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Abstract: Pancreatic adenocarcinoma (PAAD), one of the most malignant tumors, not only has
abundant mesenchymal components, but is also characterized by an extremely high metastatic risk.
The purpose of this study was to construct a model of stroma- and metastasis-associated prognostic
signature, aiming to benefit the existing clinical staging system and predict the prognosis of patients.
First, stroma-associated genes were screened from the TCGA database with the ESTIMATE algo-
rithm. Subsequently, transcriptomic data from clinical tissues in the RenJi cohort were screened for
metastasis-associated genes. Integrating the two sets of genes, we constructed a risk prognostic signa-
ture by Cox and LASSO regression analysis. We then obtained a risk score by a quantitative formula
and divided all samples into high- and low-risk groups based on the scores. The results demonstrated
that patients with high-risk scores have a worse prognosis than those with low-risk scores, both in the
TCGA database and in the RenJi cohort. In addition, tumor mutation burden, chemotherapeutic drug
sensitivity and immune infiltration analysis also exhibited significant differences between the two
groups. In exploring the potential mechanisms of how stromal components affect tumor metastasis,
we simulated different matrix stiffness in vitro to explore its effect on EMT key genes in PAAD
cells. We found that cancer cells stimulated by high matrix stiffness may trigger EMT and promote
PAAD metastasis.

Keywords: pancreatic adenocarcinoma; stroma; metastasis; tumor microenvironment; risk prognostic
signature

1. Introduction

Pancreatic adenocarcinoma (PAAD) is a highly malignant and aggressive tumor which
has the 4th highest mortality rate among all cancers [1]. With a 5-year survival rate of only
8%, it poses a serious threat to people’s health [2]. For most PAAD patients, since systemic
metastases have often occurred before the time of diagnosis, only a few patients in the
early stages can undergo resection, and disease recurrence and metastasis are common and
difficult to intervene [3]. Therefore, interventions targeting the metastasis of tumor cells are
of significance and there is an urgent need to establish a valid predictive feature to assess
the prognosis of PAAD patients to enable patient stratification and precise treatment.

Metastasis is a major cause of high mortality in PAAD patients and is a highly so-
phisticated process involving angiogenesis/lymphangiogenesis, epithelial mesenchymal
transition (EMT), invasion of surrounding tissues, formation of pre-metastatic niches
(PMN), and growth of metastatic sites [4]. The interaction between tumor cells and their
microenvironment acts as a crucial driver of tumor cell invasion and metastasis [5]. Prior
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to the onset of tumor cell spread, primary tumors secrete soluble factors and extracellular
vesicles to promote PMN formation by providing vascular docking sites for circulating
tumor cells, enhancing vascular permeability, remodeling the extracellular matrix, and
recruiting immunosuppressive inflammatory cells [6].

Histologically, a distinctive feature of PAAD is the dense fibrotic stroma or desmoplasia
found around tumor cells, including overproduction of the extracellular matrix (ECM) and
proliferation of stromal cells [7,8]. Desmoplasia leads to poor prognosis by leading PAAD
progression and its resistance to chemotherapy [9]. In other words, increased deposition,
modification, and remodeling of ECM during tumor progression produces a highly fibrotic
tumor microenvironment with increased matrix rigidity [10]. Although the ECM has
historically been considered merely a structural scaffold and barrier to tumor cell migration,
it is now a growing recognition that stromal stiffness associated with a pro-fibrogenic
response can provide biomechanical cues to modulate intracellular signaling pathways and
increase tumor malignancy, which is associated with poor patient prognosis, and that some
tumor-derived factors may serve as important diagnostic or prognostic biomarkers.

In addition to the complex tumor microenvironment, high heterogeneity and unex-
plained drug resistance exacerbate the difficulty of pancreatic cancer treatment. Currently,
for different clinical stages, gemcitabine-based combination chemotherapy (gemcitabine
and capecitabine, albumin paclitaxel, etc.) and modified FOLFIRINOX (fluorouracil, oxali-
platin, irinotecan, leucovorin) therapy represent the standard adjuvant chemotherapy for
individuals with resectable and metastatic PDAC. While for borderline resectable PDAC
(BRPC) or locally advanced PDAC (LAPC), an individualized treatment plan performed by
a multidisciplinary review is recommended [11]. In consideration of the limited efficacy
and toxic effects of chemotherapy, targeted drugs and immunotherapeutic agents have
recently gained attention and made some progress.

In summary, the link between stromal components and tumor metastasis is critical for
PAAD progression. The purpose of this study was to construct a stroma- and metastasis-
associated prognostic model for patients with PAAD, so as to accurately predict the progno-
sis and provide useful recommendations for targeted therapy and immunotherapy.

2. Results

The workflow of this study was as shown in Figure 1.

2.1. Exploration of Stroma- and Metastasis-Associated Genes

To explore the crosstalk between matrix and metastasis, we used different concen-
trations of Collagen I Matrigel mixture to simulate the effects of different matrix stiffness
(0.5 kPa and 12 kPa) on PAAD cell metastasis. The results showed that the expressions of
N-cadherin and Vimentin were up-regulated in tumor cells stimulated by higher hardness,
while the expression of E-cadherin showed the contrary (Figure 2A–C). This showed that
the related properties of the matrix, especially the stiffness of the matrix, did affect some of
the transfer processes.
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Figure 1. Workflow diagram of this study.

After that, we intended to screen stroma- and metastasis-associated genes for further
study. First, the ESTIMATE algorithm was employed to calculate the stromal score for
each PAAD sample in the TCGA database, and the samples were divided into high and
low groups based on the score to identify differential genes associated with the stroma
component. As shown in the volcano plot about gene expression profiles of the high versus
low stromal score groups (Figure 2D), 1588 differentially expressed genes (DEGs) were
acquired in the high stromal score group compared with the low score group, named
stroma-associated differential genes. Next, we examined the transcriptome microarray data
of 11 PAAD liver metastasis cases in the RenJi cohort (liver metastasis tissue vs. tumor
tissue) from which we screened for metastasis-related differential genes. As shown in
Figure 2E, 974 DEGs were obtained in liver metastases compared with tumor tissues,
named metastasis-associated differential genes. Using the Venn algorithm, the two datasets
were integrated to obtain a total of 170 DEGs (Figure 2F). The 170 stroma- and metastasis-
associated genes were later subjected to gene annotation by KEGG and GO (Figure 2G–H).
The GO and KEGG pathway analysis of DEGs showed fascinating results, including the
activation of expected matrix-related “ECM-receptor interaction” and “Focal adhesion”,
immune-related “Th1 and Th2 cell differentiation” and “B cell receptor signaling pathway”
and PI3K/Akt signaling pathways, suggesting that these DEGs affect the prognosis of
PAAD by the possible means of activating these pathways, thereby regulating malignant
biological behaviors such as proliferation, invasion, and metastasis of tumor cells.
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Figure 2. Exploration of Stroma- and Metastasis-Associated Genes. (A–C) Simulation of the effect
of different matrix stiffness on the expression of key genes in EMT In vitro; (D) Volcano plot of
stroma-associated DEGs based on TCGA-PAAD data; (E) Volcano plot of metastasis-associated
DEGs based on RenJi cohort transcriptomics data; (F) Venn diagrams for screening stroma- and
metastasis-associated genes; (G) Top 15 GO analysis terms for stroma- and metastasis-associated
genes; (H) Stroma- and metastasis-associated genes of the top 30 most enriched KEGG pathways.
* p < 0.05, ** p < 0.01, *** p < 0.001.

2.2. Development of Stroma- and Metastasis-Associated Risk Prognostic Signature

At first, we divided the 178 PAAD samples into the training and testing groups.
As shown in Supplementary Table S1, there were no differences in clinicopathological
characteristics between the two groups. According to the results of univariate Cox re-
gression analysis, LASSO regression analysis was utilized to construct a stroma- and
metastasis-associated risk prognostic signature (Figure 3A–C). As a result, seven genes
(GHR, C14orf132, CD200, BCAT1, SNAI2, SEMA3C, PDGFC) were obtained for further
analysis. Subsequently, the multivariate Cox regression analysis was employed to iden-
tify the genes having an independent impact on the overall survival of patients, four of
which (GHR, BCAT1, C14orf132, SEMA3C) were obtained (Figure 3D). Among them, BCAT1
and SEMA3C were poor prognostic factors, and their high expression indicates a short
survival time, while the results of GHR and C14orf132 were opposite, indicating that they
are protective factors (Figure 3E–H). Finally, through the above operation, an optimal risk
prognostic signature based on four genes was developed to predict the outcome of patients.
All sample risk scores were calculated according to the following formula: risk score =
(−0.8319) × Exp (GHR) + (−0.6345) × Exp (C14orf132) + 0.4349 × Exp (BCAT1) + 0.5420 ×
Exp (SEMA3C). With the counted risk scores, PAAD patients was divided into two groups
with discrete OS, namely, high-risk group and low-risk group.
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Figure 3. Development of Stroma- and Metastasis-Associated Risk Prognostic Signature. (A) Cross-
validation plot for penalty term. (B) LASSO analysis plot of the stroma- and metastasis-associated
genes. (C) Forest plot of seven stroma- and metastasis-associated genes. (D) Coefficient of the
four elected genes. (E–H) Kaplan–Meier curves of four stroma- and metastasis-associated genes in
TCGA database.

2.3. Validation of Stroma- and Metastasis-Associated Risk Prognostic Signature in TCGA

Using the scoring formula mentioned above, the risk score of each patient in the
training group was counted. The heat map demonstrated the distribution of four genes in
each sample (Figure 4A). As the risk score rose, the occurrence of death events gradually
increased. (Figure 4B–C). The high-risk group showed a poorer prognosis than that in the
low-risk group (p < 0.001) (Figure 4E). The progression-free survival rate exhibited the
identical tendency (Figure 4F). Moreover, the four genes were utilized in order to establish
a highly accurate prognosis scoring system (Figure 4D, AUC1year = 0.755, AUC2year = 0.772,
AUC3year = 0.776). The univariate and multivariate Cox regression analysis showed the
consistent results, indicating that the increased risk score leads to a worse prognosis
(Figure 4G–H).
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Figure 4. The Prognostic Value of Stroma- and Metastasis-Associated Risk Score Model in the Training
Group. (A) The heat map illustrated the expression of four genes in each sample. (B) The distribution
of low- and high-risk samples. (C) The correlation of risk score, survival status and survival time
(D) ROC curve of the risk score. (E,F) Kaplan–Meier curve of overall survival and progression-free
survival in low- and high-risk groups. (G,H) The univariate and multivariate Cox regression analysis
of clinical characteristics and risk score.

By using an internal testing group and the entire cohort, we verified the stability of the
risk signature. Comparing to the training group, the four genes in the testing group and
the entire cohort shared similar distributions (Figure 5A and Figure S1A). The higher the
risk score, the fewer samples survived and the larger number of dead samples (Figure 5B,C
and Figure S1B,C). Additionally, much alike the conclusion of the training group, samples
in the high-risk group tended to have worse prognosis in the testing group and the entire
cohort (Figure 5E,F and Figure S1E,F). Although differences were found in the ROC curve
between the training and testing groups due to the limitation of tumor samples, it still
proved that the risk signature had accurate prediction abilities in the testing group and
the entire cohort. (Figure 5D and Figure S1D). Indicated by the Cox regression analysis,
the risk signature can serve as an independent prognostic factor, showing its potential to
predict patient prognosis (Figure 5G,H and Figure S1G,H).
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2.4. Identifying the Predictive Capability of Risk Signatures for Prognosis

First, a nomogram combining the clinical data (sex and stage) of patients and the risk
score was conducted to predict the 1-, 2-, and 3-year overall survival of PAAD patients
(Figure 6A). After the risk scores were calculated based on the tumor stage and risk score,
it was verified that the nomograph was of great prognostic value using calibrate curves
(Figure 6B–D). The AUCs of the nomogram were 0.760, 0.737, 0.710 in 1-year, 2-year and
3-year OS (Figure 6E–G). In addition, the results of the concordance index (c-index) also
showed that the prediction effect of risk signature was better than others (Figure 6H).
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Figure 6. Identifying the Predictive Capability of Risk Signatures for Prognosis. (A) Establishment
of a nomogram based on the signature to predict the 1-, 2-, and 3-year OS. (B) One-year nomogram
calibration curves of the TCGA cohort. (C) Two-year nomogram calibration curves of the TCGA
cohort. (D) Three-year nomogram calibration curves of the TCGA cohort. (E–G) The time-dependent
ROC of the nomogram based on the OS. (H) The concordance index (c-index) for the risk signature
and other clinical characteristics. * p < 0.05, *** p < 0.001.

2.5. Correlation of Risk Prognosis Signature with Tumor Mutational Burden

It has been reported that tumor mutational burden (TMB) may be highly correlated
with patient survival and has been utilized as a biomarker in certain cancer types to identify
patients who would benefit from immunotherapy [12]. In order to verify the difference of
TMB between the two groups, the “maftool” package was utilized to analyze and conclude
the mutational data acquired from the TCGA. The top 15 mutation genes in the two groups
were shown in the waterfall plots (Figure 7A,B), as they were identical in two groups,
while the mutation frequencies were different. Moreover, it could be concluded that the
KRAS and TP53 were the genes with the top mutation ratios between the two groups.
Furthermore, TMB in the high-risk group was higher than that in the low-risk group
(p < 0.001) (Figure 7C). According to the survival analysis, the survival time of samples
was negatively correlated with the high-TMB (p = 0.008) (Figure 7D), the KRAS-mutant
(p = 0.001) (Figure 7F) and the TP53-mutant (p = 0.012) (Figure 7H), respectively. After
combining the results of TMB analysis and the risk score, the outcome suggested that
the high-TMB and the high-risk tended to have the worst prognosis among the cohort
(p < 0.001) (Figure 7E). To take this further, we performed a stratified analysis based on
risk score, KRAS and TP53 mutation status to prove our theory about whether there could
be a collective impact between KRAS and TP53 mutation and the risk score. The results
showed that the lower the risk scores and the KRAS or TP53 mutation proportion, the better
mortality rate there might be (Figure 7G,I).
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Figure 7. Correlation of Risk Prognosis Signature with Tumor Mutational Burden. (A,B) The waterfall
plots of mutant genes in high- and low-risk groups. (C) The Violin plot of TMB score in high- and
low-risk groups. (D) Kaplan–Meier survival curve of high-TMB and low-TMB. (E) Kaplan–Meier
survival curve stratified by risk score and TMB. (F) Kaplan–Meier survival curve of KRAS-mutant and
KRAS-wild. (G) Kaplan–Meier survival curve stratified by risk score and KRAS. (H) Kaplan–Meier
survival curve of TP53-mutant and TP53-wild. (I) Kaplan–Meier survival curve stratified by risk
score and TP53.

2.6. Correlation of Risk Prognostic Signature and Tumor Immune Microenvironment

Numerous studies have shown that cancer-associated stromal cells such as CAFs
not only promote tumor proliferation and metastasis, but also induce immune evasion of
cancer cells and immunosuppressive effects [13,14] via interactions with the tumor immune
microenvironment (TIME) components, especially immune cells [15,16]. Meanwhile, TIME
has been reported to be closely related to the clinical prognosis of tumor patients [17], for
which we carried out further studies to explore the effect of risk signature in TIME. First,
to quantify the enrichment scores of immune-related functions, ssGSEA was adopted to
explore the correlation between immune functions and risk signature. The results showed
that type I and type II IFN responses, cytolytic activity and T-cell co-stimulation differed
prominently between the two groups (Figure 8A). In addition, we used the CIBERSORT al-
gorithm to compare the proportions of different immune cells in the two groups (Figure 8B).
It was found that the risk signature was closely related to some subtypes of immune cells,
with an increase in the proportion of unpolarized macrophages as well as activated mast
cells with increasing risk scores, while the opposite was observed for CD8+T cells and
naive B cells (Figure 8C–F). These results suggest that the immune response may be more
active in samples with low-risk scores. Overall, the prognostic risk signature was closely
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related to the immune infiltration of PAAD, and these results may provide new insights
into the PAAD tumor microenvironment.
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Figure 8. Correlation of Risk Prognostic Signature and Tumor Immune Microenvironment. (A)
Differences in immune function between the high- and low-risk groups; (B) Differences in the
proportions of different immune cells in the high- and low-risk groups; (C–F) Correlation between
risk scores and key immune cells; (G) Differences in the expression of key molecules of immune
checkpoints between the high- and low-risk groups. * p < 0.05, ** p < 0.01, *** p < 0.001.

TIME also determines the status of the immune response in TME, which depends
mainly on the composition and activity of the infiltrating immune cells, as well as alterations
in immune checkpoint molecules [18]. As research about immune checkpoint molecules is
being conducted, immune checkpoint inhibitors (ICIs) are increasingly being considered
as a method for clinical treatment [19]. We intended to investigate whether there is a
correspondence between immune checkpoints and risk signature. Therefore, we selected
key molecules including PDCD1 (PD-1), CD44, BTLA, TNFSF4, CD28, CD70, TNFRSF8,
CD40LG, TNFSF9, CD276, CD200, CD48, CD27, TMIGD2 to assess their correlations with
risk scores (Figure 8G). The results showed that CD44, TNFSF4, CD70, TNFSF9, and CD276
were upregulated in the high-risk group, while the other molecules were reversed. Thus,
risk signature may be an influential factor in predicting the outcome of ICIs treatment in
PAAD patients.

2.7. Correlation of Risk Prognostic Signature and Chemotherapy Drug Sensitivity

In recent decades, with the continuous development of new anti-cancer drugs, tumor
chemotherapy has been widely used. However, the current anti-cancer drugs do not possess
high sensitivity, and they have damaging effects on normal cells while playing their roles
as therapeutic methods. Such problems have gradually become major obstacles limiting
the dosage and hindering the efficacy. Therefore, the early prediction of patients’ sensitivity
to drugs is essential to ensure successful completion of treatment and improve long-term
quality of life [20]. To investigate whether different drugs have different sensitivities in
the two groups of high and low risk, we screened hundreds of chemical drugs using the
pRRophetic algorithm and selected the top 10 most statistically significant drug candidates
(Figure 9A–J). Patients with higher risk scores were sensitive to a smaller proportion of the



Pharmaceuticals 2022, 15, 1336 11 of 19

drugs (Phenformin, GSK1904529A, TAK-715), while those with low-risk scores showed a
higher sensitivity to the rest of the drugs (A-443654, BI-2536, Epothilone B, Pyrimethamine,
Paclitaxel, GW843682X, LY317615). These findings may provide guidance for clinical drug
application in the future.
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2.8. Verification of the Stroma- and Metastasis-Associated Risk Prognostic Model in Public
Database and RenJi Samples

To identify the expression profile of the risk gene signature, TCGA and Genotype-
Tissue Expression (GTEx) datasets were collected and analyzed (Figure 10A–D). We then
investigated the prognostic value of the risk signature using the GEO database (GSE57495)
(Figure 10E). To further determine the predictive value of the risk prognostic model, we
performed real-time PCR on 39 tumor tissues samples from RenJi patients and took the ob-
tained expression values of each gene into the formula described previously. Subsequently,
39 samples were divided into high- and low-risk group according to the risk score. We stud-
ied the differences in clinical data such as TNM staging (Figure 10G), CA19-9 (Figure 10H)
and CEA (Figure 10I) between the high- and low-risk group. In addition, Kaplan–Meier
curves were also used to visually show the difference in survival time between high- and
low-risk groups (Figure 10F). Consistent with the expected results, in our tumor samples,
the prognosis of the high-risk group was worse than that of the low-risk group (p = 0.016).
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Figure 10. Verification of the Stroma- and Metastasis-Associated Risk Prognostic Model in Public
Database and RenJi Samples. (A–D) The expression profile of the risk gene signature in TCGA and
GTEx datasets (tumor tissue was indicated in red and normal tissue in gray); (E,F) Survival curves
regarding high- and low-risk groups in GSE57495 database and RenJi sample; (G) Different TNM
stage counts in the high- and low-risk groups in RenJi sample; (H,I) Differences in tumor markers
(CA19-9 and CEA) between high- and low-risk groups. * p < 0.05.

3. Discussion

It is well known that the treatment of PAAD is a daunting challenge. To date, little
progress has been made in the early diagnosis and effective treatment of patients with
PAAD. Therefore, it is necessary to develop a new prognostic feature from the clinical and
biological characteristics of PAAD, which can not only accurately predict the total survival
time of patients, but also contribute to the improvement in clinical decision making. In
addition, mathematical models in pancreatic cancer research suggest that PAAD does
not always progress in a linear fashion but may be the result of a simultaneous increase
in genetically altered cells [21]. Therefore, considering the development of prognostic
strategies, targeting a single factor may not be sufficient to classify patients with PAAD. As
one of the most malignant tumors, PAAD not only has a high mesenchymal component,
but is also characterized by an extremely high metastatic risk. This study explored the
collaborative effect of stromal and metastatic microenvironments on the prognosis of
patients with PAAD.

Studies have shown that the components of the microenvironment in PAAD are asso-
ciated with poor patient prognosis [7]. The tumor microenvironment of PAAD contains
a large amount of dense stromal components, and the aberrant proliferation of stromal
cells and abnormal ECM dynamics promote the formation of a tumorigenic microenvi-
ronment, leading to malignant transformation, further providing favorable conditions
for metastasis [22,23]. Nielson et al. demonstrated that stromal regulation within PAAD
liver metastases is distinct and dependent on the interaction of immune components. This
process may occur prior to cancer cell metastasis [24]. In terms of exploring the potential
mechanism of matrix components affecting tumor metastasis, considering pancreatic cancer
as one of the tumors with high matrix stiffness, we preliminarily used the Matrigel mixture
with different concentrations of Collagen I to simulate different matrix stiffness. Since
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EMT often occurs at the initial stage of tumor invasion and metastasis, we explored the
expression differences of EMT key genes in different culture environments of 0.5 kPa and
12 kPa. As expected, the expression of E-cadherin significantly decreased in tumor cells
stimulated by high stiffness, while the expression of N-cadherin and Vimentin increased.
We hypothesize that pancreatic cancer cells may sense high matrix stiffness, which induces
EMT and further promotes the formation of the metastatic microenvironment.

In our study, we identified stroma- and metastasis-associated genes using TCGA
data and transcriptomic data from RenJi tissue samples, respectively. Integrating the two
sets of DEGs, we constructed a risk prognostic model based on four genes (GHR, BCAT1,
C14orf132, SEMA3C) by Cox regression analysis and LASSO regression analysis. We have
retrieved some promising results from the gene signatures above, some of which have been
shown to be bonafide candidates involved in tumor pathogenesis. Research by Pedersen
et al. found out applying a threshold for positivity to the methylated BCAT1/IKZF1
blood assay could improve the specificity for colorectal cancer recurrence [25]. Moreover,
Basu et al. reported that in melanoma cells in vitro, GHR antagonist could downregulate
the ATP-binding cassette-containing transporter and consequently sensitize them to anti-
cancer drug treatment [26]. In PAAD, research by Zhang et al. proved a close relationship
between SEMA3C expression and highly-expressed KRASG12D mutation, indicating a
possible and attractive target for PAAD patients [27]. Moreover, Xu et al. revealed that
SEMA3C overexpression was associated with poor prognosis in PAAD patients through
the activation of the ERK1/2 signaling pathway [28]. As expected, patients with high-
risk scores had shorter overall survival times than those with low-risk scores, both in the
TCGA cohort, the GSE57495 dataset, and the RenJi samples. In addition, this risk profile
independently predicted the prognosis of PAAD patients with the optimal predictive power
compared to other clinicopathological characteristics. We then detected the expression of
several risk genes in the TCGA and GETx databases. There was no significant difference in
the expression of GHR between tumors and normal tissues, but studies had shown that
GHR was highly expressed in pancreatic cancer and facilitated tumor progression [29,30].
This may be related to confounding factors, such as ethnic and geographical differences.
However, it does not prevent us from regarding several risk genes as a holistic model for
risk stratification of patients to effectively predict prognosis.

Moreover, we used the ssGSEA and CIBERSORT algorithm to assess the immune-
related functions and the proportion of several subtypes of immune cells. In PAAD, the
dense content of the extracellular matrix remains to be one of the major physical obstacles
rejecting the delivery of anti-tumor drugs, and subsequently constructing a chemotherapy-
resistant and immunosuppressive tumor microenvironment [31]. Our results found that
in samples with higher risk scores, immune function “MHC class I” were up-regulated
and “T cell co-stimulation” were down-regulated, and there were fewer CD8+T cells in the
immune cell population, which may indicate that as the risk factor increases, CD8+T cells
fail to activate and are in an incompetent state, or even undergo apoptosis to effectively
fight tumor formation and progression due to the persistent driving effect of long-term
antigen presentation and the lack of costimulatory signals provided by T-cell co-stimulation
molecules. This potential cause of CD8+ T cell dysfunction was also mentioned in the
review by Philip M et al. [32]. Mast cells have been recognized as central regulators of tissue
remodeling and as anterior immune cells that coordinate innate and adaptive immune
responses [33]. Moreover, higher mast cell tumor infiltration was associated with a decrease
in IFN-γ-producing CD8+ T cells [34], predicting an undesirable response to anticancer
therapy [35]. And M0 macrophages were susceptible to TME and rapidly became tumor-
promoting M2 phenotypes, which may lead to failure of antitumor treatment and worsening
tumor progression [36]. These studies may also support the notion that the increased
proportion of M0 macrophages and mast cells in the high-risk group predicts a worse
prognosis. Undeniably, a deeper understanding of the multidimensional interactions
between tumor-associated stromal cells and infiltrating immune cells within TME will help
us better identify the potential molecular targets for stromal cell-targeted therapies.
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In the correlation analysis between risk score and drug sensitivity, multiple drugs with
different sensitivities in the high- and low-risk groups were identified, such as Paclitaxel,
Phenformin, Pyrimethamine, Epothilone B, BI-2536, GW843682X, etc. Epothilone B, a
microtubule stabilizing agent, had been reported to block cancer cell division by interfering
with microtubule proteins such as paclitaxel [37], and they both showed higher sensitivity
in low-risk groups. Polo-like kinase 1 (PLK1) was closely related to cell cycle regulation and
could accelerate the proliferation and progression of tumor cells. Moreover, overexpression
of PLK1 was associated with poor prognosis of many cancers, making PLK1 an attractive
target for cancer treatment [38]. Both BI-2536 and GW843682X were PLK1 inhibitors [39,40],
and both were highly sensitive in the low-risk group. Studies had demonstrated that
pyrimethamine could inhibit oncogenic proteins such as STAT3 and NF-κB and induce
apoptosis of tumor cells when synergized with temozolomide [41]. Among the more
sensitive drugs in the high-risk group, phenformin had been shown to act as an authentic
tumor disruptor, not only to maintain energy metabolism homeostasis by activating AMP-
activated protein kinase (AMPK), but also as a blocker of mTOR regulatory complexes [42].
In other words, choosing different drugs for patients with different risk scores may improve
their prognosis.

The limitations of our study are as follows. First, the stroma- and metastasis-related
microenvironments vary due to the different sites of tumors. The analysis of tumors as a
whole part may lack specificity. Second, the number of PAAD cases in the TCGA and RenJi
cohorts used for screening and validation of risk-prognosis models was insufficient. Third,
the mechanism of stromal components related to tumor metastasis was not fully explored.
Finally, the data for the raw letter analysis were retrospectively obtained from the available
data and were prone to selection bias. The above deficiencies will be considered in the
further validation of our findings in subsequent studies from the perspectives of multi-
omics (single-cell RNA sequencing integrated spatial transcriptomics), multicenter large
samples, and prospectively designed experiments, respectively. With the amendments
mentioned above, we attempt to explore in depth the still unclear mechanistic studies
between stromal components and tumor metastasis.

4. Materials and Methods
4.1. Data Collection

Gene expression data and clinical survival information were downloaded from the
TCGA database (TCGA-PAAD), GTEx database and GEO database (GSE57495). The status
of the clinical data of PAAD patients is shown in Table 1, including age, gender, stage,
grading and TMN. Samples with no clinical data were excluded from further analysis.
In addition, clinical information of the RenJi cohort and RenJi samples is presented in
Supplementary Materials Tables S3 and S4.

Table 1. Clinical pathological parameters of 178 patients with PAAD from TCGA database.

Characteristic Type n Proportion (%)

Age ≥65 96 53.96
<65 82 46.07

Gender
Female 80 44.94
Male 98 55.06

Grade
G1-2 126 70.79
G3-4 50 28.09

Unknown 2 1.12

Stage
Stage I-II 168 94.38

Stage III-IV 7 3.93
Unknown 3 1.69
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Table 1. Cont.

Characteristic Type n Proportion (%)

T Stage
T1-2 31 17.42
T3-4 145 81.46

Unknown 2 1.12

M Stage
M0 80 44.94
M1 4 2.25

Unknown 94 52.81

N Stage
N0 49 27.53
N1 124 69.66

Unknown 5 2.81

4.2. Establishment and Verification of Risk Prognostic Model

The TCGA-PAAD samples were randomly divided into two groups at a ratio of 1:1,
named the training group and the testing group. To define the prognostic correlation
genes in the training group, a univariate Cox regression analysis was used for the 170
co-expressed genes. Then, a Least absolute shrinkage and selection operator (LASSO)
regression analysis was used to avoid overfitting and remove those closely related genes,
and the risk signature were further established based on the results of two-step multivariate
Cox regression analysis. The formula for the calculation of the risk score was as follows:

Risk score = Σ [Exp (gene) × Coef (gene)]

Exp(gene) denotes the gene expression, while Coef (gene) generation denotes the
regression coefficient. In accordance with the risk score, we separated the samples into high-
risk and low-risk groups based on the median risk score. The survival analysis, receiver
operating characteristic (ROC) curves, and the areas under the time-dependent ROC curves
(AUC) were presented using the “survmine” and “survival” packages. Validation of risk
prognostic signature was implemented during the testing group and the whole cohort.

4.3. Analysis of Independent Prognostic Factors

We performed univariate and multivariate Cox regression analyses in the high- and
low-risk groups in order to confirm the applicability of the risk signature and other clinical
characteristics as the independent prognostic factors.

4.4. Differential Expression Analysis and Its Related Functional Analysis

The DEGs were screened out by the criterion of |log2FoldChange| > 1 and adjusted
p < 0.05 to explore possible pathways relevant to the risk signature. Subsequently, we
applied GO analysis and KEGG pathway analysis to spot the various biological functions
and pathways between the two groups, during which the “limma” package was used to
identify DEGs, and the enrichment analysis was carried out using the “clusterProfiler”,
“enrichplot” and “org.Hs.eg.db” [43].

4.5. Tumor Mutational Burden

The corresponding TMB of each sample was obtained from TCGA, and underwent
analysis and summarization by the “maftools” package [44]. The results were visualized by
waterfall plots. To analyze the survival of different TMB, the “survminer” and “survival”
packages were used.

4.6. Nomogram and Calibration Curves

The nomogram laying out the risk score and other clinical pathological features was
built to establish a viable method for prognostic and overall survival in 1,2- and 3-years
prediction of PAAD patients. The calibration curve was utilized to assess and demonstrate
the accurateness between predicted results and actual survivals.



Pharmaceuticals 2022, 15, 1336 16 of 19

4.7. Differential Analysis of Tumor Immune Microenvironment

To distinguish the differences between the tumor immune microenvironment of two
groups, several analyses were performed. Firstly, we applied the “ESTIMATE” algorithm
to evaluate the infiltrating cells and the tumor purity in the tumor microenvironment [45].
Secondly, we employed the “GSEAbase” package to run the ssGSEA, which served as a re-
flection of the enrichment of several immune functions-related gene sets in two groups [46].
Additionally, the “CIBERSORT” algorithm (https://cibersort.stanford.edu/ (accessed on
14 June 2022)) and the “MCPcounter” package were employed to assess the enrichment of
22 immune cells inside each sample [47,48]. Finally, to evaluate the distinctions between
two groups, we retrieved immune checkpoint key molecules from previous literature.
Pearson correlation analysis was utilized to check the relevance between risk score and
infiltrating immune cells or immune checkpoint key molecules.

4.8. Sensitivity Analysis of Chemotherapeutic Agents

Based on the Cancer Genome Project (CGP) gene expression matrix and drug treatment
information, the R package of pRRophetic was performed to predict the half maximal
inhibitory concentration (IC50) of common chemotherapeutic agents in the TCGA cohort.
IC50, as a measure of a drug’s resistance or sensitivity, can reflect the degree of drug
tolerance of a certain type of cells. Wilcoxon signed-rank test was used to detect differences
between groups [49].

4.9. Cell Culture of Human PAAD Cells

Human PAAD cell lines AsPC-1, Capan-2, MIA PaCa-2, PANC-1, Patu8988, and SW-
1990 were obtained from the State Key Laboratory of Oncogenes and Related Genes, Ren Ji
Hospital, School of Medicine, Shanghai Jiao Tong University. AsPC-1 cells were cultured in
Roswell Park Memorial Institute (RPMI) 1640 culture medium, while others were cultured
in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine
serum (FBS) and 1% streptomycin/penicillin (P/S) at 37 ◦C in a humidified incubator under
5% CO2 condition.

4.10. Quantitative Real-Time PCR

For isolating RNA from tumor samples and tumor cells, we used TRIzol (Takara Bio,
Dalian, China). Then RNA was transcribed to cDNA using the Prime Script RT Master
Mix reagent (Takara Bio, Dalian, China). The primer sequences used in qRT−PCR were
demonstrated in the Supplementary Table S2. 18s was chosen to be an internal reference gene.

4.11. RNA Sequencing

Total RNAs were isolated from freshly frozen tumors with RNeasy MinElute Cleanup
Kit (Qiagen, Hilden, Germany), and the qualified RNAs were amplified by PCR to construct
a cDNA library. After filtering the raw data, the cDNA library was sequenced on the
Illumina Hiseq X-Ten platform (Illumina, San Diego, CA, USA). After the raw sequence
data were evaluated and quality trimmed, the STAR (v2.5.2b) algorithm was used to map
the resulting pure reads to human genome reference (hg19) [50]. Subsequently, according
to the previous study, the raw data were further genetically annotated and quantified [51].

4.12. Statistical Analysis

In our study, the statistical was performed with R (version 4.0.2; R), and p value
<0.05 was regarded as significant. We applied student’s t-test in this study to compare
the differences between the two groups. Kaplan–Meier survival curves were presented
to show survival, and Log-rank tests were applied to compare survival differences. The
Mann–Whitney U test was utilized to compare the ssGSEA scores. The IC50 of drugs was
compared by the Wilcoxon signed-rank test.

https://cibersort.stanford.edu/
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5. Conclusions

Collectively, our study developed a risk prognostic signature of PAAD by LASSO and
Cox regression analysis starting from stroma- and metastasis-related DEGs, and the relia-
bility and validity of this model were verified in multiple datasets and clinical specimens.
Critically, the signature not only serves as an important predictor of the prognosis of PAAD
patients, but also correlates significantly with the tumor immune microenvironment. In
addition, the signature also has a certain auxiliary effect on clinical medication guidance.
In conclusion, this study provides a novel and promising way to facilitate individualized
survival prediction and develop personalized cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15111336/s1, Figure S1: The Prognostic Value of Stroma-
and Metastasis-Associated Risk Score Model in the Entire Cohort; Table S1: Clinical pathological
parameters of 178 patients with PAAD from TCGA database; Table S2: The primers for RT−PCR
in this study; Table S3: The primers for RT−PCR in this study; Table S4: Clinical information of
RenJi sample.
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