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Abstract: Modern society increasingly recognizes brain fatigue as a critical factor affecting human
health and productivity. This study introduces a novel, portable, cost-effective, and user-friendly
system for real-time collection, monitoring, and analysis of physiological signals aimed at enhanc-
ing the precision and efficiency of brain fatigue recognition and broadening its application scope.
Utilizing raw physiological data, this study constructed a compact dataset that incorporated EEG
and ECG data from 20 subjects to index fatigue characteristics. By employing a Bayesian-optimized
multi-granularity cascade forest (Bayes-gcForest) for fatigue state recognition, this study achieved
recognition rates of 95.71% and 96.13% on the DROZY public dataset and constructed dataset, re-
spectively. These results highlight the effectiveness of the multi-modal feature fusion model in brain
fatigue recognition, providing a viable solution for cost-effective and efficient fatigue monitoring.
Furthermore, this approach offers theoretical support for designing rest systems for researchers.
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1. Introduction

As a common physiological state, fatigue is defined as a state of decreased physical or
mental activity [1]. Traditional methods for detecting fatigue have predominantly relied
on subjective reports and physical indicators. Since changes in physiological signals are
objective, measurable, and specific for data signals, and their changes are not affected
by human subjective will [2], detecting brain fatigue through changes in physiological
signals has gradually become a mainstream objective assessment method in recent years [3].
Detecting the brain fatigue state by analyzing changes in physiological signals constitutes a
quintessential pattern recognition problem [4]. In studies related to brain fatigue detection,
commonly used physiological signals include the electroencephalogram (EEG), electrocar-
diogram (ECG), electromyogram (EMG), and electrooculogram (EOG) [5]. Among these
signals, the EEG is regarded as one of the most reliable physiological signals currently
applied to detecting the state of brain fatigue [6]. Meanwhile, alterations in heart rate
variability (HRV) as measured by an ECG have also been proven to be related to the state of
brain fatigue [7]. Consequently, machine learning methods have been primarily employed
for conducting related research both domestically and internationally in recent years. For
instance, Wang et al. [8] attained an accuracy of 88.85% in classifying cognitive fatigue
states by extracting the power spectral density (PSD) features of EEG signals. Butkevičiūtė
et al. [9] used ECG signals to detect the brain’s fatigue state, which achieved 94.5% accuracy.
Mu et al. [10] achieved 94% accuracy in fatigue prediction by designing a novel gating
feature fusion method to adaptively extract and integrate the ECG and heart rate variability
(HRV) features. With the advancement of deep learning, the capacity for generalization and
learning exhibited by deep neural networks (DNNs) is being progressively explored and
integrated into the realm of pattern recognition. Sheykhivand et al. [11] used a combination
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of compressed sensing (CS) theory and a DNN based on EEG signals to achieve fatigue
binary classification with an average accuracy of 94.2%. Based on ECG signals after a
continuous wavelet transform (CWT), Rachamalla et al. [12] converted them into a scalar
map image, which was fed as the input to a pretrained DNN model and achieved up to
88.31% recognition accuracy.

Previous studies have indicated that conventional machine learning techniques often
grapple with inadequate generalization performance, complicating the task of managing
the intricate brainwave alterations associated with brain fatigue. While deep learning offers
superior generalization capabilities, its “black box” nature obscures the understanding of
its operational logic [13], and the necessity to tune numerous hyperparameters significantly
affects model efficacy. Moreover, deep learning models typically necessitate extensive
datasets for training, yet there is a scarcity of comprehensive publicly accessible brain
fatigue datasets [14], thereby restricting practical model performance. Consequently, devis-
ing algorithmic models that can adapt to small sample datasets has emerged as a pivotal
research direction in the field.

Thus, as an alternative to deep learning, the multi-granularity cascade forest (gc-
Forest), a model renowned for its excellent generalization on small sample datasets, was
proposed [15]. It is based on the principle of bringing together multiple random forests of
different types to make a joint decision on classification by majority voting, and this inte-
grated approach substantially improves the generalization ability of the model. Currently,
gcForest has been applied to some brain fatigue recognition tasks based on physiological
signals. For instance, Fang et al. [16] computed the multi-class features of EEG signals
and used gcForest as a classifier for emotion recognition, which improved the recogni-
tion accuracy by up to 19.53% compared with the traditional machine learning methods.
Yan et al. [17] proposed an EEG rhythmic feature-based optimized deep forest emotion
awareness recognition method, using the gcForest classification model for emotion recogni-
tion, which achieved 96.711% classification accuracy on the DEAP dataset, and also pointed
out that the classification accuracy of multi-feature fusion is significantly higher than that
of the single-feature method.

However, the gcForest model also presents limitations. Especially when processing
medium-to-large-scale samples, the resource consumption for training and prediction esca-
lates markedly as the number of cascade forest layers increases [18]. In addition, the model
overly relies on manual experience in the hyperparameter optimization process, which
increases the complexity of the operation and results in a large workload. Together, these
factors constrain the application efficiency and generalizability of the gcForest model in
certain scenarios [19]. Therefore, achieving a balance between prediction performance and
the training of cascade forest samples is crucial for realizing an automated hyperparam-
eter optimization approach. This balance is vital for enhancing model performance and
conserving resources.

Building upon the foundational framework of the Bayesian optimization algorithm,
specifically sequential model-based optimization (SMBO) [20], this study suggests integrat-
ing Bayesian optimization within the gcForest model for automated hyperparameter tuning.
This integration aims to strike an optimal balance between prediction accuracy and compu-
tational efficiency, thereby enhancing model performance and robustness, minimizing the
uncertainties associated with manual adjustments, and alleviating the workload.

2. Materials and Methods
2.1. System Architecture Framework

This study has developed an extensive system that includes embedded acquisition
hardware, sophisticated host computer software, and carefully designed experiments
for capturing raw signals. Through a series of steps encompassing data preprocessing
and feature extraction, data derived from multimodal feature fusion are input into a
refined gcForest algorithm-based fatigue recognition model. The application phase utilizes
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experimental data to validate the model’s effectiveness. The schematic diagram of the basic
architecture of the system is depicted in Figure 1.
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2.2. Acquisition System Design
2.2.1. Hardware Module Design

The main components were a power supply system, a signal acquisition module,
a micro-control unit (MCU), and a communication module. The design of the system’s
hardware aims to achieve a balance between accuracy and reliability of data acquisition,
while also prioritizing low power consumption and system stability. Efforts were made
to enhance the portability and user-friendliness of the equipment. The hardware module
flowchart is detailed in Figure 2.
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Given that the system’s design necessitates a balance among portability, comfort,
immunity to interference, and extended monitoring, its primary function is to evaluate
cerebral fatigue states rather than conduct detailed clinical disease diagnoses. Consequently,
the three-lead electrode patch method [21] was selected for ECG signal acquisition in this
research. The ECG data obtained through this approach adequately provide for the analysis
of fatigue-related physiological markers, such as heart rate variability (HRV).

Some studies have shown that selecting a specific single-channel EEG can achieve
up to 96.6% recognition accuracy, indicating the effectiveness of single-channel EEG in
fatigue recognition [22]. Therefore, in order to facilitate the operation and reduce the cost
of development, this paper uses a noninvasive dry electrode acquisition method that is
more suitable for daily monitoring and portable devices. Referring to the International
Electroencephalogram Society’s calibrated 10/20 electrode lead positioning standard, the
EEG acquisition electrode was placed at a specific sampling point (Fp1) at the left forehead,
which is usually not covered by hair [23], and the left ear (TP9) and right mastoid (TP10)
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were used for the reference electrodes, as shown in Figure 3. Then, the differential signals
from the EEG electrode and the reference electrode were transmitted to the TGAM chip for
signal processing.
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The system power supply module is tasked with the system’s power supply needs. It
interfaces with the acquisition module which, upon capturing human body signals, utilizes
the MCU for initial data preprocessing. The data are then transmitted to the host computer
via the communication transceiver module for further processing. The hardware system’s
design, as physically depicted in Figure 4, emphasizes a small, compact, and portable
form factor.
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2.2.2. Host Computer

EEG and ECG data collected by the system’s hardware are conveyed to the Bluetooth
communication module through serial communication. The acquired data are then instantly
relayed to the WinForms-developed software (version 1.0). The software’s interface, as
depicted in Figure 5, facilitates the real-time visualization of various parameters, such as
the wave amplitudes for the EEG and ECG signals across crossover bands. Additionally,
this set-up permits instant storage of the data, which aids in the creation of a sample dataset
pivotal for evaluating cerebral fatigue.
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2.3. Data Acquisition Experiment
2.3.1. Experimental Environment

The experimental configuration is shown in Table 1.

Table 1. Experimental configuration.

Name Parameters

OS Windows 11 Professional Workstation Edition
Python 3.9.18

CPU 12th Gen Intel(R) Core (TM) i9-12900H 2.50 GHz
GPU NVIDIA GeForce RTX 3080 Ti Laptop 16G (GDDR6)
RAM Micron DDR5-4800 16 GB*2

To ensure high-quality signal acquisition during experiments, the selected venue was
the electromagnetic shielding room at the Shanghai Radio Equipment Research Institute, as
shown in Figure 6. This room is fortified with electromagnetic shielding material, providing
an isolation barrier complete with a grounding line for robust protection against external
electrical fields, magnetic disturbances, and electrostatic interference. Furthermore, the
facility boasts an integrated constant-temperature air conditioning system, securing a
consistent experimental temperature of 26 ◦C.

2.3.2. Experimental Procedure

Each participant was placed in a consistent indoor setting from 9:00 a.m. to 9:00 p.m.
on weekdays, engaging in regular scientific research tasks or study activities. Physiological
signal data acquisition occurred hourly, as depicted in Figure 7. This process involved
collecting EEG and ECG signals at a sampling rate of 250 Hz, with each acquisition session
lasting 5 min. In total, data from 20 individuals were gathered, resulting in 260 datasets of
EEG and ECG signals. The collected data underwent preprocessing before being fed into
the model for fatigue detection analysis.

2.3.3. Experimental Subject

This study involved 20 participants—university graduate students—balanced evenly
with 10 males and 10 females aged between 22 and 25 years and distributed in different
professional disciplines. All participants were thoroughly briefed on the experiment’s goals
and protocols before consenting to partake. The specific selection criteria for the subjects
are outlined in Table 2.
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Table 2. Criteria for subject selection.

Items Specific Requirements

Health Condition No history of cardiovascular, cerebrovascular,
or mental illness and in good health

Exogenous Interferences Eliminated

Have not been exposed to any caffeine, nicotine, or other
beverages, foods, tobacco, alcohol, or drugs that act or

may act on the nervous system for at least one week prior
to participating in the experiment

Daily Routine Maintained a regular schedule with at least 8 h of sleep
per day for one week prior to the start of the experiment

Other Right-handed
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Immediately after each data collection session, the subjects completed a subjective
fatigue assessment scale. This study’s brain fatigue self-assessment tool was based on the
Karolinska Sleepiness Scale (KSS), an established metric for assessing sleepiness across
different conditions [24]. The scale ranges from 1 to 9, with a score of 1 indicating that the
subject is in a state of high energy, vitality, and wakefulness. On the contrary, a score of
9 indicates that the subject is in a state of extremely serious drowsiness and high fatigue.

Referring to the European Union’s “Technical Requirements for the Driver Fatigue
and Attention Warning System DDAW, CDR(EU) 2021/1341, 23 April 2021”, “With regard
to the fatigue level of 6 or higher, it can be recognized that the participant has a degree of
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drowsiness, and the system should be accessed to the warning” [25]. All samples were
labeled as “fatigued (Y)” and “not fatigued (N)” as shown in Table 3.

Table 3. Classification of brain fatigue states.

Self-Scoring Determination of Fatigue Status

1–5 No (N)
6–9 Yes (Y)

2.4. Signal Preprocessing

Owing to possible disruptions during the initial and concluding 30 s of signal ac-
quisition, analysis was confined to the stable signals captured in the central 4 min of
each experiment. These samples were categorized as “fatigued” (labeled as “Y”) and
“non-fatigued” (labeled as “N”) for the purpose of this study. The protocol for signal
preprocessing is detailed as follows.

2.4.1. ECG Signal Processing

The original ECG signal VECG was initially subjected to Kalman filtering to remove
random noise, followed by a discrete wavelet transform (DWT), where the signals V′

ECG
underwent multi-level wavelet decomposition. Noise components were eliminated based
on predefined thresholds, and the signal was then reconstructed. After denoising, the
signals were further processed for baseline drift correction to eliminate low-frequency
drifts caused by respiration or limb movements, and the denoised ECG signal V ′′

ECG was
obtained as shown in Equations (1) and (2):

V′
ECG = KalmanFilter(VECG) (1)

V ′′
ECG = BaselineCorrect

(
DWT

(
V′

ECG, Ψ(t), φ(t)
))

(2)

(1) Kalman Filter

This process can be divided into the following two steps: prediction and updating,
where the prediction process is formulated as follows in Equations (3) and (4):

x̂−k = Ax̂k−1 + Buk−1 (3)

P−
k = APk−1 AT + Q (4)

where x̂−k is the state estimate, A is the state transfer matrix, B is the matrix that trans-
forms the inputs into states, uk−1 represents the measurement noise, P−

k represents the
covariance matrix prediction, and Q is the covariance. The updated formula is shown in
Equations (5)–(7):

gk =
P−

k hT

hP−
k hT + R

(5)

x̂k = x̂−k + gk
(
Zk − hx̂−k

)
(6)

Pk = (1 − gkh)P−
k (7)

where gk is the Kalman gain coefficient, h is the scaling factor, Zk is the actual measurement
of the ECG, and R is the average of the measurement noise of uk−1.

(2) Wavelet Denoising

Wavelet denoising employs wavelet transforms to refine signals by converting them
from the time domain to the wavelet domain, where denoising occurs, followed by a
reconstitution into the time domain. This method yields a time–frequency representation,
ideal for analyzing non-stationary signals, and is adept at enhancing signal quality by
mitigating interference [26].
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The first step is to select the appropriate wavelet function. In order to enhance the
ability to capture signal details and maximize the retention of important physiological
information, this paper uses the Daubechies series wavelet, which is more suitable for signal
feature extraction, as the mother wavelet and sets the decomposition level to 4 layers [27].
The advantages of Daubechies wavelets in denoising and feature extraction include the following:

(1) Multi-scale analysis: They are capable of capturing the details and overview of a
signal at multiple scales simultaneously, which is suitable for the analysis of complex signals.

(2) Energy compression: Daubechies wavelets are able to concentrate the energy of the
signal in a few coefficients, making the features more prominent for subsequent processing.

(3) Edge preservation: This type of wavelet is better able to preserve these features
when processing signals with sharp jumps or edges, which is especially important for
biomedical signals.

The wavelets of the Daubechies series are defined by the number of their vanishing
moments. The more vanishing moments there are, the higher the smoothness and resolution
of the wavelet. In specific applications, db4 is a popular choice because it provides well-
balanced performance for a wide range of physiological signals. The wavelet decomposition
is shown in Equation (8):

x[t] = ∑
k

cA[k]·∅J,k(t) +
J

∑
J=1

∑
k

cD[j, k]·ψj,k(t) (8)

where x[t] is the signal that has been processed by Kalman filtering, cA[k] is the approxima-
tion coefficient of the Jth layer, cD[j, k] is the detail coefficient of the jth layer, and ∅ and ψ
are the scale function and wavelet function of the wavelet, respectively.

When performing the wavelet transform, it is necessary to set the appropriate number
of decomposition layers J. This choice depends on the characteristics of the signal and the
desired resolution and noise level. In general, the more layers of approximation coefficients
there are, the larger the time scale of the analysis which is suitable for capturing the low-
frequency characteristics of the signal [28]. In order to balance performance and resource
consumption, in this paper, the number of decomposition layers J is set to 5.

Finally, only the approximation coefficients are retained for signal reconstruction,
which can effectively remove high-frequency noise. The signal reconstruction process is
shown in Equation (9):

x′[t] = ∑
k

cA[k]·∅J,k(t) (9)

where x′[t] represents the signal that has been reconstructed. This approach strengthens the
main components of the signal and suppresses high-frequency noise in the level of detail.

The wavelet denoising results are shown in Figure 8.
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It can be seen that the noise waveform has been significantly eliminated, while the
linear correlation of the signal is quite strong. In order to provide a quantitative analysis
of the denoising effect, three specific index parameters are introduced to be used for
evaluation: the signal-to-noise ratio (SNR), root mean square error (RMSE), and correlation
coefficient (CC). These parameters are defined in Equations (10)–(12):

SNR = 10log10

(
Signal Power
Noise power

)
(10)

RMSE =

√
1
n

n

∑
i=1

(
yi − y′i

)2 (11)

where yi is the ith point of the original signal, y′i is the ith point of the denoised signal,
and n is the total number of data points in the signal. Here, RMSE focuses more on the
quantization error of the signal (i.e., the magnitude of the difference between the predicted
value and the actual value):

CC =
∑ (x − x)(y − y)√
∑(x − x)2∑(y − y)2

(12)

where x and y represent the data points of the two signals and x and y are the mean
values of x and y, respectively. Summing is carried out for all paired data points (x, y). CC
provides a measure of the linear relationship between two signals, with values closer to
1 or −1 indicating a stronger linear relationship.

The results of the three evaluation indicators are shown in Table 4.

Table 4. Evaluation results of quantitative metrics of ECG denoised by DWT.

Evaluation Indicators Results

RMSE 0.0195
SNR 32.1356
CC 0.9963

The outcomes reflected by these performance metrics demonstrate that the DWT
denoising process is effective, significantly reducing noise while preserving the signal’s
primary characteristics. Such improvement is instrumental in enhancing the accuracy of
downstream analyses, including feature extraction and disease diagnosis.

(3) Comparison of Signal Processing Methods

To underscore the effectiveness of integrating a Kalman filter with a DWT for ECG
signal denoising, this study also examined three established signal processing techniques—
the Fourier transform, adaptive filter, and independent component analysis (ICA)—for a
comparative performance analysis. The findings are presented in Table 5.

Table 5. Comparison of signal processing methods.

Signal Processing Methods RMSE SNR CC

Kalman filter + DWT 0.0195 32.1356 0.9963
Fourier transform 0.7613 0.3054 0.9177

Adaptive filter (LMS) 0.0825 19.6076 0.9344
ICA 0.2405 9.5444 0.4010

The results clearly demonstrate that the combination of the Kalman filter with the
DWT, as utilized in this research, outperformed the others. Conversely, ICA was less
effective, likely due to its prevalent application in multi-channel analyses.
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(4) Correction for Baseline Drift

Baseline drift is a common problem in ECG signals, caused mainly by respiratory
movements and small changes in electrode position. Methods of calibration usually include
high-pass filtering and polynomial fitting and subtraction.

(1) High-pass filtering: A high-pass filter can be used to effectively remove baseline
drift by setting a suitable cutoff frequency (usually less than 1 Hz). For example, a 0.05 Hz
high-pass filter can be used to remove low-frequency interference caused by breathing.

For this research, a Butterworth filter was employed to establish a high-pass filter. This
approach effectively removes baseline drift occurring at low frequencies while concurrently
preserving the ECG signal components at higher frequencies. The high-pass filtering
can be represented by the following transfer function in Equation (13), in which fc is the
cutoff frequency:

H( f ) =
f

f + fc
(13)

where fc was set to 0.5 Hz, which was based on the value commonly used in ECG signal
processing for effectively removing baseline drift without affecting the main frequency
components of the ECG signal. Meanwhile, the order of the filter was set to 5 in order to
balance the filtering effect and computational complexity.

(2) Polynomial fitting and subtraction: A more sophisticated approach is to fit a
polynomial to the baseline of the ECG signal and then subtract this baseline model from
the original signal. This method can dynamically adapt to baseline changes in the signal.
However, this process involves inverse operations of matrices, and matrix multiplication
requires a great amount of arithmetic power in its operation [29]. Moreover, its solution
process is rather sensitive to small changes in the input data and requires additional
numerical stability measures such as regularization to handle it. This method is difficult to
apply to application scenarios with limited computing power or which require real-time
processing. Therefore, it was not chosen in this study.

Figure 9 illustrates a comparison of the ECG signals before and after denoising and
baseline drift correction. The signal-to-noise ratio improved by 37%, which greatly im-
proved the signal quality.
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This refinement not only decisively expunged noise and interference but also guaran-
teed the preservation of essential physiological information within the signal. This elevated
signal quality lays a robust groundwork for ensuing signal analysis and feature extraction,
securing the reliability of the processed data.

2.4.2. EEG Signal Processing

By utilizing a DWT coupled with soft thresholding, the wavelet basis Ψ(t) and scale
function φ(t) of the adapted processed signal were set, and the denoised EEG signal was
taken out through signal reconstruction as shown in Equation (14):

R′
a×b = DWT(Ra×b, Ψ(t), φ(t)) (14)

where the input of captured brainwave signals in Ra×b. The signal is decomposed into
a series of wavelet coefficients using the discrete wavelet transform (DWT). Unlike the
continuous wavelet transform, which produces a large amount of redundant information
when processing signals, the discrete wavelet transform is used to effectively remove the
high-frequency noise in the original data and retain the low-frequency effective data by
discretizing the translation factor and scale factor in the continuous wavelet transform [30].

As in the case of ECG signal processing, Daubechies wavelets with smoother shapes
and longer support lengths are used as wavelet bases for EEG signal processing, with
the number of layers set to 5 and the detail components set from level 1 to level 5, which
roughly correspond to the bands β, α, θ, δ, and γ, respectively. In addition, a filter bank is
generated by the wavelet and the scaling function for iterative filtering and downsampling
of the signals as shown in Equations (15) and (16):

Aj(t) = ∑k hk·Aj+1(2t − k) (15)

Dj(t) = ∑k gk·Aj+1(2t − k) (16)

where hk and gk are the low-pass and high-pass filter coefficients of the wavelet, respectively,
Aj+1 is an approximation factor for the upper level, and Dj is the detail factor for the
current level.

The threshold λ is determined based on the distribution of the wavelet coefficients,
and a common method for this is to set the threshold to half of the standard deviation of
the coefficients, which is calculated by the formula shown in Equation (17):

λ =
np.std(coe f f s[−level])

2
(17)

where coe f f s[−level] denotes the coefficient of the most detailed layer after wavelet de-
composition and np.std is a function that calculates the standard deviation. This threshold
will be used for soft thresholding for noise reduction or removal.

Then, soft thresholding is applied to all wavelet coefficients to attenuate or remove
the noise component while maintaining as much signal detail as possible:

ĉ = sign(c)·max(|c| − λ, 0) (18)

where c is the wavelet coefficients, λ is the calculated threshold, and ĉ is the thresholded
coefficients. This means that coefficients less than the threshold are set to 0, and coeffi-
cients greater than the threshold λ are subtracted. This processing removes the noise and
maintains the shape of the signal, and it is particularly effective in maintaining important
features of the signal.

The EEG results before and after denoising are shown in Figure 10.
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The results of the three evaluation indicators regarding EEG signals after noise reduc-
tion by a DWT are shown in Table 6.

Table 6. Evaluation results of quantitative metrics of EEG denoised by DWT.

Evaluation Indicators Results

RMSE 0.0152
SNR 44.0618
CC 0.9999

2.4.3. Remove Industrial Frequency Noise

Finally, a Butterworth band-stop filter is utilized to remove the possible 50 Hz indus-
trial frequency interference from the signal with Equation (19):

H( f ) =
1√

1 +
(

f 2− f 2
0

f×BW

)2n
(19)

where f0 is the center frequency to be removed (50 Hz), BW is the bandwidth (49–51 Hz),
and n is the filter order, which is set to 4.

Finally, the EEG signal matrix and ECG signal vectors R′′
a×b and V ′′′

ECG after eliminating
the IF can be obtained as shown in Equation (20):[

R′′
a×b, V ′′′

ECG

]
= f ilterband

([
R′

a×b, V ′′
ECG

]
, f0, BW, n

)
(20)

2.5. Feature Extraction
2.5.1. EEG Feature Extraction

The PSD extracted using Welch’s method demonstrated strong feature correlation in
studies correlating EEG signals with fatigue, and it is also a good feature representation of
the EEG signal [31]. The relationship between differential entropy (DE), cragginess (KS),
skewness (SK), and fatigue is usually reflected in their close correlation with changes in the
state of brain activity when used as physiological and neurobiological indicators.
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(1) Power Spectral Density (PSD)

For an EEG signal x(n), n = 0, 1, . . . , N − 1 of a length N, which is split into L ends,
the PSD of the signal xl(n) is defined as shown in Equation (21):

Pl( f ) =
1

MU

∣∣∣∣∣M−1

∑
n=0

xl(n)ω(n)ej2π f n

∣∣∣∣∣
2

(21)

where l = 0, 1, . . . , L − 1, M is the length of each signal segment, ω(n) is the additive
window function (Hamming window), and the regularization coefficient U of the window is

U =
1
M

M−1

∑
0

ω2(n) (22)

The power spectral density of the signal x(n) is obtained by averaging the power
spectral densities of all the L-band signals, which is calculated as follows:

P( f ) =
1
L

l−1

∑
l=0

Pl( f ) (23)

(2) Differential Entropy (DE)

High DE may indicate increased uncertainty in brain activity, associated with high
cognitive activity or mental load, and is the most accurate and stable EEG feature reflecting
changes in human alertness [32]:

DE =
1
2

log2(2πe·var(EEG)) (24)

var(X) =
1
N ∑N

i=1(xi − µ)2 (25)

where xi is the ith value in the signal, µ is the average of all values in the signal, and N
is the total number of values in the signal. The greater the variance, the more erratic the
variation in the signal. In the context of DE, variance is used to indicate the uncertainty of a
signal, and DE is used to quantify the complexity or information content of a signal.

(3) Kurtosis (KS)

In fatigue monitoring, changes in KS may indicate changes in the efficiency of cognitive
processes or adjustments in the way the brain processes information [33]:

KS =
E
[
(X − µ)4

]
σ4 (26)

where E denotes the expected value, X is a random variable, µ is the mean of X, and σ
is the standard deviation of X. The equation measures the sharpness of the shape of the
probability distribution, reflecting how sharp or flat the data distribution is relative to the
normal distribution.

(4) Skewness (SK)

Under certain mental states (e.g., when fatigued or highly focused), the skewness
of the brain’s electrical activity may change, thus reflecting changes in the way the brain
processes information or responds to mental load [34]:

SK =
E
[
(X − µ)3

]
σ3 (27)
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where E denotes the expected value, X is a random variable, µ is the mean of X, and σ is the
standard deviation of X. This formula is used to measure the degree of asymmetry in the
distribution of data, with positive values indicating that the distribution is right-skewed,
negative values indicating that the distribution is left-skewed, and a value of 0 indicating
that the distribution is symmetric.

2.5.2. ECG Feature Extraction

Analysis of ECG signals typically centers on heart rate variability (HRV), a key indica-
tor of cardiac and autonomic nervous system functions. In this experiment, representative
features of HRV in the time and frequency domains were selected.

(1) Heart Rate

Heart rate (HR) is one of the important features in ECG analysis. It is calculated as
shown in Equation (28):

HR =
∑I

i=1
60

RRi

I
(28)

where I is the total number of R-R intervals within the current signal.

(2) Root Mean Square of Successive Difference

The RMSSD represents the root mean square of the difference between all neighboring
R-R intervals over time. The calculation process is shown in Equation (29):

RMSSD =

√√√√ 1
HR − 1

HR−1

∑
i=1

(RRi+1 − RRi)
2 (29)

where RRi+1 and RRi denote the i + 1th and ith R-R intervals, respectively. The RMSSD
reflects the variation of adjacent cardiac beat cycles.

(3) Frequency Domain Indicator

Studies have demonstrated that the LF, HF, and LF/HF are highly correlated with
fatigue, and the spectral range of HRV is generally 0–0.5 Hz. In clinical practice, HRV
is usually divided into low-frequency (LF) and high-frequency (HF) components, using
0.15 Hz as a cut-off point:

(1) LF: 0.04 Hz–0.15 Hz, reflecting cardiac sympathetic nerve activity;
(2) HF: 0.15 Hz–0.4 Hz, reflecting the activity of the cardiac vagus nerve;
(3) LF/HF: the ratio of low-frequency power to high-frequency power, reflecting the

stability of sympathetic and vagal activity.
When analyzing the LF and HF components over short durations, their respective data

can be significantly impacted by the TP, leading to potential distortions in their absolute
values. To mitigate this, it is advisable not to rely on direct comparisons of absolute values.
Instead, normalization against the very low-frequency (VLF) band, which is below 0.04 Hz,
is employed to adjust LF and HF values. This normalization process ensures a more
accurate representation by minimizing the influence of the total power on the LF and HF
bands as shown in Equations (30)–(32):

LFnorm =
LF

TP − VLF
(30)

HFnorm =
HF

TP − VLF
(31)

LF
HF

=
LFnorm

HFnorm
(32)

The ECG feature row vector consists of HR, RMSSD, LFnorm, HFnorm, and LF/HF
indicators in that order.
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2.5.3. Feature Preference

Maximum relevance minimum redundancy (mRMR) is a filtered feature selection
algorithm that uses mutual information as a criterion for judging feature-to-feature and
feature-to-category relevance, and it ultimately calculates a score for each feature. The
expression of the mutual information is shown in Equation (33):

I(x; y) =
x

p(x, y)log
p(x, y)

p(x)p(y)
dxdy (33)

where I(x; y) is the mutual information of the feature parameters x, y, and p(x), p(y), and
p(x, y) are the respective probability densities and joint probability density.

To find the subset of features Q containing individual features, the maximum relevance
principle searches for the best n features xi related to the target category c in the proper
order of I(xi; c). Computation is performed as shown in Equation (34):

maxD(Q, c); D =
1
|Q| ∑

xi∈Q
I(xi; c) (34)

Then, the maximum correlation coefficient and minimum redundancy were integrated
using the operator. The calculation process is shown in Equation (35):

maxΦ(Q, c); Φ = D − R (35)

where the merit ranking of each feature quantity in the sample set Q can be calculated.
All of the features were numbered and sorted. The EEG was sorted from δ to γ for the

PSD, DE, KS, and SK, corresponding to numbers 1–20, and the ECG was numbered from
21 to 25 for the HR, RMSSD, LFnorm, HFnorm, and LF/HF. Assuming that the number of
the best feature set was 25, the results of the superiority ranking of all feature quantities are
shown in Figure 11.
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Ultimately, the process iteratively increased the number of features in the optimal set,
starting from one. For each iteration, the gcForest model was trained and tested using the
default parameter configurations. This iterative approach enabled the identification of the
optimal feature set size that yielded the best recognition accuracy. The resulting accuracies
for each feature set size are presented in Figure 12, illustrating the model’s performance
across different configurations.
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The analysis indicates that utilizing the top 14 ranked features to create a feature
subset culminated in the highest recognition accuracy, peaking at 92.10%. Beyond this
optimal feature set size, the accuracy began to marginally decline. Consequently, this study
proceeded to leverage these top 14 features identified through the screening process for
the analysis of fatigue state recognition, demonstrating their efficacy in achieving the most
accurate model performance.

2.5.4. Multi-Modal Feature Fusion

The multimodal feature fusion dataset was constructed by fusing the data acquired
from different sensors through feature extraction and then fusing them into a larger feature
vector through the feature cascade process. The aim was to improve the prediction perfor-
mance of the machine learning model by utilizing the complementary information of the
different modalities, and the framework is shown in Figure 13.

Sensors 2024, 24, 2910 17 of 31 
 

performance of the machine learning model by utilizing the complementary information 
of the different modalities, and the framework is shown in Figure 13. 

 
Figure 13. Multi-modal feature fusion framework. 

For a dataset of a time length 𝑡, the process of computing the feature fusion matrix 
using the sliding window method is as follows. 

A suitable window size 𝑊 (30 s) and step size 𝑆 (1 s) are selected, and an empty 
feature matrix F is initialized for storing the feature vectors of all time windows. The time 
range for each window is shown in Equation (36): 𝑊 = [𝑡௜, 𝑡௜ + 𝑊], 𝑡௜ = 𝑡଴ + 𝑖 × 𝑆 (36) 

Then, from the start time 𝑡଴ to the end time 𝑡, the window is moved according to 
the step size 𝑆, and the 9 features contained in the EEG and the 5 features contained in 
the ECG are extracted within each window to form a 14 dimensional feature vector, for 
the 𝑖th window the feature vector 𝑓௜, which can be expressed as shown in Equation (37): 𝑓௜ = [𝑓ாாீଵ, 𝑓ாாீଶ, . . . , 𝑓ாாீଽ, 𝑓ா஼ீଵ, 𝑓ா஼ீଶ, . . . 𝑓ா஼ீହ] (37) 

where 𝑓ாாீ௫ and 𝑓ா஼ீ௬ are the results of feature computation for the EEG and ECG, re-
spectively. 

After successively recording the feature vectors of each window, the whole feature 
matrix 𝐹 is stacked by the feature vectors of all windows in chronological order as shown 
in Equation (38): 

𝐹 = ൦𝑓ଵ𝑓ଶ⋮𝑓௜ ൪ (38) 

The final feature fusion matrix F is used as input to the recognition model for subse-
quent data analysis and model learning training. 

2.6. Brain Fatigue State Recognition Model Based on Bayes-gcForest Algorithm 
Since its debut in 2019, the gcForest model has garnered significant interest across 

various domains, showcasing its potential for both scholarly research and practical appli-
cations. The essence of the model resides in its innovative architecture: a deep forest struc-
ture that integrates multiple cascaded random forests. This design philosophy is pivotal 
to the model’s success and is illustrated in Figure 14, highlighting its foundational ap-
proach to leveraging ensemble learning for improved predictive performance. 

Figure 13. Multi-modal feature fusion framework.

For a dataset of a time length t, the process of computing the feature fusion matrix
using the sliding window method is as follows.

A suitable window size W (30 s) and step size S (1 s) are selected, and an empty feature
matrix F is initialized for storing the feature vectors of all time windows. The time range
for each window is shown in Equation (36):

W = [ti, ti + W], ti = t0 + i × S (36)

Then, from the start time t0 to the end time t, the window is moved according to the
step size S, and the 9 features contained in the EEG and the 5 features contained in the
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ECG are extracted within each window to form a 14 dimensional feature vector, for the ith
window the feature vector fi, which can be expressed as shown in Equation (37):

fi = [ fEEG1, fEEG2, . . . , fEEG9, fECG1, fECG2, . . . fECG5] (37)

where fEEGx and fECGy are the results of feature computation for the EEG and ECG, respectively.
After successively recording the feature vectors of each window, the whole feature

matrix F is stacked by the feature vectors of all windows in chronological order as shown
in Equation (38):

F =


f1
f2
...
fi

 (38)

The final feature fusion matrix F is used as input to the recognition model for subse-
quent data analysis and model learning training.

2.6. Brain Fatigue State Recognition Model Based on Bayes-gcForest Algorithm

Since its debut in 2019, the gcForest model has garnered significant interest across
various domains, showcasing its potential for both scholarly research and practical applica-
tions. The essence of the model resides in its innovative architecture: a deep forest structure
that integrates multiple cascaded random forests. This design philosophy is pivotal to the
model’s success and is illustrated in Figure 14, highlighting its foundational approach to
leveraging ensemble learning for improved predictive performance.
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For each level of cascade forest, its output depends not only on the current input data
but also on the output of the previous level of the cascade forest, and each level of the
cascade forest can be represented as shown in Equation (39):

Fi(X) = RFi(X ⊕ Fi−1(X) (39)

where X is the input feature set, RFi denotes the random forest model at layer i, and ⊕
represents the feature linking operation.

In the cascade forest structure, except for the first layer, whose input is the original
feature vector X0, each layer is the combination of the original feature vector with the
augmented feature vector Xi generated by the previous layer. This combination allows
the information from the original feature space to always be preserved and applied in
every process. As the layers continue to be stacked, the valid information in the features is
continuously enhanced. When the final layer is reached, the output feature vectors will no
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longer be combined with the original feature vectors but will participate in the classification
as the final class vector Xlast as shown in Equation (40):

Xlast = X0 +
i

∑
i=1

Xi (40)

The final class vector Xlast contains the probability of classifying the current sample,
where the class with the highest probability MAX(Xlast) is the cascade forest classifier’s
estimate R of whether brain fatigue is currently present:

R = MAX(Xlast) (41)

Hyperparameter Optimization Process of Bayes-gcForest

The hyperparameters of the gcForest model align closely with those typical of deep
forest configurations, particularly emphasizing the significance of parameters such as the
number of random forests per layer (n_cascadeRF) and the number of trees within each
random forest in the cascade (n_cascadeRFtree). To optimize these critical parameters
efficiently, a Bayesian optimization approach was employed, a process specifically de-
tailed in Figure 15. This methodological choice for hyperparameter tuning underpins the
model’s adaptability and performance optimization, showcasing a structured approach to
enhancing the gcForest model’s efficacy.
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(1) Firstly, the objective function f (ncascadeRF, ncascadeRFtree) is modeled using a Gaus-
sian process (GP):

f ∼ GP
(
m(x), k

(
x, x′

)
(42)

where m(x) is the mean function and k(x, x′) is the kernel function used to define the
similarity of any two points in the parameter space.

Then, the set initial parameter point x (ncascadeRF_initial , ncascadeRFtree_initial) is selected
for evaluating the performance of the current gcForest model, and the initial dataset D is
constructed and utilized to update the GP model, setting the number of iterations i to 50.

(2) Secondly, during each update iteration, Bayesian optimization selects the next
parameter point xnext by solving the following optimization problem:

xnext = argmaxxEI(x; Dcurrent) (43)

D = D ∪ {(x next, f (xnext)) (44)

where EI(x) is the expected improvement (EI) of the acquisition function and Dcurrent is
the current set of observations.

(3) Then, k-fold cross-validation is given to the optimization process, which is used
to accurately assess the performance of the model under each set of hyperparameter
configurations. The process definition is shown in Equation (45):

f (x) =
1
k

k

∑
i=1

Pi(x) (45)
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where k is the number of folds, which is set to five in this paper, and Pi(x) represents the
performance index of model f (x) at the ith test.

(4) Finally, after continuous update iterations, the optimization process is terminated
when the upper limit of the number of iterations is reached or the model no longer shows
significant performance improvement:

EI(x) = E
[
max

(
0. f (x)− f

(
x+

))]
(46)

where EI(x) is the expected improvement and f (x+) is the best objective function value
observed up to the current number of iterations. After obtaining the optimal parameters
ncascadeRF_best and ncascadeRFtree_best, they are used for subsequent predictions of the model.

3. Results and Discussion
3.1. Bayesian Optimization Experiments

To validate the performance enhancements of the Bayes-gcForest model introduced in
this study, the research incorporated three optimization techniques—grid search, random
search, and Bayesian optimization—each applied to the foundational gcForest model. The
effectiveness of the optimal hyperparameters identified by these methods was assessed
based on their influence on the classification accuracy. This assessment utilized the accuracy
(Acc) metric to quantify the performance across various tuning and optimization scenarios.
The calculation of the classification accuracy is formalized in Equation (47), providing a
quantitative basis for comparing the impact of each optimization strategy on the model’s
predictive accuracy:

Acc =
TP + TN

TP + TN + FP + FN
(47)

where TP, TN, FP, and FN stand for true positive cases, true negative cases, false positive
cases, and false negative cases, respectively.

This study utilized data from the subject labeled “Test1” to assess the impact of the
number of trees within the model on the classification accuracy, where ncascadeRF was pre-set
to take the value range of (1–10) and ncascadeRFtree took the value range of (10–300), and the
results of the optimization search are shown in Table 7.

Table 7. Comparison of hyperparameter optimization results.

Algorithms
Default or Optimal Parameters

Model Computing Time (s) Accuracy (%)
ncascadeRF ncascadeRFtree

Manual 2 101 10.41 92.1
Grid Search 3 250 831.78 97.2

Random Search 3 220 84.34 93.4
Bayesian Optimization 3 250 104.09 97.2

The outcomes reveal that, given the straightforward characteristics of the dataset
employed in this experiment, both Bayesian optimization and grid search attained an
optimal recognition rate of 97.2%. However, the grid search method, which exhaustively
iterates through all possible hyperparameter combinations to identify the best solution,
significantly increased the total computational time due to its exhaustive nature. This
observation highlights a trade-off between the accuracy of the model and the efficiency
of the hyperparameter optimization process. The effect of hyperparameters on model
performance during Bayesian optimization is shown in Figure 16.
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3.2. Formal Verification

With escalating computational load and system complexity, there is a corresponding
increase in the demand for model stability and robustness [35]. Therefore, this study uses
an approach based on abstract interpretation to analyze the model behavior and help the
researcher to better understand the decision-making process of the model and verify that it
conforms to the expected behavior.

(1) Model Validation
Test cases were established for the critical performance metrics, including model

accuracy, recall, precision and F1 score, supplemented by corresponding unit tests. In this
research, thresholds for all four indicators were established at a minimum of 0.90.

After testing, the model was able to meet the performance requirements for all the
data classification results.

(2) Model Checking
Incorporating the decision boundaries of the visual decision tree within the model’s

code facilitates an understanding of the model’s decision making within specific feature
spaces [36]. The results from these tests are depicted in Figure 17.
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Figure 17 shows how the model recursively splits the data based on different fea-
tures and thresholds. Eventually, the data are split into leaf nodes, and the model makes
predictions based on the majority category of the samples that arrive at each leaf node.
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Here, “Feature < X” instructs the model to segment the data using that feature value
at that node, “gini” represents the Gini impurity of the node, which is a value ranging
from 0 to 1, with 0 indicating that all samples belong to the same category (the highest
purity) and values close to 1 indicating that the samples are evenly distributed across the
categories (the lowest purity), “samples” denotes the number of samples arriving at the
node, and “value” denotes the number of samples in that node for each category.

The Gini impurity of each leaf node was 0, which means that the samples in the node
all belonged to the same category, and the model categorized them effectively.

(3) Adversarial Testing
Adversarial testing is a method of evaluating the robustness of a model to small,

intentional input perturbations. In machine learning, this usually means modifying the
test data in an attempt to “trick” the model and cause false predictions. The first step is to
add some random noise to the test data. The key to this step is to add noise that is not so
large that it completely alters the true class of the data but also small enough to test the
sensitivity of the model to small disturbances.

The results of model training with the inclusion of adversarial tests of different inten-
sities are shown in Table 8.

Table 8. Adversarial test results.

Random Noise Values Average Recall
before Test (%)

Average Recall
after Test (%)

0.01 95.16 95.16
0.05 95.16 95.16
0.1 95.16 95.16
0.3 95.16% 91.93
0.5 95.16% 91.31
0.7 95.16% 81.64
1 95.16% 81.02

The findings indicate that low-intensity random noise introduced minimal perturba-
tions to the model. Even with noise levels approaching 0.5, the model sustained a recall
rate exceeding 91.31%. At a noise level of one, representing extreme noise conditions akin
to adversarial testing, the model nearly obscured the original data signal yet retained a
recall of 81.02%, evidencing its robustness.

3.3. Experiments on Fatigue State Recognition Based on Bayes-gcForest

Figure 18 presents the workflow of brain fatigue recognition utilizing the Bayes-
gcForest approach. The process begins with the preprocessing of raw data, which encom-
passes labeling and segmenting the data into different frequency bands. Subsequently,
feature extraction is carried out on both EEG and ECG data, yielding a total of 9 classes and
25 distinctive features. These features are then optimized using the mRMR algorithm, form-
ing a multimodal feature fusion matrix. This optimized set of features is finally inputted
into the fatigue recognition model for classification.

3.3.1. Model Accuracy Evaluation

The dataset specifically constructed for this study was partitioned following a ratio of
“60% for training, 20% for validation, and 20% for prediction”. This distribution guaran-
teed an adequate volume of data for model training while simultaneously ensuring that
the validation and prediction phases were supported by sufficient sample sizes. Such a
structured approach facilitated efficient model selection and enabled a thorough evaluation
of the model’s generalization capability. The outcomes of the prediction phase are depicted
in Figure 19.



Sensors 2024, 24, 2910 22 of 30

Sensors 2024, 24, 2910 22 of 31 
 

Table 8. Adversarial test results. 

Random Noise Values 
Average Recall 
before Test (%) 

Average Recall 
after Test (%) 

0.01 95.16 95.16 
0.05 95.16 95.16 
0.1 95.16 95.16 
0.3 95.16% 91.93 
0.5 95.16% 91.31 
0.7 95.16% 81.64 
1 95.16% 81.02 

The findings indicate that low-intensity random noise introduced minimal perturba-
tions to the model. Even with noise levels approaching 0.5, the model sustained a recall 
rate exceeding 91.31%. At a noise level of one, representing extreme noise conditions akin 
to adversarial testing, the model nearly obscured the original data signal yet retained a 
recall of 81.02%, evidencing its robustness. 

3.3. Experiments on Fatigue State Recognition Based on Bayes-gcForest 
Figure 18 presents the workflow of brain fatigue recognition utilizing the Bayes-

gcForest approach. The process begins with the preprocessing of raw data, which encom-
passes labeling and segmenting the data into different frequency bands. Subsequently, 
feature extraction is carried out on both EEG and ECG data, yielding a total of 9 classes 
and 25 distinctive features. These features are then optimized using the mRMR algorithm, 
forming a multimodal feature fusion matrix. This optimized set of features is finally in-
putted into the fatigue recognition model for classification. 

 
Figure 18. Brain fatigue recognition flowchart. 

3.3.1. Model Accuracy Evaluation 
The dataset specifically constructed for this study was partitioned following a ratio 

of “60% for training, 20% for validation, and 20% for prediction”. This distribution guar-
anteed an adequate volume of data for model training while simultaneously ensuring that 
the validation and prediction phases were supported by sufficient sample sizes. Such a 
structured approach facilitated efficient model selection and enabled a thorough evalua-
tion of the model’s generalization capability. The outcomes of the prediction phase are 
depicted in Figure 19. 

Figure 18. Brain fatigue recognition flowchart.

Sensors 2024, 24, 2910 23 of 31 
 

 
Figure 19. Predictive results of multimodal feature fusion for brain fatigue state recognition. 

The data would be targeted for the effective evaluation of the model binary classifi-
cation effect, and the results are shown in Table 9. 

Table 9. Bayes-gcForest model classification recognition results. 

Fatigue Category Precision (%) Recall (%) F1 Score (%) Standard Deviation (%) 
No (N) 96.93 96.37 96.35 1.43 
Yes (Y) 94.31 95.89 95.33 1.51 

Average 95.62 96.13 95.84 1.47 

In order to demonstrate the ability of multimodal fusion features to improve the clas-
sification performance, this study also compares the classification results of the multi-
modal fusion features (EEG and ECG) and unimodal features (EEG or ECG), as shown in 
Table 10. The optimal average recognition rate of 96.13% was obtained for the multimodal 
fusion features, while the average recognition rates of 93.26% and 88.78% were obtained 
for the EEG features and ECG features alone, respectively. The analysis of the constructed 
brain fatigue dataset revealed that the classification performance using a single modality, 
whether it be EEG or ECG features, was already commendable. However, the integration 
of multiple modalities within the feature set markedly enhanced the classification accu-
racy. This improvement underscores the value of combining various data sources, demon-
strating that the synergy of multimodal features significantly amplifies the model’s ability 
to discern fatigue states with greater precision. 

Table 10. Comparison of classification results between unimodal and multimodal fusion features. 

Type of Feature Average Recognition Rate (%) Standard Deviation (%) 
EEG 93.26 2.63 
ECG 88.87 4.10 

EEG and ECG 96.13 1.47 

The observed standard deviation in the classification outcomes for the multimodal 
fusion feature was notably low at 1.47%, considerably less than that associated with uni-
modal features. This highlights the enhanced stability and robustness afforded by the in-
corporation of multimodal features into the model, demonstrating its superior adaptabil-
ity across diverse subject data. 

Figure 19. Predictive results of multimodal feature fusion for brain fatigue state recognition.

The data would be targeted for the effective evaluation of the model binary classifica-
tion effect, and the results are shown in Table 9.

Table 9. Bayes-gcForest model classification recognition results.

Fatigue Category Precision (%) Recall (%) F1 Score (%) Standard Deviation (%)

No (N) 96.93 96.37 96.35 1.43
Yes (Y) 94.31 95.89 95.33 1.51

Average 95.62 96.13 95.84 1.47

In order to demonstrate the ability of multimodal fusion features to improve the
classification performance, this study also compares the classification results of the multi-
modal fusion features (EEG and ECG) and unimodal features (EEG or ECG), as shown in
Table 10. The optimal average recognition rate of 96.13% was obtained for the multimodal
fusion features, while the average recognition rates of 93.26% and 88.78% were obtained
for the EEG features and ECG features alone, respectively. The analysis of the constructed
brain fatigue dataset revealed that the classification performance using a single modality,
whether it be EEG or ECG features, was already commendable. However, the integration
of multiple modalities within the feature set markedly enhanced the classification accuracy.
This improvement underscores the value of combining various data sources, demonstrating
that the synergy of multimodal features significantly amplifies the model’s ability to discern
fatigue states with greater precision.
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Table 10. Comparison of classification results between unimodal and multimodal fusion features.

Type of Feature Average Recognition Rate (%) Standard Deviation (%)

EEG 93.26 2.63
ECG 88.87 4.10

EEG and ECG 96.13 1.47

The observed standard deviation in the classification outcomes for the multimodal fu-
sion feature was notably low at 1.47%, considerably less than that associated with unimodal
features. This highlights the enhanced stability and robustness afforded by the incorpora-
tion of multimodal features into the model, demonstrating its superior adaptability across
diverse subject data.

To obtain a better visualization of the impact of fused and unimodal features on each
subject’s data, Figure 20 shows the average recognition rate obtained by the model for
20 subjects’ data with different modal features.
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The analysis revealed that over 80% of the subjects exhibited a higher average recogni-
tion rate with multimodal fusion features compared with unimodal features. Furthermore,
the variation of multimodal fusion features in the overall recognition rate was minimized,
indicating enhanced model stability. This suggests that multimodal fusion features not
only bolster the overall classification performance across varied subject data but also lead
to more consistent and accurate outcomes. Essentially, the integration of multiple data
modalities effectively harnesses the strengths of each, resulting in a robust model capable
of adapting to and accurately classifying diverse types of data from different subjects.

3.3.2. Model Validation Experiment

In order to demonstrate the effectiveness and compatibility of the Bayes-gcForest
algorithm model proposed in this paper for brain fatigue recognition when oriented to
different datasets, the multi-featured fatigue dataset (DROZY) [37] released in 2016 by the
Laboratory for Signal and Image Exploitation (INTELSIG), which is part of the Department
of Electrical Engineering and Computer Science of the University of Liège (ULg) in Liège,
Belgium, was used as a validation experimental dataset for the experiments, and the
prediction results are shown in Figure 21.
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Figure 21. DROZY dataset’s identified predicted results.

From the model evaluation indexes, the recall value was 0.9571, the precision value
was 0.9501, and the F1 score was 0.9534. From the results, it can be seen that the model’s
prediction effect for this dataset was effective. Compared with the previous fatigue de-
tection study for the same dataset, which only used the method of extracting ECG or
EEG features, the method used in this study improved the results by 5.74% [38] and
5.71% [39], respectively. The above results fully validate the compatibility and effectiveness
of the Bayes-gcForest algorithmic model proposed in this paper for the identification and
valuation of datasets from different sources, especially small-scale datasets.

3.3.3. Model Comparison Experiment

In order to prove the classification ability of the Bayes-gcForest algorithm model
proposed in this paper, a total of five models, including unimproved gcForest, the SVM
and BP machine learning methods, and the CNN and LSTM deep learning methods, were
selected for performance comparison in the comparison experiments. The experiment
results are shown in Figures 22–26.
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It can be seen that Bayes-gcForest achieved the highest average recognition rate
of 96.13%, which was a significant advantage over all five other types of models. The
unimproved gcForest model also achieved better performance than the other models. The
deep learning model predictions generally performed better than machine learning. The
SVM had the lowest average recognition rate of 77.51%. The classification performances of
all models are shown in Table 11.

Table 11. Comparison of classification performances of different models.

Model Average Precision (%) Average Recall (%) Average F1 Score (%) Standard Deviation

Bayes-gcForest 95.62 96.13 95.76 1.47
gcForest 95.01 92.10 93.53 2.67

SVM 81.36 77.51 79.39 9.36
BP 82.18 83.36 82.77 7.23

CNN 90.84 91.54 91.18 4.23
LSTM 89.96 86.72 88.02 7.24

When analyzed from the perspective of the standard deviation, the stability perfor-
mance of the Bayes-gcForest model was notably superior, enhancing its ability to accurately
discern the fatigue states of subjects. This empirically demonstrates the efficacy of utilizing
a fusion of features as model input for fatigue recognition, effectively compensating for the
limitation where EEG variations are less pronounced at lower levels of fatigue.

To obtain a better visualization of the impact of different models on each subject’s
data, Figure 27 shows the average recognition rates obtained by the models using different
modal features for the 20 subjects’ data.

Consequently, it can be concluded that the brain fatigue state recognition model based
on Bayes-gcForest is more ideal for fatigue state discrimination and can be deeply applied
to the subsequent fatigue state recognition for researchers.
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4. Conclusions

This study designed and developed a portable, cost-effective, and user-friendly system
with real-time capabilities for acquiring, monitoring, and analyzing physiological signals.
Utilizing the enhanced Bayes-gcForest algorithm, the proposed method for brain fatigue
state recognition attained a high average recognition rate of 96.13% on a bespoke dataset.
Meanwhile, on the publicly available dataset DROZY, the model also achieved a recognition
rate of 95.71%, which fully demonstrates the excellent prediction effect of the model on this
dataset. Compared with the previous fatigue detection studies on the same dataset using
only EEG or the fusion of EEG and ECG features, it improved the results by 5.74% and
5.71%, respectively. The brain fatigue recognition model proposed in this paper has high
recognition accuracy and compatibility.

In summary, the system proposed in this study provides a solution to the problems of
traditional EEG and ECG acquisition devices being expensive and difficult to operate and
having poor portability. After passing relevant industry standard tests, the system can be
widely applied to work scenarios that require focused monitoring of employee fatigue. By
tracking and measuring the fatigue states of the staff to grasp their patterns, it can guide
the relevant departments or enterprises to scientifically formulate a rest plan to improve
work efficiency and safety.

4.1. Limitations and Directions for Improvement

However, due to the limitations of the experimental period, manpower, and related
resource packages, this study still has some limitations:

(1) The anti-interference ability of the system needs to be further enhanced, which is
important for promoting the application scope of the system.

(2) While this paper’s binary classification model reliably detected the presence of
fatigue, fatigue itself is a multifaceted human factor issue that is challenging to categorize
according to specific criteria [40]. Therefore, it is worth exploring how to better define and
refine the classification criteria for fatigue.

(3) Due to the limitations of the experimental conditions, this study mainly focused on
fatigue recognition through integrating EEG and ECG features. The introduction of more
fatigue-related features can be considered in future work based on other research results.

(4) In this study, only 22–25 year-old regular and healthy graduate students in univer-
sities were selected as the subjects. This may be different from the actual physiological and
psychological conditions as well as fatigue perception of research workers who have been
in high-pressure research environments for a long time, and the diversity of the sample was
more limited. Therefore, in follow-up research on brain fatigue recognition, the sample data
should be increased by expanding the population and the range of characteristics of the
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research subjects, and the fatigue characteristics of research workers in specific industries
should be further investigated under the premise of ensuring the diversity of the samples.

(5) The fatigue recognition model still has a greater demand for arithmetic resources,
and it is temporarily unable to form an integrated portable mobile device with the collection
system that has a limited arithmetic capacity.

4.2. Future Plan

Therefore, the future research direction mainly focuses on the following five points:
(1) Further improve the accuracy and anti-interference ability of sensors and hard-

ware circuits;
(2) Increase the specific research on different fatigue levels and achieve more accu-

rate identification of multi-classification problems through further optimization of the
algorithm model;

(3) Add multiple physiological signals and features, such as EMG, EOG, and other
physiological signals, to further enhance the accuracy and robustness of fatigue recognition
by integrating these diverse fatigue indicators;

(4) Consider conducting further validation studies with larger sample sizes to strengthen
the generalizability of the results;

(5) Improve the algorithm model to reduce the arithmetic resource demand while
improving the model performance.
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