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Abstract: In the field of robotics and autonomous driving, dynamic occupancy grid maps (DOGMs)
are typically used to represent the position and velocity information of objects. Although three-
dimensional light detection and ranging (LiDAR) sensor-based DOGMs have been actively researched,
they have limitations, as they cannot classify types of objects. Therefore, in this study, a deep learning-
based camera–LiDAR sensor fusion technique is employed as input to DOGMs. Consequently, not
only the position and velocity information of objects but also their class information can be updated,
expanding the application areas of DOGMs. Moreover, unclassified LiDAR point measurements
contribute to the formation of a map of the surrounding environment, improving the reliability
of perception by registering objects that were not classified by deep learning. To achieve this, we
developed update rules on the basis of the Dempster–Shafer evidence theory, incorporating class
information and the uncertainty of objects occupying grid cells. Furthermore, we analyzed the
accuracy of the velocity estimation using two update models. One assigns the occupancy probability
only to the edges of the oriented bounding box, whereas the other assigns the occupancy probability
to the entire area of the box. The performance of the developed perception technique is evaluated
using the public nuScenes dataset. The developed DOGM with object class information will help
autonomous vehicles to navigate in complex urban driving environments by providing them with
rich information, such as the class and velocity of nearby obstacles.

Keywords: occupancy grid map; sensor fusion; autonomous vehicles; semantic grid map; particle filters

1. Introduction

In urban areas, numerous dynamic and static objects such as vehicles, pedestrians,
trees, and guard rails coexist. For safe autonomous driving, it is essential to accurately
recognize various objects on the road and make safe decisions. Therefore, it is necessary to
integrate environmental perception results from multiple sensors to effectively represent
the road environment. One prominent technique among such representation methods is the
grid map. The grid map collects sensor information to depict the surrounding environment
from a bird’s eye view (BEV) perspective in a grid format. Therefore, it is advantageous for
representing the position of an object in the surrounding urban environment. Conventional
static occupancy grid maps provide only the position information of the objects in each
grid. Thus, it is impossible to represent the dynamic state of the objects. To overcome
this limitation, dynamic occupancy grid maps (DOGMs) have been developed, which
facilitate the dynamic states of objects occupying a grid cell [1]. This capability provides
a more accurate understanding of the situation by distinguishing between dynamic and
static states for each object. In recent years, numerous studies have explored methods for
generating dynamic grid maps using various sensors.
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Figure 1a presents the results of generating a DOGM using light detection and ranging
(LiDAR). Here, a challenge arises in misclassifying static objects, such as walls, as dynamic
objects due to occlusion by nearby objects. This misclassification can potentially lead
to erroneous path prediction and decision making during autonomous driving. Thus,
the objective of this study is to enhance object detection and recognition capabilities by
leveraging camera–LiDAR sensor fusion, as depicted in Figure 1b. In particular, a more
accurate classification of dynamic and static states is possible by considering the semantic
information of objects. For more accurate velocity estimation, we have developed two
different update models to incorporate oriented bounding boxes (OBBs), the outcomes
of object detection from deep learning techniques, on the grid map. Virtual points have
been generated to represent the OBBs on the grid, and occupancy probabilities and label
information have been assigned to the grid cells, including the virtual points. This approach
is a contrast to conventional LiDAR-based DOGM generation [1]. Yet, the use of virtual
points for OBBs, as shown in Figure 1b, allows for a more accurate representation of the
shape of a vehicle.

Figure 1. Example of DOGM using (a) only LiDAR measurements and (b) LiDAR and semantic
information.

The schematic of this study is shown in Figure 2, which is divided into two parts:
one using unclassified LiDAR points to build a conventional static occupancy grid map,
and the other using camera and LiDAR measurements for deep learning-based object
detection to build a dynamic occupancy grid map. The results from the object detection
are classified into four movable labels—cars, bikes, pedestrians, and others—in a form of
oriented bounding box.

1 
 

 

Figure 2. Camera–LiDAR sensor fusion DOGM framework overview.

Our method assigns occupancy probabilities to these dynamic objects through a
particle filter. Meanwhile, LiDAR points that are not classified as movable labels are
utilized to construct a static occupancy grid map. As a result, we can achieve robust
environmental perception by representing not only dynamic states such as speed and
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angle, but also static environmental information in a BEV format. Furthermore, this study
compares two sensor models for extracting more accurate velocity information from OBBs.
The two models differ in how occupancy probabilities are assigned: one uniformly assigns
probabilities within the bounding box, whereas the other assigns probabilities only along
the perimeter of the box. By comparing the speed estimation results of these two models
with different occupancy probability assignment methods, we propose a sensor model that
allows for more accurate speed estimation.

Our main contributions are summarized as follows:

• The robustness of environmental perception is enhanced by developing a DOGM that
incorporates deep learning-based object recognition results through the BEVFusion
camera–LiDAR sensor fusion method.

• More accurate classification of the dynamic and static states of objects is realized by
leveraging semantic information with potential dynamic states as input for the DOGM,
thereby estimating not only the position and class of each object, but also inferring
its velocity.

• Performance of the estimation of the speed and direction of dynamic objects is en-
hanced by using the edge bounding box update model (EBBUM) for potential dynamic
objects classified using camera–LiDAR sensor fusion.

2. Related Work
2.1. Sensor Fusion of LiDAR and Camera

Various sensors are commonly used in autonomous driving, such as cameras, LiDAR, and
radar. Cameras have the advantage of extracting a wealth of information about the surrounding
environment, leading to extensive research on object detection using cameras. However, a
drawback of cameras is their inability to perceive depth from a single camera image.

In contrast, a LiDAR sensor offers the advantage of providing precise distance mea-
surements in a 3D format.

Recently, numerous studies on deep learning-based object detection methods using
sensor fusion have been conducted. Methods for deep learning 3D object detection using
cameras and LiDAR can be categorized into early, middle, and late fusion. Early fusion
integrates raw data from different sensors. An example is the fusion of raw data from a
camera–LiDAR sensor, which creates RGB-D information by combining features at the
raw data level. This approach is used to generate feature maps for object detection [2].
Middle fusion involves combining features or information extracted at an intermediate step.
Although it integrates raw data from each sensor, similar to early fusion, the distinction
lies in the use of separate neural networks for fusion. A study on a methodology that
operates the LiDAR data voxelization pipeline and the camera pipeline in parallel has been
conducted. Subsequently, features from each sensor are fused, considering the disparity in
their importance, and are used to refine the final region proposal [3].

Late fusion involves an independent information process, followed by a combination
of features obtained from each sensor. Some studies have enhanced the detection perfor-
mance by leveraging geometric and semantic consistencies prior to the non-maximum
suppression stage of the detector [4]. As demonstrated by various research efforts, sensor fu-
sion techniques efficiently combine features from different sensors, addressing weaknesses
while retaining their strengths, which makes them advantageous for object recognition.
Thus, in this study, we perform an object recognition technique using camera–LiDAR
sensor fusion to enhance object detection performance.

2.2. Dynamic Occupancy Grid Maps (DOGMs)

A DOGM is an environment perception technique used in robotics and autonomous
driving applications. A DOGM has the advantage of not only detecting static obstacles,
but also identifying the position and velocity of dynamic objects, allowing safe navigation
in dynamic environments. Several studies are currently being conducted on DOGMs,
with an emphasis on estimating the states of dynamic and static objects and velocity [5].
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Additionally, research has been conducted on the fusion of multiple radar sensors, instead
of a single laser. This research also includes the detection of dynamic objects using grid-
based object tracking and mapping methods, in conjunction with clustering algorithms [6].
Research is not limited to creating DOGMs using only radar sensors; there are ongoing
studies on generating DOGMs by employing various sensors. One such study uses inverse
perspective mapping images and LiDAR to create DOGMs [7]. Efforts are also underway to
perform object-level tracking using DOGMs in dynamic environments [8,9]. Furthermore,
research has been conducted on applying deep neural networks, including recurrent neural
networks (RNNs) and deep convolutional neural networks, to DOGMs for estimating the
states of dynamic objects [10,11].

In general, it is computationally expensive to maintain a large number of particles
to represent a complex map. However, as shown in Figure 3, a substantial portion of the
surviving particles are drawn towards static objects, such as bushes, trees, and buildings,
leading to fewer surviving particles being allocated to dynamic objects. This phenomenon
makes it challenging to maintain stable velocity estimation performance for moving objects,
resulting in the misclassification of static objects as dynamic and a decrease in the accuracy
of object velocity estimation.

Figure 3. Persistent and newborn particle distribution of LiDAR-based DOGM.

The class information of objects is valuable for understanding urban environments,
particularly in areas with various types of static and dynamic objects. In this context,
research has been conducted on integrating maps with semantic information using LiDAR,
specifically employing the PointPillar approach for semantic labeling. This study combines
spatiotemporal and conditional variational deep learning methods to detect vehicles [12].
Another study combines DOGMs and object-level tracking using LiDAR. The tracked
objects are labeled with semantic information considering temporal changes [13]. Further-
more, research has been conducted on the development of semantic DOGMs using deep
learning techniques. One study employed a multitask RNN with LiDAR point clouds as
input to predict occupancies, velocity estimates, semantic information, and drivable areas
on a grid map [14]. Studies have also used stereo cameras, not only LiDAR. One research
effort involved extracting semantic and distance information by generating depth maps and
using image segmentation to estimate the occupancy grid map [15,16]. Another study used
monocular RGB images to process semantic segmentation, employing Bayesian filters to
fuse occupied grids and estimate semantic grids [17]. However, using only a camera to cre-
ate an occupancy grid map can lead to inaccurate distance information, and relying solely
on LiDAR may lead to low object detection performance, making it challenging to discern
objects. Therefore, the objective of this study is to enhance object detection performance by
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using both a camera and LiDAR as inputs, enabling a more accurate understanding of the
current situation of the driving vehicle.

3. Methods
3.1. 3D Object Detection

Sensor fusion for object recognition has been extensively researched to enhance object
detection capability by compensating for the weakness of each sensor through a combina-
tion of multiple sensors [18–20]. BEVFusion is a method developed for 3D object detection
using only a camera or a combination of a camera and LiDAR. This method generates
feature maps for both the camera and LiDAR and fuses them for object recognition, thereby
maintaining the advantages of both the camera and LiDAR [21]. BEVFusion represents
the features of cameras and LiDAR sensors in the BEV format, providing a framework for
sensor fusion. Therefore, the distance and semantic information are preserved to enhance
3D recognition performance. In this study, BEVFusion utilizes a camera and LiDAR fusion
to generate OBBs, which serve as input for DOGMs. This enables the estimation of not only
the position and class, but also the velocity information of objects.

Additionally, an environmental perception map was created using LiDAR points
that were not classified as movable labels. The developed grid map classified dynamic
and static objects in urban environments while extracting semantic information about
dynamic objects, such as vehicles, motorcycles, bicycles, and pedestrians. To find the grids
belonging to the OBB generated by 3D object detection, virtual points were created within
the bounding box using the coordinates of the four vertices, as illustrated in Figure 4.
The virtual points (xbox) consist of the x and y coordinates (px, py), the centroid x and y
coordinates of the detected object (Pc,), the yaw angle (θ), and the label information (l).
Similar to how LiDAR point clouds occupy grids, the virtual points within the bounding
box assign occupancy probabilities to the DOGM.

xbox =
[

px, py, vx, vy, θ, l, Pc
]
. (1)

Figure 4. Virtual point assignment of OBBs to DOGMs.

Using the OBB obtained from deep learning as input to the DOGM, the measurement
update model influences the survival of the predicted particles, leading to performance
variations in the velocity estimation. Therefore, in this study, we employed two different
update models for grid updates: the solid bounding box update model (SBBUM) and
the EBBUM.

Figure 5a shows the SBBUM, which assigns a uniform occupancy probability to the
grids corresponding to the box area; and Figure 5b shows the EBBUM, which assigns
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occupancy probability only to a specific region corresponding to the box border. The
thickness (T) of the border was set to 0.4 m, considering a sufficient number of particles to
represent the shape of the vehicle and the grid size of the grid map.

Figure 5. Virtual point assignment using (a) SBBUM and (b) EBBUM.

3.2. Sensor Fusion DOGM

In many studies that adopt DOGMs, the occupancy information of grid cells is typically
measured using radar or LiDAR sensors. In this study, we developed an algorithm for
generating virtual points based on the OBB estimation results for grid cells.

In particular, we reduced the computational load by assigning particles only to grid
cells occupied by objects with potentially movable classes, such as vehicles, motorcycles,
bicycles, and pedestrians. This reduction in computational load is particularly significant
when the number of moving objects is small.

The generated grid map contains Occupancy (O), Free (F), and Label (L) information
within each grid cell, as shown in Figure 6, where the Label (L) consists of car (l c), bike

(l b), pedestrian (l p

)
, and other (l o). The DOGM with semantic information is updated

by the following steps.

Figure 6. Configuration of semantic occupancy information in each cell.

• Initialization

At time t, the state of the grid map is updated using particle filters. When there are νc

particles associated with the occupied grid cell c, the particles at time t include information

such as their coordinates
{

x(i,c)t

}νc
t

i=1
, weights

{
w(i,c)

t

}νc
t

i=1
, and label weights

{
l(i,c)t

}νc
t

i=1
.

These are used to assign Occupancy mass ( mc
t (O)) and Label mass ( mc

t (L)) using (2).

mc
t (O) =

vc
t

∑
i=1

w(i,c)
t .

mc
t (L) =

vc
t

∑
i=1

l(i,c)t .
(2)

• Prediction
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At time t, the particle configurations within the measured grid are predicted for time
t + 1 using the constant velocity prediction model. “+” denotes the prediction step from

time t to t + 1. The weights of the predicted particles
{

w(i,c)
+

}νc
+

i=1
estimate whether the grid

at time t + 1 is occupied or unoccupied. The predicted label mass is computed using the

label weights of the predicted particles
{

l(i,c)+

}νc
+

i=1
. Equation (3) calculates the mass of the

predicted occupied grid ( mc
+(O)

)
, and the label mass of the predicted grid ( mc

+(L)
)
. The

free mass is determined by taking the smaller of two masses: the predicted occupied mass
and the free mass, adjusted by applying the discount factor α(t) over time t. In Equation (4),
α(t) denotes the discount factor representing the decrease in confidence over time intervals.

In this case, the sum of the particle and label weights for each grid is constrained to
be 1. If the sum of the predicted occupied weight (mc

+(O)) or the sum of the label weights
(mc

+(L)) exceeds 1, normalization is performed. Labels (L) for mc
+(L) in this study consist

of car (lc), bike (lb), person (lp), and other (lo).

mc
+(O) =

νc
+

∑
i=1

w(i,c)
+ .

mc
+(L) =

νc
+

∑
i=1

l(i,c)+

(3)

mc
+(F) = min[α(t)mc

t (F), 1 − mc
+(O)], α(t) ∈ [0, 1]. (4)

• Update

During the update step, the combination of the measurement mass mρ and predicted
mass m+ is performed using the Dempster–Shafer evidence theory using (5), where the
event defined by A and B corresponds to the hypothesis of occupancy, freeness, and
uncertainty. K represents the sum of the masses of an empty set defined by mutually
exclusive events between Occupancy and Free.

mt+1(O) = (mρ ⊕ m+)(O)
= 1

1−K ∑
A∩B=O

mρ(A) m+(B). (5)

The label estimation step defined by (6) also employs the Dempster–Shafer evidence
theory to combine the measurement and predicted mass of label information.

mt+1(L) = (mρ ⊕ m+)(L)
= 1

1−K ∑
l1∩l2=L

me(l1) m+(l2). (6)

In (6), l1 and l2 represent the event defined by the hypothesis of the four labels. Here,
K represents the sum of the masses of empty labels defined by mutually exclusive events
between labels.

At time t + 1, occupancy mass (mc
t+1(O)) comprises persistent cells (m c

p,t+1) and
newborn cells (m c

b,t+1). Persistent cells represent grids that existed in the map at the
previous and subsequent steps. Newborn cells denote grids occupied by an object in the t
+ 1 step that were not occupied in the previous time step. pB denotes a birth probability
of the newborn cells. The mass of newborn cells is distributed between the predicted and
measured masses through the probability of pB.

The occupancy mass of the newborn cell (mc
b,t+1) is calculated using (7). Similarly, the

label mass of the newborn cell (mc
b,l,t+1) is determined by (8).

mc
b,t+1 =

mc
t+1(O)·pB

[
1 − mc

+(O)
]

mc
+(O) + pB

[
1 − mc

+(O)
] . (7)



Sensors 2024, 24, 2828 8 of 18

mc
b,l,t+1 =

mc
t+1(L)·pB

[
1 − mc

+(L)
]

mc
+(L) + pB

[
1 − mc

+(L)
] . (8)

Equation (9) represents the occupancy mass of the persistent cell (mc
p,t+1), which is

calculated by subtracting the mass of the newborn cells from the occupancy mass of the grid.

mc
p,t+1 = mc

t+1(O)− mc
b,t+1. (9)

Similarly, (10) expresses the label mass of the persistent cell (mc
p,l,t+1), which is calcu-

lated by subtracting the label mass of the newborn cell from the label mass of the grid.

mc
p,l,t+1 = mc

t+1(L)− mc
b, l,t+1. (10)

The mass of the persistent cell in a grid is composed of occupancy mass (mc
p,t+1 ) and

label mass (mc
p,l,t+1). They are calculated by the weights for each particle (wp,t+1) and label

( lp,t+1
)

normalized by the total number of persistent particles (νc
p) using (11).

wp,t+1 =
mc

p,t+1
νc

p
.

lp,t+1 =
mc

p,l,t+1
νc

p
.

(11)

Similarly, the weights associated with the occupancy mass (mc
b,t+1 ) and the label mass

(mc
b,l,t+1 ) for the newborn grids are calculated using (12).

wb,t+1 =
mc

b,t+1
νc

b
.

lb,t+1 =
mc

b,l,t+1
νc

b
.

(12)

These weights are normalized by the total number of newborn particles ( νc
b
)
.

• Resampling

Finally, resampling is performed to generate new particles, reducing the uncertainty
of the particle filter and leading to more accurate estimations. In each grid, the weights
of persistent and newborn particles are combined, and the particles are resampled on the
basis of their weights. New particles are assigned uniform weights. In this step, particles
with lower weights are eliminated, and the overall number of particles is maintained by
resampling with higher weights.

4. Experiments
4.1. Dataset

The main sensors in the nuScenes dataset include one 32-channel LiDAR, six cameras,
and one radar. Table 1 explains the specifications of the sensors in the nuScens data set.
The dataset contains measurements from the LiDAR, updated at 20 Hz, and six cameras
with a resolution of 1600 × 1200 pixels, captured at 12 Hz [22]. The nuScenes dataset
comprises scenarios acquired in complex urban areas in Boston and Singapore. It comprises
1000 scenes, each lasting approximately 20 s, and includes labeling for 23 classes such as
car, bus, bicycle, motorcycle, pedestrian, and barrier. For validation and analysis, two
scenarios were selected: one with a dense forest and pond, and another with multiple
objects, including bicycles.

Table 1. nuScenes sensor specifications.

Sensor Specifications

LiDAR Velodyne HDL-32E
Camera Basler acA1600-60gc
RADAR Continental ARS 408-21
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4.2. Evaluation Process

In this study, the sensor fusion DOGM provides information about the dynamic and
static states and velocity of each object. The algorithm developed in this study is validated
by comparing the estimated velocity values from the sensor fusion dynamic grid map with
the ground truth velocities annotated in the nuScenes dataset. Furthermore, OBBs contain
angle information. Precise angle estimation is important to predict the path of objects. By
using the OBBs as inputs for the sensor fusion DOGM, not only the velocity, but also the
direction of the object is estimated. Consequently, this study analyzes the direction error
of the estimated box using the sensor fusion dynamic grid map, and compares it with the
ground truth obtained from the OBB provided in the nuScenes dataset.

5. Results and Discussion
5.1. Scenario Involving Diverse Objects Such as Vehicles, Bicycles, and Pedestrians (Scene No. 98)

In this scenario, various types of objects such as cars, pedestrians, and bicycles are
commonly found in urban areas. Furthermore, there are both dynamic objects, such as cars
and pedestrians, and static objects, such as traffic cones. The specific situation involves
the ego vehicle traveling in a straight line, followed by a bicycle from behind. In this
study, various objects were detected using a 3D object detection method called BEVFusion.
Figure 7 shows the results validated using the nuScenes dataset with BEVFusion. The results
demonstrate detection performance not only for large vehicles, but also for smaller objects
such as bicycles and traffic cones. Figure 8 presents the BEVFusion results in the BEV
format, showing stable detection even for objects located beyond 50 m. This demonstrates
robust detection performance in complex urban environments with multiple vehicles. To
further analyze the performance, we compared two cases based on the occupancy state
of the bounding boxes using BEVFusion’s 3D object bounding box as input for the sensor
fusion DOGM.

Figure 7. BEVFusion result with the camera image (scene no. 98).
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Figure 8. BEVFusion results with LiDAR measurements: (a,c) nuScenes ground truth; (b,d) BEVFu-
sion results.

Figure 9 shows the results of the sensor fusion DOGM using the position and class
information from the OBB as input. Figure 9a,c show the results when the SBBUM is used
as the OBB input, and Figure 9b,d show the results when the EBBUM is used as the OBB
input. The vehicles in Figure 9a,c occupy grids in a solid square shape, whereas those in
Figure 9b,d occupy grids on the edge of the square shape. In both cases, stable dynamic and
static classifications were observed even in scenarios with multiple vehicles and bicycles.
For small objects, such as pedestrians, both cases accurately performed dynamic and static
classification. The enlarged circular plots in Figure 9a,c show the velocity estimation of the
bike behind the ego vehicle and the ground truth. Because the bike was making a left turn
at the moment, the SBBUM had slower convergence to the ground truth than the EBBUM
in estimating the orientation of the vehicle.
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Figure 9. DOGM with semantic information results of scene no. 98 using (a,c) SBBUM and
(b,d) EBBUM.

Figure 10 compares the estimated speed results of a bicycle following the ego vehicle
in nuScenes scenario 98 with the ground truth speeds provided by the nuScenes dataset.
The SBBUM exhibited a mean absolute speed error of 0.581 m/s, whereas the EBBUM
exhibited an error of 0.599 m/s. Both models estimated speeds accurately compared with
the ground truth values from the nuScenes dataset. Figure 11 compares the angle estimation
of a bicycle following the ego vehicle with the ground truth. The angle estimation has a
mean absolute error of 0.227 radians for the SUBBM and 0.135 radians for the EBBUM. The
proposed EBBUM has a significantly lower angle estimation error than the SUBBM.
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Figure 10. Comparison of speed estimations with ground truth using SBBUM and EBBUM. (scene
no. 98).

Figure 11. Comparison of direction estimations with ground truth using SBBUM and EBBUM. (scene
no. 98).

5.2. Scenarios Involving Many Bushes, Trees, Etc. (Scene No. 272)

In this scenario, the environment consists of static objects, such as trees and roadside
structures. The ego vehicle follows a preceding vehicle that travels straight and then
makes a left turn. Furthermore, another vehicle is behind the ego vehicle, and there
are stationary motorcycles to the right of the ego vehicle. Figure 12 shows the results
of using BEVFusion for object detection. The figure confirms the accurate recognition
performance of the employed method for detecting various objects, such as motorcycles
and cars, marked over the camera images. Figure 13 shows the BEVFusion results in
the BEV format. Figure 13a,c represent the ground truth from the nuScenes dataset, and
Figure 13b,d depict the outcomes after applying BEVFusion. The results show stable and
reliable recognition of diverse objects.

Figure 14 shows a scenario in which other vehicles are traveling in front of and behind
the ego vehicle. The OBBs generated by BEVFusion were used to create sensor fusion
DOGMs. Figure 14a,c show the results when the SBBUM is used for the OBB input,
whereas Figure 14b,d show the results when the EBBUM is used for the OBB input. In both
cases, accurate dynamic recognition of objects in front of and behind the ego vehicle was
confirmed. The recognition of a stationary motorcycle along the roadside verifies the robust
performance of the DOGMs. However, Figure 14a,b reveal that when the EBBUM is used,
the accuracy of the direction of the velocity vector is more precise.

In Figure 15a compares predicted and persistent particles when the SBBUM is used,
and Figure 15b shows the particles when the EBBUM is used. In the SBBUM’s case, the
predicted particles within the object bounding box maintain their original direction even
when the object rotates. This can lead to delayed convergence to the ground truth, resulting
in many estimation errors in the orientation when the object is making a turn. To improve
convergence, the proposed EBBUM in Figure 15b assigns probability only along the edge of
the bounding box to help the survival of the predicted particles aligned with the direction
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of the OBB measurement. Consequently, particles predicted in the direction of the original
motion are eliminated because the EBBUM assigns a low probability mass inside the
bounding box. However, particles predicted in the direction of object rotation are more
likely to survive, resulting in better accuracy of the velocity estimations of rotating objects.
Therefore, it is expected that the EBBUM will provide a more accurate direction estimation
of an object than the SBBUM, especially when the object is making turns.

Figure 12. BEVFusion results with camera image (scene no. 272).

Figure 13. Cont.
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Figure 13. BEVFusion results with LiDAR measurements: (a,c) nuScenes ground truth and (b,d) BEV-
Fusion.

Figure 16 compares the estimated velocity results of the vehicle following the ego
vehicle in nuScenes scenario 272 with the ground truth velocity. The graph shows the
velocity estimation results for both the SBBUM and EBBUM cases, along with the ground
truth velocity provided by nuScenes. Compared with the ground truth velocity from
nuScenes, case (a) had a mean absolute speed estimation error of 0.4945 m/s and case (b)
had a mean absolute speed estimation error of 0.5037 m/s. Both cases initially exhibited
differences in speed estimation because of the convergence times of particles; however, over
time, the velocity errors between the ground truth and sensor fusion DOGMs decreased.

Figure 14. Cont.
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Figure 14. DOGMs with semantic information results using (a,c) SBBUM and (b,d) EBBUM.

Figure 15. Examples of predicted and persistent particles using (a) SBBUM and (b) EBBUM.

Figure 16. Comparison of speed estimations with ground truth using SBBUM and EBBUM. (scene
no. 272).

Figure 17 compares the direction estimations between the SBBUM and EBBUM. The
SBBUM exhibited small errors in estimating the direction at the beginning. However, after
4.5 s, the vehicle following the ego vehicle started to rotate, and the velocity estimation
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results of the EBBUM converged faster to the ground truth direction than those of the
SBBUM. In this result, the SBBUM had a mean absolute error of 0.153 radians, whereas the
EBBUM reduced the error by 37%, resulting in 0.097 radians. This reduction in errors is
attributed to the faster convergence of the direction estimates to the ground truth during
the turn.

Figure 17. Comparison of direction estimations with ground truth using SBBUM and EBBUM. (scene
no. 272).

6. Conclusions

In this study, we propose a robust perception method for urban environments, based
on state-of-the-art DOGM technology combined with semantic information obtained from
the BEVFusion results of camera–LiDAR sensor fusion. Using the Dempster–Shafer theory
of evidence, a method of updating occupancy and class information of a grid map has been
developed, as well as velocity information, which is important for an autonomous vehicle
with uncertain sensor information to navigate in an urban environment, where different
types of dynamic and static objects coexist.

OBBs are outputs commonly used as fusion results of LiDAR sensors and cameras.
To employ the OBB as measurement input to a DOGM, virtual points are assigned to the
grid cell occupying the OBB. Furthermore, two different update models are employed
for a sensor fusion-based DOGM using OBBs: one assigns the occupancy probability to
the entire grid, including the OBB (SBBUM), and the other assigns only the occupancy
probability on the edges of the OBB (EBBUM). The speed and angle estimates are employed
as evaluation metrics to compare the mean absolute errors from the ground truth provided
by the public nuScenes dataset. In the case of the SBBUM, the speed errors for vehicles and
bicycles were 0.4945 and 0.581 m/s, respectively. For the EBBUM, speed estimation errors
of 0.5037 and 0.599 m/s were obtained for vehicles and bicycles, respectively. Both methods
exhibited approximately similar performances in speed estimation. However, there was a
significant improvement in estimating the directions of dynamic objects, especially during
the scenario in which the moving directions of objects changed. During this scenario, the
mean absolute heading angle error for the SBBUM was 0.153 radians, whereas that of
the EBBUM was 0.097 radians. The proposed EBBUM showed a better angle estimation
performance because the particles predicted in the direction of object rotation are more
likely to survive.

In conclusion, the proposed method can be used to incorporate different results from
deep learning studies to construct a map of the surrounding environments with uncertainty.
Because the constructed grid map is from a BEV perspective, it can also be used for motion
prediction of nearby dynamic objects or path planning of the ego vehicle.

In a future study, we plan to employ the outputs from different deep learning-based
classification methods, such as semantic segmentation, to construct DOGMs. This extension
will allow the DOGM to contain richer information of nearby environments, both static
and dynamic.
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