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Abstract: Immunotherapy with chimeric antigen receptor T (CAR-T) cell therapies has brought
substantial improvement in clinical outcomes in patients with relapsed/refractory B cell neoplasms.
However, complications such as cytokine release syndrome (CRS) and immune effector cell-associated
neurotoxicity syndrome (ICANS) limit the therapeutic efficacy of this treatment approach. ICANS can
have a broad range of clinical manifestations, while various scoring systems have been developed for
its grading. Cognitive decline is prevalent in CAR-T therapy recipients including impaired attention,
difficulty in item naming, and writing, agraphia, and executive dysfunction. In this review, we aim
to present the diagnostic methods and tests that have been used for the recognition of cognitive
impairment in these patients. Moreover, up-to-date data about the duration of cognitive impairment
symptoms after the infusion are presented. More research on the risk factors, pathogenesis, preventive
measures, and therapy of neurocognitive impairment is crucial for better outcomes for our patients.

Keywords: apraxia; cognition; CAR-T; ICANS; lymphoma; memory; myeloma; neurotoxicity

1. Introduction

Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the manage-
ment of patients with relapsed/refractory B lymphoproliferative malignancies, producing
remarkable clinical responses [1]. To date, four CAR-T products are available for the
treatment of lymphomas and B-acute lymphoblastic leukemia (B-ALL): lisocabtagene
maraleucel for diffuse large B cell lymphoma (DLBCL), primary mediastinal large B cell
lymphoma (PMBCL), and grade 3B follicular lymphoma (FL); axicabtagene ciloleucel for
DLBCL, PMBCL, and FL; brexucabtagene autoleucel for relapsed or refractory mantle cell
lymphoma (MCL) and B-ALL; and tisagenlecleucel for DLBCL and B-ALL in young adult
patients [2]. Recently, two products were approved for administration in patients with
relapsed/refractory multiple myeloma (MM): ciltacabtagene autoleucel and idecabtagene
vicleucel [3,4]. However, CAR-T therapeutics brought novel complications and toxicities
following their infusion [5]. These include cytopenias, diffuse intravascular coagulation,
infections, and endothelial injury syndromes, such as cytokine release syndrome (CRS) and
immune effector cell-associated neurotoxicity syndrome (ICANS) [6–9]. American Society
for Transplantation and Cellular Therapy (ASTCT) criteria are used in everyday clinical
practice for CRS severity grading [10]. Management of CRS includes administration of
tocilizumab (interleukin-6 receptor blocker), steroids, and empiric antimicrobial therapy,
due to the difficult differential diagnosis from infections.
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ICANS onset is usually acute and transitory, while its clinical manifestations are
diverse. It may present as dizziness, headaches, delirium, seizures, impairment of motor
skills, hallucinations, asterixis, and tremors [11]. Moreover, cognitive deficits can be another
presentation of ICANS. Expressive or global aphasia, dysgraphia, disorientation, reduced
attention, amnesia, and apraxia are prevalent in these patients [12]. The immune effector
cell-associated encephalopathy (ICE) score, constituted from the following five points:
(1) orientation to date, city, and hospital; (2) naming of three items; (3) ability to follow
simple commands; (4) counting backward from 100 by 10; and (5) writing of a standard
phrase, is used in everyday clinical practice for ICANS severity evaluation. However, the
ICE score is not sensitive to the detection of cognitive deficits [13]. Another scoring system,
Common Terminology Criteria for Adverse Events (CTCAE), has been used in some cases
for neurotoxicity grading, but it was not specially designed for patients who receive CAR-T
cell infusions [14].

This review aims to summarize the existing literature providing evidence on the
prevalence, diagnosis, clinical manifestations, and pathophysiology of neurocognitive
impairment post-CAR-T cell infusions. Moreover, diagnostic tests and methods for the
detection of neurocognitive deficits in CAR-T cell therapy patients are thoroughly presented.
In addition to these, we summarize the pathophysiology of ICANS, in which neurocognitive
impairment can be attributed. A PubMed search was performed to identify relevant articles
published in English, using the following medical terms: “cognition”, “neurocognitive”,
“memory”, “ICANS”, and “CAR-T”. Early recognition of cognitive deficits is considered
crucial for better outcomes in these patients in order to improve their quality of life.

2. ICANS: Grading, Immunopathology, and Treatment Approach

ICANS incidence has been described as high as 67% in patients who receive CAR-
T cell immunotherapy for acute lymphoblastic leukemia, and up to 62% in those with
lymphomas, constituting a common CAR-T cell-associated toxicity [15]. However, the
reported incidence of neurotoxicity post-axicabtagene ciloleucel infusion has been reported
as high as 87% [16]. The median time of ICANS onset is 4 days post CAR-T infusion,
while most cases of neurotoxicity have been described within 3 weeks after the infusion of
CAR-T products [17,18]. According to the ASTCT grading system, ICANS manifestations
can be divided into four grades [10]. Grade 1 (ICE score: 7–9) patients exhibit mild
disorientation, inattentiveness, and mild expressive and/or receptive dysarthria (patients
can communicate). Grade 2 (ICE score: 3–6) patients are characterized by moderately
impaired consciousness levels but are responsive to voice. Grade 3/4 (grade 3, ICE score:
0–2; grade 4, ICE score: 0) patients (severe ICANS) have significant dysarthria, respond
only to noxious or tactile stimuli, and might exhibit seizures. Severe ICANS might lead to
intracerebral hemorrhage and cerebral edema, which in some cases might be fatal.

A disturbance in the permeability and integrity of the blood–brain barrier (BBB), as
shown by high levels of CAR-T cells, and other T cells (CD4+, CD8+), is observed in pa-
tients with ICANS [19]. Activation of macrophage/monocyte cells by CAR-T cell products
results in the release of multiple cytokines and other inflammatory molecules, such as
angiopoietin-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-
gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), and
interleukin-15 (IL-15) [20,21]. These cytokines lead to neuroinflammation and breakdown
of the BBB, each in a unique way. GM-CSF plays a pivotal role in the manifestations of
ICANS [22]. The knockout of genes implicated in the transcription of GM-CSF diminishes
the inflammation mediated by cytokine release following CAR-T cell product infusion [23].
GM-CSF results in an increase in the levels of TNF-α, which increases the expression of
leukocyte adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and
vascular cell adhesion molecule 1 (VCAM-1) in the endothelial cells of the BBB, partici-
pating in the migration of monocytes and other inflammatory cells in the central nervous
system [24]. Lenzilumab, a recombinant monoclonal antibody against GM-CSF, with po-
tential immunomodulating activity, has been investigated as a prophylactic agent for CRS
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and ICANS in a phase 1/2 trial [25]. Increased serum and cerebrospinal fluid (CSF) levels
of IFN-γ have been reported in CAR-T recipients who developed ICANS in comparison
to those who did not [26]. IFN-γ induces the expression of ICAM-1 and VCAM-1 by
endothelial cells, participating in neuroinflammation [27].

IL-1β also increases the permeability of the BBB, reducing the expression of tight
junction proteins by astrocytes [28]. IL-6 mediates inflammatory response both during CRS
and ICANS [29]. Tocilizumab has been shown to be effective in the management of CRS,
but data also support that this agent failed to protect mice from ICANS development [30,31].
Endothelial injury is implicated in the development of ICANS. Angiopoietin-II and von
Willebrand factor (vWF) have been found to be increased in those with severe ICANS
(grade 4) [32]. Furthermore, an increased angiopoietin-2:angiopoietin-1 ratio has been
reported in patients with severe ICANS [32]. Endothelial activation, stress index score
(EASIX), and the modified EASIX (m-EASIX), as markers of endothelial injury, have been
found as predictors of severe ICANS [33,34]. Other markers such as increased serum levels
of IL-2 and IL-5 in the early period post-CAR-T cell infusion (day 3) were found to be
predictors of severe ICANS development [35]. In summary, systemic inflammation results
in endothelial cells’ activation and disruption in the BBB, resulting in increased cytokine
levels in the CSF (Figure 1).
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Figure 1. Basic insights of ICANS immunopathology. ICANS: immune effector cell-
associated neurotoxicity syndrome; CAR-T: chimeric antigen receptor T; Ang-2: Angiopoietin-
II; GM-CSF: granulocyte-macrophage colony-stimulating factor; IFN-γ: interferon-gamma;
IL-1β: interleukin-1β; IL-6: interleukin-6; IL-10: interleukin-10; IL-15: interleukin-15; ICAM-1: in-
tercellular adhesion molecule 1; VCAM-1: vascular cell adhesion molecule 1; CNS: central nervous
system; BBB: blood brain barrier.

Close monitoring of patients with neurotoxicity is crucial [36]. Neurological examina-
tion, including calculation of the ICE score and assessment of motor function, should be
performed twice a day. Supportive care and administration of corticosteroids constitute
the standard of care in patients with ICANS [36]. For the treatment of grade > 2 ICANS,
dexamethasone or methylprednisolone are suggested. Interestingly, tocilizumab might
worsen ICANS symptoms, as has been shown in Cohort-3 of the Zuma-1 trial [37]. More-
over, the treatment approach to ICANS is different in patients with concurrent CRS. For
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severe neurotoxicity cases, admission of the patient to the intensive care unit (ICU) and
close cooperation with critical care physicians are important.

3. Cognitive Outcomes following CAR-T Cell Therapy

Various approaches have been used in clinical practice for the measurement and eval-
uation of cognition in patients who receive CAR-T cell therapies. Neurological examination
after the onset of cognitive symptoms and frequent assessment until resolution have been
reported [38]. ICANS grading, ICE recording, and monitoring of neurological symptoms
have been found to be crucial, especially in the first two weeks post-infusion [39–46].
In the first two weeks following CAR-T cell therapy cognitive impairment is consid-
ered a manifestation of ICANS, which in some cases might be fatal, as described in
various case reports [13,40,42,46]. Neurocognitive deficits include impaired attention,
difficulty in item naming, writing, agraphia, and executive dysfunction, aphasia, and con-
fusion [38,39,41,43,44]. Montreal cognitive assessment (MoCA) is an easy and widely used
test evaluating the following: (1) short-term memory; (2) visuospatial abilities; (3) higher
cerebral functions, such as attention, concentration, and working memory; (4) language;
(5) orientation to place and time [47,48]. MoCA is helpful for the early detection of cognitive
dysfunction [49,50]. Mohn et al. used the MoCA test for cognitive evaluation during a
10-day period post-infusion in a cohort of 15 patients treated with tisagenlecleucel: in
73.4% (11/15) of the study participants, test values were inside the normal values during
the whole study period, while the other four were diagnosed with ICANS [48]. Sales
et al. showed in their study that the MoCA test is more reliable for the identification of
patients with cognitive dysfunction compared to the ICE score [49]. In this study, 12 of
the 53 patients developed neurotoxicity, while 10 of them received axicabtagene ciloleucel
and two were treated with tisagenlecleucel. However, Herr et al. noticed in a series of
patients that cognitive changes (personality alteration, occupational confusion, or inability
to answer questions) were not associated with ICE score [45]. Thus, a three-step command
tool for the early identification of neurotoxicity was developed to be used in conjunction
with the ICE score [45].

Dimensional change card sort (DCCS) is a method for evaluation of the higher cerebral
functions: participants are asked to classify a series of divalent cards, firstly according
to one category (such as color), and then according to another (such as shape) [51,52]. A
helpful for working memory assessment might be the list sorting working memory test
(LSWMT). In this test, the participant is expected to remember and order different items
that are presented both visually and via audio [53]. Moreover, the Flanker inhibitory
control and attention test (FICAT) has been developed for the evaluation of attention and
inhibitory control. The patient’s attention has to be focused on a certain stimulus while
restraining attention to the stimuli flanking it [54]. The Processing Speed Index (PSI) is
used for the speed of cognitive procedure and response output appraisal [51,55]. Shalabi
et al. were among the first to study neurocognitive outcomes in children and young adults
who receive CAR-T cell therapy using DCCS, FICAT, LSWMT, and Wechsler PSI tests and
comparing mean scores between the baseline and 21–28 days post-treatment [51]. In this
study, 22 patients were enrolled, 21 with acute lymphoblastic leukemia. DCCS, FICAT,
and LSWMT mean scores did not significantly differ post-treatment in comparison to the
baseline, while the Wechsler PSI score was found to be significantly improved (p = 0.048,
t = 2.15).

The quality of life in neurological disorders questionnaire (NeuroQoLv2) is an easy,
reliable, and patient-reported measurement system for the evaluation of the mental and
physical health of individuals with neurological diseases, which has been administered as
well to CAR-T cell patients [56,57]. Sidana et al., in their cohort of 34 patients, estimated
the NeuroQoLv2 at baseline, 2 weeks after the infusion, and monthly for 6 months post-
treatment [57]. They reported a significantly improved NeuroQoLv2 score at 4 months
post-infusion in comparison to the baseline. Similarly, in an observational study, 163 pa-
tients’ cognition performance was evaluated at different time points (at baseline, 3 months,
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12 months) with an everyday cognition questionnaire [58]. Cognition mean levels did not
change from the baseline to 3 months post-treatment (p > 0.05). However, from 3 months to
12 months, patients reported a decline in mean levels of memory (p = 0.04, d = 0.15), global
cognition (p = 0.01, d = 0.18), organization (p = 0.03, d = 0.17), language (p = 0.04, d = 0.15),
and divided attention (p = 0.001, d = 0.28). MD Anderson Symptom Inventory (MDASI) is
a patient-reported outcome measurement system for cancer-related symptoms, examining
13 items, among which are memory deficits [59]. Wang et al. administered the MDASI
questionnaire to 60 CAR-T recipients and they did not identify a statistically significant
difference in the cognition/difficulty remembering question ratings between different time
points [60]. Furthermore, both the interviewing of patients with questions concerning cog-
nition and the recording of patient-reported outcomes have also been used for this purpose
in clinical practice [58,61–63]. Cheng et al. conducted a qualitative study investigating
retrospective patient-reported cognitive symptoms: five, 10, and one participant(s) reported
cognitive symptoms before CAR-T infusion, at baseline, and 6 months after the treatment,
respectively [62]. In another qualitative study, 60% of the study participants were found to
face cognitive problems and mainly memory deficits (2 to 6 months post-infusion) [63]. The
European Organization for Research and Treatment of Cancer Quality-of-Life Q30 Ques-
tionnaire (QLQ-C30) has also been used for the measurement of neurocognitive outcomes
in these patients [13,40,42,46]. Delforge et al., using QLQ-C30, showed that self-reported
cognition improved 2–9 months after the infusion, and the improvement persisted even
18 months post-infusion [64].

The Digit Span (DS) test from the Wechsler adult intelligence scale has been also
implemented for the working memory evaluation of these patients [65–68]. Furthermore,
the free and cued selective reminding test (FCSRT) is useful for both the evaluation of
verbal episodic memory and the detection of dementia [64,65,69,70]. The prospective and
retrospective memory questionnaire (PRMQ) consists of 16 questions, eight examining
prospective memory failures, and eight regarding retrospective failures [66,67,71]. The Trail
Making Test (TMT), a neuropsychological test for the assessment of visual scanning and
task switching, has been applied for the neurocognitive function evaluation of CAR-T cell
therapy survivors [65,66]. TMT consists of two parts, in which the patient has to draw a line
between 24 consecutive circles randomly allocated on the page, and can be completed in 5
to 10 min [72–74]. In the Rey–Osterrieth complex figure (ROCF) test the patient is asked to
draw a complicated figure; thus, the functional decline in multiple cognitive dimensions,
such as attention, visual memory, and concentration can be assessed [65,66,75]. The praxis
test is a gesture-based diagnostic test for cortical pathologies such as Alzheimer’s disease, in
which participants have to imitate certain gestures [65,66,76]. The Boston diagnostic apha-
sia examination (BDAE) has been developed for the evaluation of patients with suspected
aphasia and related disorders [65,66]. BDAE administration lasts from 20 to 120 min and
examines five items: (1) conversational and descriptive speech; (2) acoustic comprehension;
(3) articulation; (4) reading; and (5) writing [77]. Moreover, Mini-mental state examination
(MMSE) testing is an easy way to rapidly assess cognitive function in everyday clinical
settings [78]. MMSE consists of 11 questions assessing five areas of cognitive function:
orientation, registration, attention and calculation, language, and recall [79]. The highest
score is 30, while a score equal to or below 23 is considered suggestive of cognitive im-
pairment. MMSE testing has been implemented for cognition evaluation in these patients,
mainly in a 6-month period post-infusion [47,65,66]. Assessment of the ability to name
items from a given category within a fixed time, known as semantic fluency, has also been
used for cognitive dysfunction detection in CAR-T cell therapy survivors [65,66]. Semantic
disfluency is prevalent in patients with Parkinson’s disease and is indicative of a higher risk
of dementia development [80]. Moreover, another method that has been utilized for this
purpose is DO-80, an oral denomination test of 80 images [65,66]. However, DO-80 is only
available in some languages and payment is required for its use [81]. Maillet et al., in their
observational study, assessed cognitive functions (memory, executive functions, language,
and praxis), in 56 patients at baseline (5 days before CAR-T infusion), 6-, and 12-months
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post-infusion, using the above-mentioned tests [65]. They did not find a significant decline
in comparison to the baseline in the evaluated cognitive functions, while scores in tests
for visuo-construction (p < 0.001), visuospatial ability (p < 0.001), and short-term memory
(p = 0.002) were improved during follow-up. Moreover, in a cohort of 19 disease-free pa-
tients, no statistically significant differences were reported between baseline and follow-up
(2 years post-infusion) in any of the 10 neuropsychological tests conducted [66].

The Continuous Performance Test 3rd Edition (CPT3) is a computerized evaluation for
attention-related problems that has been used in these patients [82,83]. Another method
described is the Stroop color and word test (SCWT) [65,66,82]. Repeatable battery for the
assessment of neuropsychological status (RBANS) evaluating both cognitive function and
neuropsychological status has also been administered in the patients for the evaluation of
neurocognitive performance [82,84]. SCWT is a cognitive test examining the ability of the
participant to inhibit cognitive interference which happens when the processing of a certain
stimulus feature blocks the concurrent processing of a second stimulus attribute [85]. The
Wechsler test of adult reading (WTAR) has been implemented to assess the pre-infusion
intellectual function of the patients [82,86]. Hoogland et al., in a cohort of 117 patients,
assessed total neurocognitive performance (TNP) and cognitive functions at baseline, 1-,
3-, and 12-months post-treatment, using, among others, WTAR, Stroop color, RBANS,
and CPT3 [82]. TNP and executive function decreased slightly from baseline to 3 months
post-infusion and improved at 12 months (p < 0.04), while slight but significant linear
declines in visuospatial ability were also noticed (p = 0.03). In another study examining
four self-reported cognitive outcomes, 37.5% of the patients reported one or more cognitive
difficulties (35% memory, 30% word finding, 22.5% concentration, 12.5% problem solv-
ing) [61]. A total of 10% of study participants experienced all four cognitive difficulties
after CAR-T cell therapy [61]. Furthermore, the Hopkins verbal learning test (HVLT) is
used for the assessment of memory and verbal learning even in individuals with cognitive
impairment [87]. A Cog-12 questionnaire is used for cognitive function assessment, and
the neuropsychiatric inventory questionnaire (NPI-Q), which measures the presence and
severity of 12 neuropsychiatric symptoms in individuals with dementia, has been applied
for the neurocognitive evaluation of CAR-T recipients [47,88,89]. Wang et al. published
a case report, in which the patient’s memory (especially for recent events) declined one
month post-CAR T-cell therapy after the occurrence of a seizure [47]. These findings contin-
ued even two years post-treatment, as shown by neuropsychological assessment (MMSE,
MoCA, HVLT, Cog-12, and NPI-Q tests) [47].

In Table 1, the results of studies examining the long-term cognitive outcomes of
CAR-T therapy survivors are summarized. As shown, most of the cognition outcomes
remain stable, while some patients state a decline in their memory, while still others state
an improvement.

Table 1. Studies examining long-term cognition (>6 months) outcomes in CAR-T cell therapy recipients.

First Author,
Year of Publication

Type of Hematological
Malignancy

Study
Population (N)

Age of Study
Participants

Tests for Cognition
Evaluation Outcomes

Ruark (2020) [61]

Relapsed/
refractory B-acute

lymphoblastic
leukemia,

non-Hodgkin
lymphoma, chronic

lymphocytic
leukemia

40 Median = 54
(range 22–74)

Self-reported
questions on

cognition

37.5% of the participants
reported one or more
cognitive difficulties

(35% memory,
30% word finding,

22.5% concentration,
12.5% problem solving)

Maillet et al. (2021) [65]

Relapsed/
refractory diffuse

large B cell
lymphomas

56 Mean = 58 (standard
deviation ±14)

MMSE,
BDAE, DO-80, semantic

fluency, digit span,
TMT,

Stroop test, FCSRT,
ROCF,

praxis scale,
PRMQ

Scores in tests for
visuo-construction

(p < 0.001), visuospatial
ability (p < 0.001), and

short-term memory
(p = 0.002) were improved

during follow-up.
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Table 1. Cont.

First Author,
Year of Publication

Type of Hematological
Malignancy

Study
Population (N)

Age of Study
Participants

Tests for Cognition
Evaluation Outcomes

Ursu et al. (2022) [66] Relapsed non-Hodgkin
lymphomas 56 Median = 69

(range 26–72)

MMSE,
semantic
fluency,

DO-80, BDAE,
digit span,

TMT,
Stroop test, FCSRT,

ROCF,
praxis scale,

PRMQ

No statistically significant
difference was reported
between baseline and

follow-up (2 years
post-infusion) in any of the
neuropsychological tests

conducted.

Hoogland et al. (2022)
[82]

Relapsed non-Hodgkin
lymphomas 117 Mean = 60.92 (standard

deviation ±11.57)

Color trails,
WTAR,
RBANS,
CPT3,

Stroop test

TNP and executive
function decreased slightly
from baseline to 3 months

post-infusion and
improved at 12 months

(p < 0.04), while slight but
significant linear declines

in visuospatial ability were
also reported (p = 0.03).

CAR-T: chimeric antigen receptor T; MMSE: Mini-mental state examination; BDAE: Boston diagnostic aphasia
examination; TMT: Trail Making Test; FCSRT: free and cued selective reminding test; ROCF: Rey–Osterrieth
complex figure; PRMQ: prospective and retrospective memory questionnaire; RBANS: repeatable battery for the
assessment of neuropsychological status; CPT3: Continuous Performance Test 3rd Edition.

Summarizing neurological clinical examination, ICANS grading with ICE score, semi-
structured interviews with the patients, focusing on their self-reported cognitive issues,
use of questionnaires, and other diagnostic tests are crucial for the early detection of
neurocognitive impairment at different time points (pre- and post-infusion). This approach
for application in everyday clinical practice is presented in Figure 2. ICANS grading is
an easy way to assess neurocognitive function in the early period after CAR-T infusion.
The MoCA test can also be used pre- and post-infusion to evaluate the differences in
cognition and higher cerebral functions, because it is easy, rapid, and can be performed
by non-specialized staff. Moreover, MMSE can be applied at bedside and might be used
long-term, during follow-up, to detect cognitive impairment. Semantic fluency should also
be tested. Questionnaires examining quality of life in CAR-T immunotherapy survivors
are essential to improve the daily life of this population. Semi-structured interviews and
qualitive studies are of paramount importance but might be time-consuming in everyday
practice. The rest of the tests might be performed by experienced neurocognitive sciences
staff, given their complexity. Thus, multidisciplinary teams are essential in this field.
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4. Risk Factors and Therapeutic Targets for Cognitive Impairment following CAR-T Cell
Therapy: The Unanswered Question

To date, no risk factors have been associated with the development of cognitive
impairment post-CAR-T infusion. Patient age at infusion has not been correlated with neu-
rocognition dysfunction onset both in pediatric and adult patients [44,51,58,82]. Hoogland
et al. examined the length of hospitalization as a risk factor among others, but they failed
to show an association with cognitive dysfunction onset [82]. Moreover, no association
has been identified between cognitive outcomes and the number of previous therapy lines,
sex, CRS, and ICANS grade [58,61,82]. Studies with a large number of participants and
efforts for association with other risk factors, such as malignancy type, CAR-T product,
previous allogeneic or autologous hematopoietic stem cell transplantation, and infectious
complications are crucial to shed light in this field.

Further research is warranted for identifying potential preventative or therapeutic
targets of cognitive deficits following CAR-T cell therapy. Wang et al., in their case report,
presented a patient with cognitive impairment (memory loss) post-CAR-T infusion [47].
Oxiracetam (0.8 g orally twice daily) for 5 months was prescribed to the patient and
an improvement in his memory was observed. However, after the discontinuation of
oxiracetam, his cognition declined again. Administration of sodium oligomannate (GV-971)
(450 mg orally twice daily) was subsequently decided, with a significant improvement in
the overall condition of the patient and on MMSE and MoCA test scores. These data have
to be confirmed in large patient cohorts both with randomized clinical trials and real-world
data. Anakinra (interleukin 1-β receptor antagonist) and defibrotide (an agent used for
endothelial injury) have been investigated as potential preventive agents for ICANS in
phase I and II trials [90–93]. It would be interesting to examine whether the prophylactic
use of these agents acts as a prevention for cognitive impairment in CAR-T cell recipients.
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5. Conclusions and Future Directions

Cognitive deficits are a common complication that CAR-T cell recipients experience,
especially during the first week post-treatment. During the follow-up, most of the cognition
outcomes remain stable, while some patients report a decline in their memory while others
an improvement. More studies, providing real-world evidence, are essential to make
reliable conclusions.

The close liaison between neurologists, hematologists, nurses, and psychologists is
crucial for the early detection of neurocognitive dysfunction in these patients. Monitoring
of neurological symptoms, estimation of ICE score to grade ICANS, and use of standardized
neurocognitive scores, such as MoCA and MMSE, can be helpful for the early recognition
of cognitive impairment. Moreover, semi-structured interviews to collect self-reported
neurocognitive outcomes from the patients are considered important to investigate the
prevalence and manifestations of cognitive impairment post-CAR-T infusion. Long-term
monitoring is also vital to improve patients’ quality-of-everyday-life development, and
guidelines about long-term neurocognitive monitoring of CAR-T cell therapy survivors
are needed.

Future research has to focus on the early recognition of cognitive dysfunction, the
identification of risk factors associated with it, and a better understanding of the patho-
physiology of this impairment. Cognitive impairment, and especially memory loss, has
to be investigated to ascertain whether it is associated with endothelial damage and mi-
crovascular alterations, as has been suggested for other clinical entities [94–96]. In the era of
precision medicine, the prevention of neurocognitive dysfunction is substantial to improve
the outcomes of our patients, and novel technologies, such as artificial intelligence models
might be helpful in this direction [97,98].
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