System 4) per unit capacity of the whole system, while
the number of physical machines varied between 2 and 6. In all figures, the orange color
indicates the results obtained using the analytical model (ARU method), while the blue
color indicates the results obtained from simulation studies.

The detailed specifications of System 0–3 are shown in Table 2 and of System 4 are
shown in Table 3.
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Table 2. Parameters of Systems 0–3.

System 0

Servers

No. of PMs Capacity of Server Components in AUs

k = 3 CR = 23 CP = 23 CD = 26 CB = 20

Virtual Machines

VM Class VM Demands in AUs

1 c1,P = 1 c1,R = 1 c1,D = 1 c1,B = 1

2 c2,R = 2 c2,P = 2 c2,D = 2 c2,B = 1

3 c3,R = 4 c3,P = 4 c3,D = 4 c1,B = 1

System 1

Servers

No. of PMs Capacity of Server Components in AUs

k = 3 CR = 35 CP = 30 CD = 28 CB = 20

Virtual Machines

VM Class VM Demands in AUs

1 c1,P = 1 c1,R = 1 c1,D = 1 c1,B = 1

2 c2,R = 2 c2,P = 3 c2,D = 2 c2,B = 1

3 c3,R = 3 c3,P = 3 c3,D = 1 c1,B = 1

System 2

Servers

No. of PMs Capacity of Server Components in AUs

k = 3 CR = 38 CP = 35 CD = 27 CB = 25

Virtual Machines

VM Class VM Demands in AUs

1 c1,R = 1 c1,P = 1 c1,D = 3 c1,B = 1

2 c2,R = 3 c2,P = 3 c2,D = 3 c2,B = 4

3 c3,R = 5 c3,P = 4 c3,D = 1 c3,B = 2

System 3

Servers

No. of PMs Capacity of Server Components in AUs

k = 9 CR = 21 CP = 25 CD = 21 CB = 18

Virtual Machines

VM Class VM Demands in AUs

1 c1,R = 1 c1,P = 1 c1,D = 2 c1,B = 1

2 c2,R = 3 c2,P = 1 c2,D = 2 c2,B = 2

3 c3,R = 3 c3,P = 4 c3,D = 3 c3,B = 1
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Figure 10. Average resources (R, D, P, B) utilization in a single server for System 4.

The analytical model developed by the authors showed a high level of accuracy, with
a slight tendency to overestimate resource utilization. Due to its high accuracy, it can be
a useful tool in the design process of cloud systems based on IaaS architecture. A careful
analysis of the maximum relative error between the results obtained with the simulation
model and the analytical model confirmed the high accuracy of the proposed solution. The
maximum relative error for all parameters monitored in the system (R, D, P, B) for System 1
did not exceed 6%. The consistency of the obtained results for all analyzed parameters and
their similar accuracy confirm that the developed solution can be effectively used to design
cloud systems even with high QoS requirements.

Table 3. Parameters of System 4.

System 4

Servers

Traffic [Erl] Capacity of Server Components in AUs

a = 1 CR = 25 CP = 24 CD = 26 CB = 20

Virtual Machines

VM Class VM Demands in AU

1 c1,P = 1 c1,R = 1 c1,D = 2 c1,B = 1

2 c2,R = 2 c2,P = 2 c2,D = 3 c2,B = 1

3 c3,R = 4 c3,P = 3 c3,D = 3 c1,B = 3

The resulting independence of offered traffic and incoming request structures further
strengthens the reliability of the approach. As a result, the simulation model and analytical
algorithm not only demonstrate efficiency in the cloud system design process but also
present a high level of accuracy, with the maximum relative error within acceptable limits.
Moreover, in order to clearly convey the precision of the analytical model, the authors
included a comprehensive visual representation of the relative error in Figure 8. This figure
illustrates the maximum relative error between the simulation results and the analytical
model. The Table 4 shows the relative errors between simulation results and calculations
made using the developed model for RAM, CPU, disk, and bandwidth for System 1,
respectively, while Figure 9 shows the averaged relative error obtained for all resources
as a function of traffic offered. Thus, if one were to determine the average relative error
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for System 1 across all resources for each traffic offered and then average these values, the
average relative error across the system would be 2.04%.

Table 4. The relative error between the resource utilization values determined using the analytical
model and those obtained through simulation for System 1.

Relative Error [%]

Traffic Offered RAM CPU HDD B

0.6 2.23649795 5.302968054 2.348080821 3.23421324

0.7 0.603117214 3.974417961 0.296085737 2.048389148

0.8 0.912760692 3.015055681 0.242153371 1.973825727

0.9 1.875510402 2.48183634 1.001852035 1.890306685

1 2.411807539 2.267414437 1.431078475 1.533685952

1.1 2.813128107 2.281697061 1.482090429 1.278598927

1.2 2.912439866 2.389068886 1.465307318 1.142268669

1.3 2.938155722 2.572646504 1.492920088 1.128719787

1.4 2.909306255 2.777580047 1.622203661 1.236359382

Conducting experimental tests on a variable spectrum of the number of physical
machines varying from 2 to 6 units confirmed the validity of previous observations and
served to highlight the robustness of the model. The results for such a system are shown in
Figure 10. The findings indicate significant independence of the model in terms of both the
number of physical machines deployed and the dynamics of the distribution of requests
between different classes, as well as the intensity of incoming requests.

The research provides valuable information on the adaptability and resilience of the
model under different operational scenarios. The observed independence from the number
of PMs and the distribution of requests between classes indicate that the model can be
applied in different deployment scenarios, demonstrating its versatility and generalizability.

5. Summary

This paper presents results on the average utilization of individual physical machine
resources (RAM, disk, processor (CPU usage), and bandwidth) in an IaaS Cloud envi-
ronment. These results were obtained based on an approximate analytical model (the
ARU method) developed by the authors, which was then compared with digital simu-
lation results to confirm its accuracy. The authors used the event scheduling simulation
methodology to create a cloud computing simulation model. The conducted experiments
confirmed the accuracy of the developed model, keeping the relative error between the
obtained results within an acceptable range even with high QoS requirements. The research
conducted provides valuable insight into optimizing cloud systems at the design stage to
achieve resource utilization at the desired level. As part of future work, the authors intend
to consider a container-based approach within data centers, as well as analysis for different
distributions with uniform VMs across physical machines. In addition, the authors intend
to consider the possibility of moving VMs between different physical machines, as well as
the possibility of scaling the size of VMs at runtime.
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